



# Journal of Human Physiology

Volume 1 Issue 1 · June 2019 · ISSN 2661-3859









#### **Editor-in-Chief**

**Dr. Sanjay Kumar** Western Sydney University, Australia

#### **Editorial Board Members**

Allaye Hamadoun Garango, Mali Riju Agarwal, India Fa Wang, United States Fabrizia d'Apuzzo, Italy Salvatore Siracusano, Italy Salyan Bhattarai, Canada Marlies Cortes, Spain Reza Nemati, New Zealand Mostafa Zamani, Iran Elham Harati, Iran Snezana Pantovic, Montenegro Sofia M. Calado, Portugal Manas Bajpai, India Aida Adlimoghaddam, Canada Richard Kyung, United States Venkata Ramana Machha, United States Alastair Forbes, United Kingdom Arvind Sharma, United States Casandra Isabel Montoro Aguilar, Spain Satish Chandrasekhar Nair, United States Khali Elsaye Shreef, Egypt Chengyue Jin, United States Xuejian Wang, China Jingbo Dai, United States Dariush Gholami, Iran Rafik D. Grygoryan, Ukraine Seyed Alireza Mousavi Shirazi, Iran Ali Dadras, Iran Junjie Yang, United States Anton R Kiselev, Russian Federation Falak Zeb, China Morgan Durrette Salmon, United States Hessam H. Kashani, Canada Kozaburo Hayashi, Japan Ronald Allan Magtibay Panganiban, United States Himanshu Narayan Singh, France Animesh Chowdhury, Israel Mukerrem Hale Tasyurek, Turkey Jennifer Leslie, United States Toar Jean Maurice Lalisang, Indonesia

Volume 1 Issue 1 • June 2019 • ISSN 2661-3859 (Online)

# Journal of Human Physiology

**Editor-in-Chief** 

Dr. Sanjay Kumar





### Contents

## Editorial

1 A Foreword from the Editor-in-Chief Sanjay Kumar

### Article

- 2 The Optimal Coexistence of Cells: How Could Human Cells Create The Integrative Physiology Grygoryan R.D
- 23 Low-intensive Microwave Signals in Biology and Medicine Oleksiy Yanenko

### Copyright

*Journal of Human Physiology* is licensed under a Creative Commons-Non-Commercial 4.0 International Copyright (CC BY- NC4.0). Readers shall have the right to copy and distribute articles in this journal in any form in any medium, and may also modify, convert or create on the basis of articles. In sharing and using articles in this journal, the user must indicate the author and source, and mark the changes made in articles. Copyright © BILINGUAL PUBLISHING CO. All Rights Reserved.



Journal of Human Physiology https://ojs.bilpublishing.com/index.php/jhp



### EDITORIAL A Foreword from the Editor-in-Chief

#### Sanjay Kumar<sup>\*</sup>

Mayo Clinic, Rochester, Minnesota, United States

ARTICLE INFO

Article history Received: 30 October 2019 Accepted: 30 October 2019 Published Online: 15 November 2019

Dear Colleague,

I am pleased to present the inaugural issue of "Journal of Human Physiology": a peer-reviewed, open access academic journal of an innovative kind, which addresses the broad scope for outstanding achievements of the world's leading academic and practicing professionals in the field of human physiology. In connection with this, Journal will broadly focus on physiology, with particular emphasis on man with many aspects such as fertility, heredity, ageing and aging process, metabolism and mechanism involves in pathophysiology and environment and the adaptations. The Journal is dedicated to publish quality of article focused on innovative ideas, methodologies, and latest developments in the field of physiology, biology and disease in human.

Journal of Human Physiology emphasizes the importance of the worldwide collaboration and various interdisciplinary researches towards the welfare of human being. The journal will cover the topics include clinical and basic sciences relevant to the diagnostics, novel mechanisms for pathophysiology, genomics, metabolomics, transcriptomics, bioinformatics, microbiome, epidemiology, stem cell research and other novel findings in benefit to human. The journal accepts different kinds of manuscripts such as case reports, case series, new technology reports, short communications, original research articles, review articles, editorials, and letters to editor to provide latest and cutting age research to scientific community.

This is indeed an exciting moment for all of us. We promise that journal will go through rapid publication of manuscripts after rigorous peer review by eminent reviewers in their expertise, which will be accessible free of charge to the scientific community worldwide, and will facilitate widespread dissemination and impact on the field.

As an Editor-in-Chief of this promising journal, I would like to thank all the authors for their excellent and remarkable contributions to the journal. Each issue will offers useful reports and articles to the clinical practitioner and basic researchers. We encourage both clinician and basic science research professionals to submit their manuscripts based on novel approach in the all disciplines of life sciences. We look forward to receive quality of manuscripts, which will provide current development in the cutting edge research for readers.

<sup>\*</sup>Corresponding Author:

Sanjay Kumar,

Mayo Clinic, Rochester, Minnesota, United States;

Email: Sanjay.syadavbiotech@gmail.com



Journal of Human Physiology

https://ojs.bilpublishing.com/index.php/jhp



### ARTICLE The Optimal Coexistence of Cells: How Could Human Cells Create The Integrative Physiology

#### Grygoryan R.D.\*

Department of "Human systems modeling", Cybernetics Center; Institute of software systems of National Academy of Sciences, 03083, 53, Admiral Ushakov str., Kiev, Ukraine

| ARTICLE INFO                                                                                                               | ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Article history<br>Received: 1 November 2019<br>Accepted: 10 November 2019<br>Published Online: 15 November 2019           | A general view of human physiology is proposed. Each of 220 cell types<br>must provide its intimate functions despite occasional or chronic obstacles<br>created by other cells. The physiological mechanisms are independently<br>emerged and evolutionarily saved due to their ability to provide opti-<br>mal-like coexistence of cells on a background of destructive challenges of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Keywords:<br>Cell metabolism<br>Energy shortage<br>Cytoplasm purifiers<br>Adaptation<br>Functional systems<br>Hypertension | adaptive. The cell has accumulated both passive adaptation mechanisms<br>mainly parallel working in the biochemistry, and active physiological<br>mechanisms fighting for the optimal cell metabolism. Its rate depends on<br>the cell type and current phase into the cell cycle. The adaptive properties<br>of organs and their functional systems have resulted from the cells' adaptiv-<br>ity. The impaired cells (under energy lack and/or contaminated cytoplasm)<br>produce adaptation factors acting both in the cell and at multiple organ-<br>ism-scales. Multicellular mechanisms, enhancing the cell fight for energy<br>balance, creating the due cytoplasm for optimizing metabolism, force the<br>most physiological characteristics, including the mean arterial pressure to<br>fluctuate or shift. The view is a basis for re-thinking the concept of the so-<br>called physiological norm and fundamental mechanisms of age-associated<br>pathologies in particular hypertension |

#### 1. Introduction

The article is an essay providing a non-standard systems analysis thus, requiring an extraordinary introduction. The term "adaptation", pivotal in the essay, is used in the sense, concerning the phenomena that throughout life cover an organism's reversible re-tunings in response to internal/external physicochemical and information alterations. The phenomena exceed events usually being under terms of acclimation and acclimatization  $^{[1-4]}$ .

Currently, the physiology in general and the human physiology in part are almost exclusively empirical sciences. But the empiricism, well provided researchers during studying of isolated organs or their limited systems, meet serious problems when it is necessary to understand how the entire organism is functioning in unstable environments. The data basis accumulated by means of empirical study of human adaptation to the altered environmental conditions (atmosphere fronts' passing, high altitude, low or increased temperatures, weightlessness, physical exer-

<sup>\*</sup>Corresponding Author:

Grygoryan R.D.,

Department of "Human systems modeling", Cybernetics Center; Institute of software systems of National Academy of Sciences, 03083, 53, Admiral Ushakov str., Kiev, Ukraine; Email: rgrygoryan@gmail.com

cises, others) is rather a set of fragmentary observations than internally connected causal-consequential regularities.

Figures 1-3 below represent two typical examples of a healthy human person's adaptive physiological responses to alterations of the external environment. In figure1 depicted temporal changes occurring during acclimatization to the higher altitude <sup>[1]</sup>.



**Figure 1.** Typical temporal changes occurring during acclimatization to the higher altitude<sup>[1]</sup>

Principally, the character of adaptive responses is confirmed in many investigations (in particular <sup>[3,4]</sup>).

Certainly, the high altitude affects not exclusively the respiratory system, but also others. According to <sup>[5]</sup>, average cardiovascular and autonomic changes in healthy subjects during the first 10 days of acute high altitude exposure look like shown in figure 2.

As figure 2 shows, the hypoxia stimulation of the cardiovascular system (CVS) reaches its maximum effect during the first few days of high-altitude exposure. Then, on a background of the elevated sympathetic activity, heart rate, cerebral blood flow, and cardiac output are slowly returning to their approximately initial values. Stroke volume, decreasing in parallel with increasing of heart rate, is still significantly lesser than its initial value was. Mean arterial pressure (MAP), and pulmonary arterial pressure are still elevated.



**Figure 2.** Average cardiovascular and autonomic changes in healthy subjects during the first 10 days of acute high altitude exposure between 3800 m and 4559 m.<sup>[4]</sup>

Generally, physiological responses to the elevated altitude, illustrated in figure 1 and figure 2, are in accordance with the current presentations that the hypoxia is the main disturber here. However, other factors accompanying mountains' climbing (namely, temperature and atmospheric pressure decreasing, radiation increasing) are also disturbing the stable physiological mechanisms. Stylized rapid responses of two virtual physiological variables to linear changes of atmospheric pressure are depicted in figure3.



**Figure 3.** Typical phases (divided by vertical dotted lines) of human two virtual physiological variables' responses to gradual changes of atmospheric pressure

Under initial stable pressure, physiological parameters (green and red lines) are also stable. The second phase begins just after the atmospheric pressure is linearly decreasing: both variables, starting to alter (though in this situation in opposite directions) display a complex dynamics.

Already these examples demonstrate that the human organism is entirely adapting to the new environmental conditions. To imagine how deep may be external environmental influences, useful is to look at figure 4.



**Figure 4.** A scheme illustrating deep physical effects of atmospheric pressure (AP) alterations on human body

Initially, under stable AP, stable pressures in different body structures and cavities determine balances of water and ions in liquid environments including cytoplasm. Mechanoreceptors of CVS are reacting only to violations of blood pressures. Under alterations of AP, they affect both CVS' mechanoreceptors and gas concentrations in lungs and their ventilation. In addition, due to pressure transfer through tissues, initial balances become violated in liquids of intercellular and intracellular environments. This causes ions imbalance too. To create a new balance on all structural levels, the cell must expend energy. This is a basis for assuming that under general energy lack, the organism's vulnerability to the passing of atmospheric fronts may increase.

Relationships between AP and human body are much complex than it is commonly assumed. The external pressure passes through our tissues almost without attenuation. AP takes part in formation of both transmural blood pressures and driving forces for trans-membrane passing of water and ions. Finally, internal balances at every organization level determine the activity of a lot of physiological mechanisms. Thus, every alteration of AP physically affects these structures and creates imbalances. To counteract them and create new biological balances into organism's structures (cells, intercellular liquid environment, cavities), cells are forced to activate their pumps working with ATP expenditures. So, during passing of atmospheric fronts, the organism has to activate energy production. Perhaps, this is why the aged persons (likely, having mitochondrial problems) are vulnerable to rapid and essential alterations of AP. None empirical investigation is capable to cover all aspects of this, seeming to be simple, problem. Only mathematical models and computer simulations allow assess the possible investments of each mechanism in providing of our tolerance to AP's alterations<sup>[5]</sup>.

One more picture, shown in figure5, is to demonstrate that our organism, at cells-scale, at tissues and organs scale well-adapted to the earth living environment, is forced to response to alterations of practically every physical-chemical parameters of the environment.



**Figure 5.** Gravity-associated biomechanical shifts of abdominal organs' location in the body and their likely role in astronaut's acute adaptation to microgravity conditions

The pleural pressure is one of modulators of the venous return to heart. The descending aorta, the lower vena cava, as well as the esophagus are breaking through the diaphragm. As the abdominal organs have certain weight, normally, they influence on diaphragm position. It is shifting both under postural changes and under positive (+Gz), negative (-Gz) accelerations, as well us just after the spaceship's engine stops to work and the astronaut is appearing into the microgravity environment. Computer simulations on the model of a three-dimensional cardio-vascular system has shown that the slight elevation of the pleular pressure is the most likely mechanism impeding venous return from the cranial basin <sup>[6]</sup>.

For a long time, the space physiology and medicine used a paradigm stating that under weightlessness, in CVS some additional forces are appearing: they cause cranial shift of blood volumes thus initiating headache and other negative effects <sup>[7,8]</sup>. Although the earth-based physical models of circulatory effects of the weightlessness (mainly, the anti-orthostatic position of  $6-12^\circ$ ) have provided this hypothesis, later direct measures during real space flight have not confirmed the assumption that the central venous pressure is elevated relatively to its preflight level <sup>[7]</sup>. Special computer simulations provided by means of a three-dimensional CVS's model have clarified this contradiction <sup>[6]</sup>. Indeed, additional driving forces in hemodynamics have not been found. It was shown that the weightlessness creates new balance of the mechanical forces, acting on the diaphragm from the abdominal and thoracic cavities. Namely, the diaphragm is shifting into the thorax thus slightly increasing the pleular pressure. As the latter is a modulator of the venous return, the flow from the cranial basin is complicated. The asymmetry is because the vasculature of lower body normally has a more musculature and is better provided by sympathetic nerves. This is a result of human organism long adaptation to the upright position against earth gravity.

Although there is a big amount of publications, concerning different aspects of human adaptation to the altered environments, let me limit the citings, and do several interim conclusions, that will clarify my approach to problems concerned.

(1) Evolution has accumulated multiple mechanisms adapting the human organism to environmental challenges. None empirical approach is able to measure the entire spectrum of biological adaptive re-buildings: behind every empirical result many uncontrolled and unknown responses are still. Adaptive mechanisms, genetically predetermined but continuously being re-tuned throughout ontogenesis, are reversible. Principles of the retuning are described in <sup>[9]</sup>.

(2) As the reversible adaptation is individual, its regularities hardly can be revealed on a basis of the existing empirical data: in fact, they are representing a statistically processed description of the mean results. This is why physicians working in traditional or sports medicine are not capable to create optimal cure or training trajectories.

(3) Individual physiological adaptation to the altered external/internal conditions is a transitory process from the initial quasi-stable situation (at cells-level, assimilation-dissimilation rates are almost equal) to a new one. In a parametric dimension, this transition suggests that there have to be adaptation driving forces (ADF), that appear and act until the new quasi-stable physiology is achieved. The empirical adaptation biology is focused on the description of observable life variables and nothing knows about ADF. One of the main purposes of the theoretical analysis provided in the article is to clarify the nature of ADF, causes for their appearing/disappearing. These uncertainties, complicating the control of adaptation trajectories, that namely, could allow optimizing the training algorithms in sports medicine and the cure of human certain pathologies that are slowly developing for many years.

(4) Certain facts and previous research <sup>[10-20]</sup> point that the necessity to balance the mean energy production rate in each cell, from the one side, with its mean energy consumption rate, from the other side, is one of the most critical criterions for both the cell's and an organism's well-being.

(5) The traditional physiology is aimed at analysis. There is a need to supplement traditional empiricism with a theoretical synthesis also based on reasonable initial heuristics (hypotheses), as it has long been done in physics. As a physiologist-theorist, for many years I am using mathematical modeling and computer simulations illustrated that behind the things, physiologists have had seen in their experiments and published, often exist deeper and simply working mechanisms that can be comprehended only due to the synthesis.

Taking into account these considerations, the purpose of the article is to propose an internally consistent synthetic theory to explain the most general laws of human physiology that is a way for ensuring the optimal coexistence of our specialized cells.

#### 2. Facts and Heuristics to be Used in the Synthesis

The traditional physiology was developed in the opposite direction to organisms' natural evolution. Since Harvey used experiments on ships' hearts and calculations for proving the concept of bloods' circulation, researchers use animals as a model to understand the human organism. Due to reductions, the main roles of every organ in the functioning of the entire organism are established. But somewhat strange situation came to be spread: even nowadays, most physiologists think that the human integrative physiology (HIP) entirely concerns the interactions of organs for providing behaviors. This simplified view does not take into account that physiological mechanisms of life support are operating continuously. As even under rest conditions the organism provides its functional integrity, HIP mandatorily includes all intercellular interactions. Unfortunately, this aspect of HIP is studied very superficially. Even the molecular-biological approaches, since the 80-s of XX Century penetrated into the physiological researches, did not change their character: in fact, both the genetic and the molecular data mainly serve the current physiology as useful appendages.

The matter is that the unicellular organisms (UO) were the elements that have had been aggregated into the one multicellular organism (MO). At this historical moment, the hypothetic ancestor UO has long been evolved in unstable environments. It is highly likely to assume this UO should have been armed with specific mechanisms adequately coping with the environmentally caused intracellular destructions. Also likely is the next assumption: cells, successfully being aggregated into the first MO, had not lost most of these adaptive properties of their ancestors. The question is whether these mechanisms themselves were capable to cope with the novel challenges that occurred in MO?

Let me skip the problems arisen in plant and fungi organisms and focus the question: what new threats for the existence of cells in the animal organism have arisen? Currently, all we know in this aspect is provided by comparative and evolutionary biologists. In fact, they are carefully fixing differences observed in the general anatomy and anatomy of organs of species. Unfortunately, the smallest structures-cells have been compared very roughly. As to the roles of genetic and molecular differences in the organization of physiological nuances at organism-scales, there is practically none investigation. This fact, though complicating our comprehending the cells' coexistence, requires additional logic efforts.

Useful is to underline that the circadian and season rhythmic environmental challenges were the main external violators of UO, thus, the most part of its adaptive mechanisms likely have the same rhythms. What additional violations of the cell life the animal organism origins?

First of all, the animal organism cells are taking nutrients in the same internal source – arterial blood. If the amount of nutrients there is less than the summary needs of all cells is then they cannot provide the required rate of their metabolism. So, the competition for the nutrients (or their several representatives) is a problem that first had to be solved during the evolution of animals. The second problem that has to be solved by animals during their evolution was the problem of how to support the biophysical and biochemical parameters of cytoplasm in a narrow corridor for ensuring the optimal-like rate of the cell metabolism?

Animals to solve these two but not the exclusive fundamental problems have been needed adequate physiological mechanisms. In fact, they have to create: (1) at least two canalization systems (one for providing incomes flow, another – for the in-time removing of metabolic trashes); (2) organs for filling the first canalization system by nutrients; (3) organs, for collecting and removing trashes produced by all cells. Let us call these mechanisms effector-mechanisms (EM).

Assuming EM appeared thanks to mutations and chromosomal aberrations throughout zigzags of evolution, one can conclude that EM could provide optimal-like cell metabolism only in case if certain additional mechanisms are coordinating the activities of these EM. So, we came to the most important for the current HIP question: what mechanisms coordinate the activities of organs and systems materially supporting the optimal-like metabolism of human cells?

The most spread answer to this question sounds like: the homeostatic mechanisms are the supporters. But this answer is correct only in part. In every real organism, homeostatic mechanisms are in non-trivial relationships with mechanisms of reversible adaptation <sup>[10-13]</sup>.

Since Cannon has formulated the homeostasis concept <sup>[21]</sup>, a huge number of researchers tried to establish specific mechanisms providing the homeostasis at organism's different organization levels. Body fluid homeostasis is directed at achieving stability of the two major functions of body fluids: maintenance of body osmolality within narrow limits, and maintenance of extracellular fluid and blood volume at adequate levels. Osmotic homeostasis prevents large osmotic shifts of water into and out of cells, which would interfere with normal cell function. However, on the background of real homeostatic mechanisms, many mechanisms that are not homeostatic at all also have been considered to them <sup>[22-25]</sup>.

Here important is to stress that regulators balancing energy in a cell are principally different of those known as classical homeostatic regulator (see figure 6).



Figure 6. A simplified presentation of the homeostatic system (left) and regulators balancing energy in a cell (right)

The homeostatic regulator activates negative feedback mechanisms to minimize the difference of the constant (defined by the set-point organ) from the current value of the input variable. The cell energy balancer, active for every value of Vs and Vc, uses enhancer mechanisms for leveling the current value of Vs with the current value of Vc.

In fact, the homeostasis is a self-regulating process that returns critical systems of the body to activities determined by a set-point. In contrast, energy balancers try to level energy synthesis with energy consumption for its entire range of alterations. Note, the special energy state called energy deficiency (ED) does appear only in cases if within some time interval of  $\tau$  the number of ATP molecules in a cell is less than a critical level of  $E_c$  is.  $E_c$ , characterizing the number of ATP molecules and allowing the cell to provide its immanent functions, is specific for each cell but depends on phases of the cell cycle. Formally, both the current energy status E(t) and ED can be calculated using the following equation:

$$E(t) = E(t-\tau) + \int_{t-\tau}^{t} (V_s(t) - V_c(t))dt$$

Although the homeostasis concept explains why certain life characteristics stay practically stable despite their violating, the most problem is that the brain structures responsible for the set-point, in most cases are not found yet.

Spaceflights have had compelled physiologists and physicians to re-think the reversible adaptation phenomena. In the introduction, it was accentuated only one aspect of the human cardiovascular acute response to the microgravity conditions. The adaptive changes are much wider and deeper. Already in a few days of the flight, due to increased diuresis, the total blood volume is decreasing of about 10% <sup>[7,8]</sup>. This alteration is caused by the activation of both carotid sinus baroreceptors and volume receptors in the brain. But in parallel with the increase of space flight duration, the adaptivity displayed an involvement of additional mechanisms. Namely, the smooth muscles of the vasculature in body lower areas becoming thinner, the legs musculature loses in mas <sup>[7]</sup>. Moreover, space flights of several moths duration also led to Ca loses in bones of legs and in other parts of the skeleton <sup>[7,8]</sup>. All these changes are reversible: after several days, weeks, and months of the spacemen's returning to the earth, the organism is recovering. This prompted researchers to think that our skeleton, CVS, neural-hormonal systems, and the organism entirely are a product of human beings' long evolutionary adaptation to the earth's gravity. Using this

conclusion based on a set of facts, one can do a more general conclusion: our body is an adaptive living object built of multiple adaptive mechanisms that likely are reversible and cover every cell, multicellular tissues, and organs, as well as functional systems.

Recent investigations in other sectors of biology – genetics, and epigenetics  $^{[26-28]}$  –, formed additional information concerning the reversible adaptation mechanisms. The more and more publications are convincing that the food assortment, physical, emotional loads, and even the meditation are capable of changing the biochemistry by a way which does not change the genotype but through the switching-on or -of specific groups of genes cardinally varies the physiology. Even there are researches proving the inheritance of epigenetically acquired properties in two generations  $^{[29]}$ .

It was commonly assumed that there are two mechanisms for providing these adaptations – functional, and structural. However, already the early morphological data have shown that the adaptation to a physical load, high altitude conditions, and arid zones always has its structural indicators both at the cell-level and at tissue-levels <sup>[30]</sup>. Further deepening in this problem revealed that the so-called functional adaptation also is based on the reorganization of previously achieved structures of tissues and organs <sup>[10]</sup>. Namely, this fact is depicted in figure7.



Figure 7. Basic statements of the individual adaptation that explain the so-called functional adaptation, as well as the self-tuning of organs and the entire organism to altered living conditions

The four statements, depicted in each box in figure 7, sound louder if one imagines specific mechanisms governing of multicellular structures' natural dynamics.

#### 2.1 The Elementary Structural-functional Unit

Most biologists are sure that in MO, the cell is the elementary structural-functional unit. But it is not correct assumption capable of origin wrong interpretations of observations and experiments. Though cells are the smallest structural units of MO, none specialized cell exists in a single exemplar. Every specialized cell is a constructive element of the specialized cells population (SCP). Namely, SCP is the lowest functional unit. Most organs include certain types of SCP. The organs' functionality and dynamic characteristics depend on both spatial organizations of its SCP-s and specific internal statistical characteristics, representing the distribution of internal ultra-structural differences. The matter is that within the one and the same SCP, cells, being consequential generated by cells of previous generations, rarely are absolutely clones. Their certain parameters (for example, threshold level, saturation level, rest potential) are slightly different. Two main factors determine these internal heterogeneities. One follows from the temporal non-stability of blood inflows during cell division and further growing, another - from the cell's spatial localization: the vascular net usually is not an ideal three-dimensional symmetric structure thus several cells are better provided by nutrients than others.

Additional three rules, indicated in right boxes in figure7, had been formulated by taking into account these internal ultra-structural heterogeneities in SCP<sup>[10]</sup>.

Namely, due to such kind of internal heterogeneities, the heart demonstrates its characteristic dynamics during both systole and diastole. Would all cells of the myocardium of the heart chamber absolutely identical, the heart is to react to impulses of the sinus node step-wise! We have used this knowledge for creating a mathematical model, providing natural-like pulsatile human hemodynamics <sup>[5]</sup>. By the way, internal heterogeneities are the cause of organs displaying non-linear input-output relationships.

These facts and logical considerations above are the necessary but not yet the sufficient conditions to do the first step toward constructing of a virtual MO, providing cells optimal coexistence. As every biological mechanism is working against the second law of the thermodynamics, the pivotal question is: how the energy supply is organized? Although this problem has long been in a focus of biological investigations, currently, the most data concerns specific aspects that are covering only the homeostatic regulation of food intakes (energy inflow) and energy expenditures (energy outflow). However, the energy problem in human organism has an additional aspect till recently even not posed.

#### 2.2 Specific Role of Energy

Life is a way for decreasing the entropy in a local space using the energy of the outer space. Therefore, life is possible until energy is present. Already our ancestor aerobic UO-s, being a modification of anaerobic UO-s that created energy macroerges (ATP molecules) by using cytoplasm glycolysis, have had been armed with an additional mechanism synthesizing ATP by means of pyruvate oxygenation in mitochondria. The second mechanism is almost 17-times more powerful than the first one. However, this achievement created an additional problem: oxygen concentrations in the cytoplasm (consequently, in mitochondria) must be proportional to pyruvate's concentration. As the pyruvate is one of the products of anaerobic glycolysis, the cell is empowered enough only for those situations when oxygen and carbohydrates' incomes are duly associated. This is why most aerobic UOs in nature is displaying unstable metabolism depending on the incomes.

#### 2.3 Cell Energy Balance Versus Cell Energy Homeostasis

Most researchers use the term cell energy homeostasis to distinguish physiological events at organism scale <sup>[22,24]</sup>. But the term homeostasis was coined to characterize the approximate stability of certain physiological variables <sup>[21]</sup>. Above was marked that every cell can produce ATP on different stabile rates. It also can consume ATP on different stabile rates if the cell is capable to synthesize ATP at these rates. So, it is much correct to use the term cell energy balance instead of the term cell energy homeostasis. This clarification does indicate that there should be special mechanisms that realize the floating of the ATP production rate.

figure8 illustrates problems concerned with a cell energy balance (CEB).



#### Time

**Figure 8.** In a cell, stochastic variations of ATP production ( $V_S$ ) and consumption ( $V_C$ ) rates, each depending on multiple variables, lead to energy deficiency if  $V_C > V_S$ 

The right-side picture schematically illustrates the fact that every cell may have many stable levels of  $V_s$ . Each such level is to serve current but stabile cellular needs in ATP. The bold line is to stress that under rest conditions, the cell provides such some level of  $V_s$  that supports all biological works. But under suppressed modes  $V_s$  may be lower, as well as under cell's activation, proportionally to the activity  $V_s$ may be elevated up to a maximal level, determined by current value of  $S_m$ . the left-side picture illustrates that both  $V_s$  and the energy consumption rate  $V_c$  are variables.

In figure8, the left-side picture illustrates that both  $V_s$ and the energy consumption rate  $V_c$  are variables:  $V_s(x_1(t) x_2(t),...,x_m(t))$ ;  $V_c(y_1(t)y_2(t),...,y_n(t))$ . Situations of  $V_c \leq V_s$ or  $V_c > V_s$  are possible. Special energy mode appearing when  $V_c > V_s$  is termed as hypoergia. Pay attention - both  $V_s$  and  $V_c$  can have a lot of values. However, only the long lasting situation of  $V_s(x_1(t)x_2(t),...,x_m(t)) \geq V_c(y_1(t) y_2(t),...,y_n(t))$  provides the cell by due number of ATP molecules. The big question is how this exclusive energy mode can be provided for trillions of human cells each having almost stochastic dynamics of energy consumption rate  $V_c(y_1(t)y_2(t),...,y_n(t))$ . The most likely answer is that the cell possesses by autonomous mechanisms coping at least low or moderate energy shortages. Indeed, such mechanisms (at least, three) are described <sup>[6]</sup>.

Figure 9 below illustrates the fact that the aerobic cell possesses by a battery of at least three mechanisms specially activating under cell energy problems



Figure 9. Determiners of the mean energy production and consumption rates in a cell and its mechanisms resisting to critical situations of energy imbalance

The variable rate of energy production in a cell is given genetically and associated with phases of the cell cycle. Extracellular events, including those involving cells into organism's integrative functioning, may elevate the rate of energy consumption thus cause ATP's lack (the state ED). Under ED, three intracellular mechanisms (shown in left side) each possessing by specific speed and power try to level ATP's synthesis and consumption rates. Due to low molecular indicators of cell energy shortage, the most powerful but inertial mechanism (3) enlarges the cell's total mitochondrial surface via their hypertrophy (including the fusion) and/or proliferation.

According to figure 9, the battery of intracellular regulators of the rate of ATP synthesis is built of three mechanisms. The first and most rapid intracellular mechanism, based on mitochondrial ratio of [ADP]/[ATP], is chemical negative feedback automatically increasing the value of  $V_s$ under decreasing of [ATP]. The second mechanism, most effective in big neurons and especially in their long axons that have essential differences of oxygen concentrations in different regions, uses the mitochondrial motility towards higher oxygen concentrations in cytoplasm. The mechanism acts slower than the first one. The third mechanism using the hypertrophy and/or proliferation of mitochondria is the most inertial but the most effective fighter against chronic energy lack.

As the organism uses both glucose and other energy-rich nutrients, additional problems arose. The pyruvate is a common net product of both glucose consumption and consumption of carbohydrates, fatty acids, lipids, and even proteins (in extreme cases). Each of these source products has its transformation chains and efficiency [31-33]. Under changes in arterial blood carbohydrates' concentrations, the net effect of both pyruvate and ATP production also is changing. In fact, these changes reflect a phenomenon further in the article called a passive adaptation: the adjective stresses the fact that this form of the cell adaptation to current local environmental conditions does not use ATP. In contrast, a special mechanism (called a cellular mechanism of reactive adaptation (CMRA)<sup>[10]</sup>) that uses ATP to fight the environmentally induced intracellular destructions is also in human every cell.

Our cells, as well as cells of virtually every animal, are under influences of essentially more dynamic factors, capable of creating energy problems than our far ancestor cells were. To clarify this very important for the human physiology statement, let us analyze the metabolism of a virtual specialized cell (VSC) in the human organism. Remember that the ancestor UO has two physicochemical environments – cytoplasm and space out of the cell membrane. In the frame of the human organism, the outer space, in turn, is divided into two environments - intercellular, and the environment around the body. Assume the latter environment has its independent dynamics. If our exteroceptors react to these alterations, then the cells, functionally integrated with these receptors, also will alter their current activity. Most exteroceptors represent the first link of the long functional chains that include certain groups of organs.

Here important is to highlight that animals provide distinguish, specific functions (movement, rapid responses to environmental challenges, effective heterotrophy, reproduction) not least thanks to a group of so-called excitable cells. The group includes neurons, muscle cells, and secretory cells. They have two distinguish signs: (1) a creation and providing a stable level of a resting potential (RP); (2) recovering the RP after its external violations. The matter is that passive mechanisms, based on the initially created high trans-membrane gradients (concentration and electrical), are not capable of a strong recovery of the value of RP. Thus, the excitable cells (at least neurons and myocytes) use a certain number of ATP to exact recovery the value of RP. Although the absolute amount of these energy expenditures is the very little part of the cell's general energy expenditures, in <sup>[11]</sup> for the first was argued that under the high frequency of external violations of cell's RP, this internal problem may lead to a deficiency of ATP. So, the providing of the basic functions of the cell is associated and critically depended on how often the excitable cell is involving in systems (outer) functions.

Every specialized cell (excluding adult erythrocytes) must provide its metabolism and regularly divide. Namely, these functions are the immanent functions of each cell. Despite namely the outer functions of specialized cells were used by biologists to denote cell's type, none cell is "interested" in the supporting of its outer functions. They are indirect effects using which the multicellularity arose <sup>[9]</sup>. It sounds like a paradox, but the excitable cells that are the constructive elements of our functional systems, are the best illustration of this statement. Namely, the indirect effects of excitable cells (neurons' impulse generation, muscular cells' contraction, secretory cells' secret) have had made animals in general. Moreover, animals had been successfully passed through the sieve of evolution precisely thanks to these indirect functions that allow them to carry out their nutrition, survival, and reproduction in a competitive environment.

Figure 10 below illustrates principal events appearing in a cell in case of chronic energy deficiency.



Figure 10. Principal events in a cell in case of chronic energy deficiency (ED)

Adaptation factors FA1 and FA2, appearing in the cell under energy deficiency, activate intracellular mechanisms (CMRA) and their external enhancers to produce some more ATP and normalize cell energy supply and metabolism.

It is assumed that under energy lack (happening because of long-lasting situation formally looking as Vs<Vc), the cell metabolism is suppressed. Among inter-

im metabolic products, there may be two specific factors (FA1 and FA2). FA1, activating CMRA, is acting exclusively into the cell. The activated mechanisms of CMRA try to increase Vs until it becomes equal to the current level of Vc or higher than it is. If the energy deficiency in the cell is not liquidated, low molecular chemicals FA2, leaving the cell and penetrating into the lymph and venous blood, further do circulate until their decaying or meeting with the receptors of organs regulating activities of multicellular enhancers of CMRA. So, the cellular factors are activators of both intracellular and extracellular negative feedbacks capable to elevate the rate of ATP synthesis until it is balanced with the current (genetically given or environmentally induced) rate of ATP consumption.

The next figure represents a version of the so-called binary model of the human organism conventionally divided into two virtual cells (VC).



**Figure 11.** A simplified (binary model) presentation of the fight of the energy-lack virtual cell (Vs<Vc) for energy

The organism is maximally reduced to reflect cells' role in involving organs and systems for cell supply by source chemicals necessary for ATP synthesis. All cells are reduced to two virtual cells (VC): one with Vs>Vc does not have an energy problem while the second VC in a central part needs to increase its Vs to level it with the current value of Vc. It is assumed that the second VC is releasing into the circulation adaptation factors that are capable of increasing blood flows and nutrients incomes predominantly toward the stagnated cell. Due to elevated rates of erythropoiesis, and lung ventilations arterial blood becomes better saturated by oxygen. Another adaptation factor, suppressing fluids excretion, increases the total blood volume - the main factor for MAP's elevation. The latter is also provided by increased vascular tonus and heart function. The vasodilatation increases arterial blood flow (enriched by glucose and other substrates) mainly to the stagnated VC while the normal VC (depicted in the right upper part) is supplying by lesser blood inflow.

The cell (depicted with a Vs>Vc) does not have energy problems while the second one (depicted with a Vs<Vc) represents all cells feeling energy lack. It is assumed namely, the second group of cells creating efforts for mobilizing organs that are supporters of source chemicals for providing ATP synthesis.

The energy mega-system (EMS) does include some more organs and functional systems than they are shown in figure 10. As it was argued in <sup>[16]</sup>, EMS is one of the complex physiological super-systems that emerged and evolved as providers of cells' well-being in wide ranges of disturbances. In the light of this concept, a complex of adaptation factors released by the ED-cells could both modulate the activities of these organs and redirect their increased products toward the suffered cells. Namely, the negative feedbacks and a more detailed illustration of such an energy super-system are shown in the next figure12 <sup>[12]</sup>.





Conventionally, EBC represents the organism's energy balanced cells while EDC represents energy-deficit cells with the activated CMRA. Under the functional insufficiency of CMRA, EDC causes local and distant effects enhancing the CMRA. Local effects include rapid vasodilatation and inertial angiogenesis. Distant effects are aimed at creating a more potent arterial blood: its pressure and oxygenation become higher. To reach this effect, as well as to direct the major part of the potent blood towards EDC, distant influences of EDC are targeted to the mechanisms controlling the rates of erythropoiesis, pulmonary ventilation, and reabsorption in kidney tubular channels. Due to the increase of blood volume, heart rate and vascular tone the MAP becomes elevated. If the elimination of energy deficit is not possible because of the general shortage of source materials, EDC also activates the digestive system.

In figure12, it also is assumed that under total energy deficit specific adaptation factors do activate brain structures organizing and controlling behaviors aimed at search for foods and their assimilation.

# **3.** General Vision of Mechanisms Optimizing Cells Coexistence

To correctly analyze mechanisms optimizing human cell's coexistence, a clarification of the notion "optimal" is necessary. The optimality is relatively notion requiring its criterion or even multiple criteria. In some cases, the optimality used to technical objects (engines) silently supposes that the engine is maximally effective. However, this interpretation is not applicable to biological objects. The natural evolution does not create ideal structures. All living objects, providing the species by the ability to pass their genes to the next generations, have had been passed through the sieve of evolution. As mutations and chromosomal aberrations are the main material basis of evolution, there is no reason for assuming the mechanisms that appeared on this basis are maximally effective. In fact, zigzags of evolution are continuously changing the genome either by heaping with new pieces which at the organism level result in a heap of many biological mechanisms or losing some pieces. They may not obligatorily act synergistically: often parallel mechanisms may act in an antagonistic manner. Therefore, their optimal coexistence means a compromise. Namely, our trillions of cells, competing for common nutrients and influencing one-another by their metabolites or output functions (in particular, in pairs containing at least one type of excitable cells), can come to situational stabile coexistence (SSC). As far as both external and internal environments are not strongly stable, SSCs, reflecting the non-stationary processes, normally are fluctuating in time. Under environmental trends, certain SSCs may display more or less regular shifts. So, we should define two types of cells optimal SSC: (1) a short-time, and (2) a long-time. Both fluctuations and shifts have their projections in certain life variables.

The short-time optimal SSC of cells may be provided by involving either intracellular resources or local regional potentials. In contrast, to maintain the long-time optimal SSC of cells, multicellular enhancers are required. One scenario suggests that their activation and coordination is provided by CNS. Indeed, many brain structures are involved in the modulation of organ' activities. However, it hardly is possible that every cell is being under continued control of neurons of CNS. From one side, such a hypothetical organism could have essentially more neurons. From the other side, neurons do not create the due density of their terminal branches. The third reason concerns the internal heterogeneity of every cell population. These reasons forced to conclude that the brain may solve certain acute problems of cells material supply while the chronic problems, that always are local, have to be solved by local mechanisms.

So, local mechanisms have to create and control locally optimal nets of both macroscopic and microscopic vasculature. It does effectively provide both substrates and oxygen incomes and metabolites outcomes. The efficiency mostly will be in those physiological modes that last longer. The brain does not participate in these basic events. Its role will be minimal also under acute but low or moderate energy or metabolic problems. The assimilation/dissimilation relationships have to be under metabolites in the local intercellular environment. Only in extreme situations when the local mechanisms are not capable of solving cells' problems, distant mechanisms must be involved. The traditional view suggests that receptors located in each organ increasing their afferent impulses to activate neural-reflector negative feedbacks. However, neuronal activation is energetically too expensive to be continuously provided. Therefore, the new view adds that specific chemicals, that left the suffered cells, to play a role of also specific adaptation factors. Their main role is to re-tune cells and tissue architecture in such a manner that the modified cells become capable to provide their both intimate and output functions via minimal energy expenditures. Theoretically required mechanisms for the restructuring are mainly described in <sup>[15,17,20]</sup>. The question is whether they really exist?

In general, the concept of cells' optimal coexistence (CCOC) briefly is described below.

#### **3.1 Compromises**

Throughout ontogenesis, an individual organism uses its tuning-mechanisms to be structured in a manner that is best adapted to local environmental almost stable conditions. This physiological mode is a compromise achieved due to the competitive efforts of cells for foods. Because it is looking like an ideal Greek's democracy, in <sup>[20]</sup>, this mode is specially termed a "cellcracy". Every local problem, for example, appearing because of local circulatory impairment is adequately eliminated by local vasodilatation. As the stability may be violated from time to time, including informational alterations, the brain, reacting to them, activates its efferent activities to correct the activities of certain organs for providing the acute behaviors. If these brain efforts are long-drawn-out, the ideal (comfort)

existence of those effector-cells that have been essentially stimulated from out and thus increased their energy expenditures, step-by-step will drop into the energy lack mode. This is why in <sup>[10]</sup> the brain was figuratively called a "despot". Such an organism could not exist for a long time. Thus, organisms, again passed through the sieve of evolution, likely had been armed with mechanisms effectively counteracting wit this "despot".

The most likely way the stagnated cells to not be died is to release adaptation factors that will re-organize blood flows and enrich the arterial blood by currently most needed nutrients. These efforts combined with the effects of local vasodilatation will return the impaired cells to the balanced state. In fact, this is a new compromise between the body's effector-cells, from the one hands, and the brain, from the other hands. This compromise determined relative temporal characteristics of both participants: neither the brain domination nor the domination of mechanisms supporting the intracellular comfort state can be endless.

As the organism's surviving is critically depended on functionalities of the brain and heart, evolution created preferences for their material supply. The brain and heart are practically minimal sympathetic vasoconstriction but the best vasodilating, self-regulatory mechanisms. So, the "cellcracy" later has been transformed substituted to more complex compromise mechanisms providing the coexistence of cells in unstable environments. Namely, the compromise involving multiple organs, directly or indirectly participating in creation of comfort intracellular environment, led to appearance of so-called physiological relativity <sup>[34]</sup>. It states that in the human organism, both the biochemical and the physiological characteristics that according to the homeostasis concept were assumed to be constants, in fact, are reciprocally variables.

Nevertheless, under relatively long-term environmental stability, the cellular humoral mechanisms, continuing to act, may again dominate and minimize the CNS's invasion in providing cells metabolism and other immanent functions. Namely, the blood chemical composition determines the long-time mean activities of organs that form specific super-systems materially supplying cells.

#### 3.2 The Nature of ADF

At organism-scale, the stability suggests that there is an approximate balance between assimilation and dissimilation rates. At the cell-scale, stability has also resulted in a balance between anabolism and catabolism. Both these balances can be provided on different rates that normally, are provided by mean balances of arterial and venous flows. When a cell is forced to increase its catabolic rate (in particular, the rate of ATP consumption) within a certain time interval, CMRA increases Vs. This causes a decrease in cytoplasmic concentrations of source chemicals necessary for ATP-synthesis. Consequently, under increased concentrations' difference (gradient) between local capillaries and cytoplasm, these chemical compounds are penetrating into the cell. But this does increase their gradients between local arterioles and capillaries. These events promote the cells that currently have higher assimilation rates to take from the common local intercellular space the greater part of nutrients. So, additional mechanical forces appearing as concentrations' gradients are the main local ADF-s that will disappear, just after the active phase of the adaptation of the cell to the elevated catabolism is finished. Additional ADF-s appear because of local vasodilatation: by a decreasing of local vascular resistance, the vasodilatation re-directs arteriolar flows predominantly towards actively adapting cells.

In real organisms, this theoretical scenario never will bring to stabile conditions thus both biochemical and physiological characteristics permanently fluctuate. If the adaptive up-building is covering a huge number of cells and thus changing their rest energy consumption rates, the physiological integral characteristics like MAP, lung ventilation, the blood concentration of erythrocytes, the density of arterioles, as well as the number and sizes of cells' mitochondria become stabile shifted too. In other words, the entire organism becomes to be adapted to the new conditions.

The internal heterogeneities in SCP suggest that for every time moment, one part of cells of the population request much ATP than others. So, the energy shortage does not simultaneously cover the entire population but only those cells that have the greatest rates of ATP consumption. Whether mechanisms balancing  $V_s$  falsewith  $V_c$ false are so perfect to take into account such nuances are not known. I think the human organism does not possess of mechanisms capable of such precise controlling energy supplying of cells. A virtual scenario, supposing that the activities of organs-providers of oxygen, carbohydrates, and other substrates depend on concentrations of venous blood chemical factors while the local cell problems can be solved due to passive diffusion of nutrients from the intercellular environment, seems to be a most likely one. Certainly, in the frame of this concept, the optimality of cell life is not synonymous with maximally comfort cell metabolism. In the population scale, the metabolism is optimal when a compromise of forces worsening the cytoplasm composition, from the one side, and purifying it, from the opposite side, is achieved.

As to the inverse adaptation of a cell from the initially high levels of anabolic transformations to lower levels, it goes passively. The matter is that most cellular macromolecules are tertiary and quaternary structures vulnerable to destructive forces including thermodynamic fluctuations of protons. So, molecular destructions are background events. The only way to compensate for their negative effects is to adequately re-synthesize them. When the cell is not more forced to provide the high levels of assimilation (in particular, ATP-synthesis) the background destructions will slowly bring the cell to a newer balance provided on lower rates of anabolism.

#### 4. Discussion: Endogenous Mechanisms Providing of Organism's Adequate Flexibility

The human organism is a flexible construction. The main flexibility is known to be concerned with the velocities of cell division and death. However, the deeper we understand the organism-environment relations the newer aspects of the flexibility become clear. Arguments above are to convince that the necessity to maintain the cell-scale energy balance despite its disturbances was one of the fundamental requirements for minimizing initially UO's, later MO's vulnerability to critical energy imbalance (CEI).

In the article, the energy aspect in general, and CEI, in particular, are in the focus not because of they are the exclusive initiators of the reversible adaptation. The matter is that other factors (like the cytoplasm contaminators) are already taken into account in traditional physiological concepts <sup>[10,36-40]</sup>.

As the energy consumption rate in our cells depends on multiple stochastic variables, there cannot be an effective strategy for excluding CEI. Possible ways for coping with this dangerous and destructive state were and are still in specific mechanisms effectively reacting to consequences of CEI. Empirical data shows that under CEI, at least three intracellular mechanisms, being also found in UO's and indicated in the left upper side in figure9, represent a battery working against CEI. As elements of the battery have different dynamic characteristics and power, under specific forms of CEI (acute or chronic) they are activating specifically. Only under severe CEI of long duration, all the three mechanisms do working synergistically.

Normally, mitochondria produce about 94% of the total amount of ATP molecules. figure13 below illustrates that this synthesis is critically dependent on activities of complex physiological mechanisms of three different branches. Mitochondria, providing pyruvate oxygenation, represent the Branch 1. Mitochondrial characteristics determining the rate of ATP synthesis ( $V_s$ ) are analyzed some later.



**Figure 13.** Physiological mechanisms providing the synthesis of ATP molecules in mitochondria cover events taking place in three different branches: (1) mitochondria, (2) carbohydrates, and (3) oxygen incomes. Besides, concentrations of certain mitochondrial enzymes also play their roles in determining the value of current *V*<sub>s</sub>. This is a reason to think that these mechanisms are likely associated.

to think that these mechanisms are likely associated.

To comprehend energy-conditioned local or integrative physiological events and causalities, one must analyze roles playing by each of the branches illustrated in figure13. All the biochemistry revealed mainly concerns the chains yielding ATP molecules. But the cellular physiology is not reduced to chemical transformations. Moreover, in the human organism, the efficiency of the chemical machinery of a cell is both under cellular and multicellular physiology. The latter is not duly understood yet.

It was long known that under hypoxia conditions, the chemoreceptor reflexes work to remove the excess  $CO_2$  from blood. The reflex possesses by three independent acting blocks. One block increases lung ventilation. The second block increases MAP and blood flows. The third block activates the erythropoietin release and enriches the blood of oxygen and carbon dioxide carriers – erythrocytes. Thanks to multiple researchers, the interim mechanisms mediating the hypoxia and the erythropoietin release have been revealed: specific proteins called hypoxia-inducible factors (HIFs) have been found out <sup>[41]</sup>. Since that time, hypoxia-inducible factors, being in the mainstream of molecular-biological and genetic researches (for example, <sup>[42-47]</sup>), were acknowledged by the Nobel Prize-2019.

It is necessary to stress that the pyruvate is a common product of anaerobe glycolysis provided in the cytoplasm. Concentrations of pyruvate  $[P_y]$  entering the mitochondria critically depend on the inflow of carbohydrates. Thus the machinery regulating this inflow is denoted as Branch 2. By analogy, mechanisms concerned oxygen support denoted to be Branch 3. Note that under the given total size of the cell's mitochondria (if more correctly – the total surface of their inner membranes  $S_m$ ),  $V_s$  is maximal only for certain proportions of carbohydrates and oxygen. Already this fact hints that the physiological mechanisms controlling oxygen and carbohydrates' incomes to cells are highly likely associated.

According to Chance, et al <sup>[32]</sup>, current mitochondrial  $V_s$  can be calculated if its maximal value  $V_s^{max}$ , and mitochondrial concentrations of [NADH], inorganic phosphor  $[P_i]$ , [ADP],  $[O_2]$  are known.

$$V_{s} \approx \frac{V_{s}^{\max}}{1 + \frac{K_{1}}{[ADP]} + \frac{K_{2}}{[P_{i}]} + \frac{K_{3}}{[O_{2}]} + \frac{K_{4}}{[NADH]}}$$
(1)

where  $K_1, K_2, K_3, K_4$ , and  $\phi$  are approximation constants individual for the mitochondrion. Under certain circumstances, these constants can be increased or decreased via concentrations of regulatory enzymes.

But it is known that both the number of cell mitochondria and the size of each mitochondrion are variables. Factors initiating and controlling these alterations will be analyzed later. Here important is to note that these alterations, changing the total area of inner membranes of the cell mitochondria, also alter  $S_m$  relatively to its initial value of  $S_{m0}$ . Thus, the formulae (1) is modified as:

$$V_{s} \approx \frac{(1 + \phi(S_{m} - S_{m0}) V_{s}^{\max})}{1 + \frac{K_{1}}{[ADP]} + \frac{K_{2}}{[P_{i}]} + \frac{K_{3}}{[O_{2}]} + \frac{K_{4}}{[NADH]}}$$
(1a)

[ADP] does depend on [AMP] which is a product of pyruvate's oxygenation. In the linear interval, as it was shown recently <sup>[19]</sup>, mitochondrial variables  $[O_2]$ ,  $[P_y]$ false(or glucose in cytoplasm), and  $S_m$  can be quantitatively related to [AMP] by means of an approximate equation:

$$[AMP] \approx [O_2] \cdot [P_y] \cdot S_m \cdot \frac{\overline{P_A}}{R}$$
(2)

where  $\overline{P}_A$  – the mean arterial pressure (MAP), and *R*– the total peripheral resistance.

As 
$$\frac{\overline{P_A}}{R} \approx Q$$
, where  $Q$  is the cardiac output, by anal-

ogy, for every regional tissue with a regional vascular resistance l', the regional blood flow can be calculated as  $\overline{R}$ 

$$\frac{P_A}{r} \approx q \; \cdot$$

Before to analyze the physiological consequences of formalisms (1a), and (2), it is useful to pay attention to an additional aspect of cell energy machinery not taken into account in theoretical concepts concerning so-called energy homeostasis <sup>[24,31,33]</sup>.

Mitochondrial impairment is considered to be the commonplace and possible initiator of many diseases that have the specific sign – are slowly developing and definitely manifesting mainly in old-age peoples <sup>[46-48]</sup>. Mutations in mitochondrial genes are the likely cause of arterial hypertension <sup>[12-15]</sup>. Mitochondrial dysfunction is associated with the development of numerous cardiac diseases such as atherosclerosis, ischemia-reperfusion injury, hypertension, diabetes, cardiac hypertrophy, and heart failure <sup>[49,50]</sup>. In cancer research, mitochondria are also in a focus of interests <sup>[51-53]</sup>. Even the Parkinsonism has its mitochondrial projections <sup>[54,55]</sup>. I have cited the very little part of publications concerned with mitochondrial investments in normal and pathological situations.

#### 4.1 Mechanisms Regulating AMP Concentration

It is known that in response to low glucose, hypoxia, ischemia, and heat shock, AMP-activated protein kinase (AMPK) plays a role of a master regulator of cellular energy homeostasis. Most researchers focus their efforts on revealing mechanisms and regularities concerned with the excess concentrations of AMP. AMPK regulates diverse metabolic and physiological processes and is dysregulated in major chronic diseases, such as obesity, inflammation, diabetes, and cancer. [55-58]. The most well-defined mechanisms of AMPK activation are phosphorylation at T172 of the  $\alpha$ -subunit and by AMP and/or ADP binding to  $\gamma$ -subunit. ATP competitively inhibits the binding of both AMP and ADP to the  $\gamma$ -subunit, which suggests that AMPK is a sensor of AMP/ATP or ADP/ATP ratios <sup>[57]</sup>. In the frame of the article, specific interest does relate to hypoglycemia causing low mitochondrial concentrations of AMP. Recently <sup>[31,59]</sup> it has been argued that AMPK activates the glycogen-glucose transformation in both muscles and liver. So, in this way, AMPK could increase the rate of ATP production. I think this aspect of APMK has to be deeper studied. Novel regulators of the rate of AMP synthesis are not excluded too.

# 4.2 Computer Modeling of Complex Physiological Systems

Another aspect worth to be discussed here is concerned with the research methodology. Since1960-s, mathematical modeling of physiological systems is an additional and effective method for revealing their quantitative properties. Every mathematical model is an equation (or equations system) containing variables and constants. Variables identification never was a serious problem: they directly present in the empirical data. In contrast, constants identification is still problematic: most of them are either not a subject for physiological research or have been measured for conditions far from those used in model experiments. When the model describes complex systems, as it was in the most known model created by Guyton et al [35,38] and describing interactions of 17 physiological organs, heuristics are the mandatory method for constants choosing. But the biggest problem is that their values, assessed for the physiological norm, under simulating of other conditions, must be changed. Nobody knew how to provide these changes. This problem still is also for recent models [60-<sup>63]</sup>. Physiologists not like the modelers' voluntarism. They know that every organism itself is doing these changes. But they could not capable of providing by rules to be used for adapting each so-called physiological constant (included in the model) for new physiological conditions that have to be modeled. In fact, the general approach, provided in the article and for the first time described in detail in <sup>[17]</sup>, is the lonely way to rationally re-tune constants of models

#### 4.3 Problems Concerned with the New Understanding of Cardiovascular Endogenous Control

Above marked new interpretation of the optimality forces us to re-asses the role that the cardiovascular system and the circulation are playing in HIP.

CVS, being both the supplier of cells and the collector of their metabolites plays an exclusive role in the organism. The functional activity of CVS is tightly associated with the functional activities of those organs and systems that are responsible for the chemistry of arterial blood. As the chemistry is permanently varying, both MAP and the cardiac output (CO) are important variables that cannot be exclusively subjects for regulators thought to be specific controllers of hemodynamics. In this regard, traditional concepts of CVS's control should be also revised.

The problem of MAP-s long-term control is still actually in the cardiovascular physiology. The most common current general vision of physiological mechanisms controlling the long-term level of MAP and simultaneously providing cells by adequate blood flows has been developed in Guyton's research team <sup>[35,37,38]</sup>. The concept, later in detail developed by Cowley's research team <sup>[39,40]</sup>, is also known as the concept of "pressure-diuresis-natriuresis" <sup>[37,40]</sup>.

The concept integrates the regulation of CO with the baroreceptor control of MAP. An essential role is given to Na intake and its contribution to total blood volume as one of the main investors of the MAP.



**Figure 14.** Approximate potency of various arterial pressure control mechanisms at different time intervals after onset of a disturbance to the arterial pressure <sup>[7]</sup>

In fact, figure14 demonstrates an interesting idea: most of the mechanisms, capable of shifting the level of MAP, might be initiated by events having no direct relation to hemodynamics' self-regulation. Different hypotheses were proposed concerning the goals of the known mechanisms and their influences on CVS. However, even in this general vision of physiological mechanisms controlling the long-term level of MAP, the cell energy aspect is absent at all. In a personal communication with Prof. Allen Cowley we have discussed this problem and he, assessing it to be a very serious gap, promised to think about how this problem could be experimentally investigated. The same evaluation was also by other physiologists. But nobody is armed with proper technologies to provide the required empirical research. The only way for testing the energy hypothesis of MAP-level and its floating I saw in the creation of a special software-modeling tool for providing computer simulations. The main results, published in <sup>[64,65]</sup>, demonstrated that the energy view on arterial pressure is both rather realistic and capable to explain MAP's individual variations depending on also individual ontogenetic scenarios of organism's formation.

Theoretically, under stable structural characteristics of body vasculature and heart chambers, CO and MAP (also above denoted as  $\overline{P}_A$ ) are functions of seven variables: total blood volume ( $V_{\Sigma}$ ), contractility of right ( $C_r$ ) and left ( $C_l$ ) ventricles' myocardium, heart rate (F), total peripheral resistance (R), rigidity (D), and unstressed volume (U). They all may be under nervous-humoral influences that are variables too.

Assume the function  $\overline{P}_A(t) = f(V_{\Sigma}(t), C_r(t), C_l(t))$ , F(t), R(t), D(t), U(t) is known. Changes at least one of these variables do alter MAP and CO. The question is whether each mechanism, capable to alter current values of variables, is a regulator of MAP and CO? The physiologist using the term regulator is sure that it has both a goal and mechanisms for its providing. However, among eight mechanisms (see figure 14) usually called MAP' regulators, the baroreceptor reflex is the single mechanism, satisfying the requirements to be a regulator. However, normally, even this mechanism does not set or control the level of MAP: arterial baroreflexes only damp regular (in each cardiac cycle) or stochastic elevation of systolic arterial pressure. Receptors stop to be active in the most part of diastole. Besides, because of the receptors' threshold, they are silent in the initial stage of systolic pressure's elevation. So, the mechanism which does not receive information about the end-diastolic level of arterial pressure and the duration of the diastole is not capable to calculate and control the level of MAP. Despite this conclusion <sup>[10]</sup>, physiologists continue to seek data to confirm that the baroreflex is a long-term controller of arterial pressure <sup>[66]</sup>. In this research, the authors state that baroreceptors are active even under elevated values of MAP. Yes, it is so. Moreover, according to CCOC, baroreceptors, being neurons, mandatorily have to adapt their energetics to every relatively stable mean rate of ATP consumption. As far as the elevated MAP compels the receptor cell to spend ATP on the higher rates, the CMRA is re-tuning the cell mitochondria for maintaining a new energy balance on the elevated level of ATP consumption. So, the receptor, being forced to transitorily decrease the number of its afferent impulses, again adequately reacts to alterations of systolic pressure. In my opinion, this particular case evidently shows the impact of CCOC as a general biological theory.

#### 4.4 Other Mechanisms Changing MAP

Figures 11 and 12 above contain boxes indicating that the angiogenesis is one of the mechanisms potentially being under adaptation factors produced by energetically suffering cells. Indeed, the angiogenesis continues the growth of the vasculature by processes of sprouting and splitting. Numerous inducers of angiogenesis have been identified, including the members of the vascular endothelial growth factor family, angiopoietins, transforming growth factors, platelet-derived growth factor, tumor necrosis factor-alpha, interleukins and members of the fibroblast growth

factor family. Vascular endothelial growth factor [67,68].

Endogenous vasodilators can promote vascular smooth muscle relaxation at three major sites, the noradrenergic nerve terminal, the smooth muscle cell, and the vascular endothelium. Many vasodilator agonists may use the endothelium to produce their effect (for example, acetylcholine, serotonin, thrombin, others).NO is a powerful vasodilator with a half-life of a few seconds in the blood.

The renin-angiotensin system has powerful effects on the control of MAP and sodium homeostasis. These actions are coordinated through integrated actions in the kidney, CVS and the central nervous system. Along with its impact on the MAP, the renin-angiotensin system also influences a range of processes from inflammation and immune responses to longevity.

Reactive oxygen species influence vascular, renal, and cardiac function and structure by modulating cell growth, contraction/dilatation, and inflammatory responses via redox-dependent signaling pathways. However, the clinical evidence is still controversial<sup>[50]</sup>.

Generally, the MAP is not one of the strong homeostatic constants. Although physicians know that hypertension is a common end-point for multiple disorders <sup>[27,40,50]</sup>, the instabilities of MAP-level rarely have been understood as a consequence of its adaptation to actual energetic needs of the organism. These causalities, first formulated in the paradigm of "floating" arterial pressure <sup>[11,19]</sup>, schematically are depicted in figure 2.



Figure 15. Diagram of the relationship of the main determinants of MAP-level to maintain the proper metabolism of cells

The blood flow, mainly determined by the mean arterial pressure, is a source factor for providing cells' metabolism. However, alterations in both arterial and venous blood are capable of aggravating the metabolism. Metabolic disorders stagnate cell life. In this state, cells release low molecular weight agents that can modulate cardio-

vascular mechanisms determining MAP. There are four potential target mechanisms for such modulations: chemoreceptor reflexes: kidneys and other excretory systems that alter the total blood volume; mitochondria providing the aerobe synthesis of ATP; and brain structures entering the sympathetic and parasympathetic neurons that control the heart function and vessels' tonus. Both external and internal stimuli are the information background that independently affects the level of MAP. Under certain conditions, several low molecular weight agents can modulate current activities of mechanisms that provide cell metabolism by oxygen and nutrients. In general, this closed physiological system is capable of coping main challenges and to provide an optimal metabolism in most of the cells despite casual alterations of local extracellular physiochemical conditions.

The blood flow, mainly determined by MAP, is a source factor for providing cells' metabolism. However, alterations in both arterial and venous blood are capable of aggravating the metabolism. Metabolic disorders are suppressing cell life. In this state, cells release low molecular weight agents (for example, see <sup>[69-77]</sup>) that can modulate cardiovascular mechanisms determining MAP.

There are four potential target mechanisms for such modulations: chemoreceptor reflexes [78]; kidneys and other excretory systems that alter total blood volume <sup>[79,80]</sup>; mitochondria providing the aerobe synthesis of ATP [81-<sup>84</sup>]; and brain upper structures forming synapses on the sympathetic and parasympathetic neurons that control the heart function and vessels' tonus [85]. Both external and internal stimuli are the information background that independently affects the level of MAP. Under certain conditions, several low molecular weight agents can modulate current activities of mechanisms that provide cell metabolism by oxygen and nutrients. In general, this closed physiological system is capable of coping main challenges and providing optimal metabolism in most of the cells despite casual alterations of local extracellular physiochemical conditions.

#### 4.5 Concerning Theories

There are two interpretations of what the theory is for. One group of researchers-empiricists suggests that the theory is a short description of all observable data. But the only value of such a theory is limited to its didactic capabilities. Much valuable are theories that use limited data for doing general conclusions. Neither Newton nor Einstein have had been armed with data covering events in every point of the universe. But they logically argued why the local regularity should be spread to the universe scale. The human organism is like a universe. We never can control thousands of biological variables in each of the trillions of human cells. Here heuristics are the necessary method for proposing general concepts but using very limited data. As CCOC is an example of such theory, it should point out both the most likely events not observed yet and possible ways for their registering and evaluating.

CCOC suggests that mitochondrial disorders are the most likely fundamental cause of age-associated disorders.

CCOC prompts that the chemistry of local or central venous blood contains much more information about biochemical and physiological statuses (health indicators) of cells that form the chemistry than it can be registered by current measurement technologies. So, it is necessary to develop technologies capable of precisely fixing concentration changes of such health indicators. In this way, physicians could much earlier diagnose complex disorders. As the physiology is the theory of the medicine, the identification of molecular mechanisms potentially providing cells' optimal coexistence is also a priority direction. At last, the much thorough and accurate analysis of the chemical composition of arterial blood could make it possible to understand the trends of endogenous normalization of disorders to develop effective methods for their exogenous support.

Certainly, CCOC only dashed outlined the general rules for the optimal integration of specialized cells in a single organism. These rules apply not only to the human body, but also to the organisms of all animals. Perhaps it is appropriate to mention here that renin was initially found only in the kidneys, when their cells were not supplied with a sufficient blood flow. For a long time, experts discussed only the role of the renin-angiotensin system in the body. However, it soon became clear that renin-like agents are produced in almost all organs in which blood flow is impaired <sup>[36,49,72]</sup>. The situation was similar with HIFs: at first they were found in the kidneys, and only then in other specialized cells <sup>[87-89]</sup>.

I saw that the metabolic products of some cells can be used by other types of cells. Since I am a theoretician, I saw in this a possible general pattern. Empiricism alone is capable of filling individual gaps, but it is unlikely to close them all. SCP-s of different specialization can form the simplest pair in which cells of the next SCP consume at least one of the chemicals produced by cells of the previous SCP. By linking such producer-consumer pairs into a long chain, organisms have created functionally associated structures. Normally, their activities display almost synchronized changes.

There exist also types of SCP-pairs in which the prod-

uct of a first SCP inhibits or stimulates the activity of cells of the next SCP. Namely, the second type SCP-pairs are the structural-functional units of our three-dimensional organs. Virtually, one can decompose the human organism to these structural-functional units and assemble (re-assemble) them and theoretically study properties of the virtual organism. However, the vague knowledge of human SCP-s makes this task not yet actual.

There is a sufficient basis to state that HIF-s, which occurred in certain cells of the given tissues, have not mandatorily modifying the current activity of genes in every cell of the tissue. Moreover, only one type of hypoxic state (namely, the long-term hypoxia caused by circulatory insufficiency) does create problems for the entire cell population. In fact, the lack of carbohydrates is the mandatory accompanier of this kind of hypoxia. So, the tissue is suffering rather of hypoergia than of hypoxia. This indicates that organisms suffering from chronic heart insufficiency could serve physiologists as the best objects for studying individual adaptation dynamics much deeper than it is possible in cultures of cells.

#### 5. Conclusion

Each of our cells is a flexible (soft) object possessing by mechanisms that in certain boundaries can cope with local internally or externally induced destructions. The energy is the necessary resource for supporting both cell intimate functions and resisting to its functional impairment or structural degradation. The sufficient condition for cell well-being is the optimal physiochemical cytoplasm. Our organs and their functional systems have passed through the sieve of evolution because they are capable to provide an optimal-like coexistence of cells.

Both the energy demands and parameters of the optimal cytoplasm are altering regularly with phases of the cell cycle and stochastically because of extracellular influences. Their power and frequency may depend on the information and physiochemical dynamics of the outer environment, as well as on alterations induced by other cells. Cells' responses to these influences are making the entire organism, its physiology, and biochemistry flexible too. Cells through these influences adaptively re-build and re-tune both their internal structures and by activating cellular proliferation in organs that currently have accumulated certain concentrations of specific adaptation factors. In fact, cells continuously alter material inflows until a situational or a long-lasting compromise is achieved. The compromise, individual in each organism and displaying temporal variations, we can feel as health's alterations. Physiologists and physicians, assessing the health by values of its indicators, do not require a strong falling of the measured values of the so-called homeostatic constants into their normative intervals. Homeostasis is not only an individual concept, but also a relative one, therefore health should not be evaluated by the absolute value of the measured vital activity indicator, but only on the basis of how much assimilation-dissimilation processes are balanced.

The CCOC, as a hypothetic yet concept presented and argued in the article, is a call to empiricists for searching for adequate methods allowing both concept's examination and further identifying the missing adaptation factors.

#### Acknowledgements

The author is thankful to Professors Alan Hargens, Katerine Lyabakh, Vadim Sagach for their helpful advice and participation in the forming of the view on the human physiology throughout many years. Special thanks to colleagues Ph.D. Pavel Lissov, Ph.D. Anna Degoda, programmers Tatiana Aksionova, and Yegor Dzhurinsky for their investment in the development of mathematical models and providing of computer simulations.

#### Funding

The research is provided by the Grant № 0112U002762 of the National Academy of Sciences of Ukraine.

#### References

- Cymerman A. The Physiology of High-Altitude Exposure. In: Nutritional Needs in Cold and High-Altitude Environments. Ed-s. Marriott B.M., Carlson S.J.,1996, Institute of Medicine. Committee on Military Nutrition Research.
- [2] Weber R.E. High-altitude adaptations in vertebrate hemoglobins. Respiratory Physiology & Neurobiology. 2007, 158:132–142. http://dx.doi.org;/10.1016/j.resp.2007.05.001
- [3] Hainsworth R, Drinkhill MJ. Cardiovascular adjustments for life at high altitude. Respir. Physiol. Neurobiol. 2007, 158(2-3): 204–211.
- [4] Rimoldi SF, Sartori C, Seiler C, Delacretaz E, Mattle HP, Scherrer U, et al. High-altitude exposure in patients with cardiovascular disease: risk assessment and practical recommendations. Prog Cardiovasc Dis. 2010, 52(6): 512–524.
- [5] Grygoryan RD, Lissov PN, Aksenova TV, Moroz AG. The specialized software-modeling complex "PhysiolResp". Problems of programming, 2009, 2: 140-150 (Rus).
- [6] Grygoryan RD, Hargens AR. A virtual multicellular organism with homeostatic and adaptive properties. In: Adaptation Biology and Medicine: Health Po-

tentials. Ed. L. Lukyanova, N.Takeda, P.K. Singal. – New Delhi: Narosa Publishing House, 2008, 5: 261 –282.

- [7] Convertino V, Hoffler GW. Cardiovascular physiology. Effects of microgravity. J Fla Med Assoc, 1992, 79(8): 517-524.
- [8] Hargens AR, Watenpaugh DE. Cardiovascular adaptation to spaceflight. Med Sci Sports Exerc, 1996, 28(8): 977-982.
- [9] Buckey JC Jr1, Gaffney FA, Lane LD, Levine BD, Watenpaugh DE, Wright SJ, Yancy CW Jr, Meyer DM, Blomqvist CG. Central venous pressure in space. J Appl Physiol, 1996, 81 (1): 19-25.
- [10] Grygoryan RD. Self-organization of homeostasis and adaptation. Kiev, Academperiodics, 2004: 502. (Rus.).

ISBN: 966-8002-99-7

[11] Grygoryan RD. The biodynamics and models of energy stress. Kiev, Academperiodics, 2012: 330. (Rus.).

ISBN: 978-966-02-5393-3

- [12] Grygoryan RD. The Energy basis of reversible adaptation. N.Y.: Nova Science, 2012: 254. ISBN: 978-1-62081-093-4
- [13] Grygoryan RD. An individual physiological norm: the concept and problems. Reports of the National Academy of Sciences of Ukraine, 2013, 8: 156-162 (Rus.).
- [14] Grygoryan RD, Lyabakh KG. Arterial pressure: comprehension. Kiev, Academperiodics, 2015, 458c (Rus.).

[15] Grygoryan RD. The optimal circulation: cells contribution to arterial pressure. N.Y.: Nova Science, 2017: 287.

ISBN: 978-1-53612-295-4

- [16] Grygoryan RD, Sagach VF. The concept of physiological super-systems: New stage of integrative physiology. Int. J. Physiol. and Pathophysiology, 2018, 9(2): 169-180.
- [17] Grygoryan RD. Comprehension of individual adaptation mechanisms: endogenous tuning of constants determining optimal physiological states. Slovak int. scientific j., 2019, 32: 67-72.
- [18] Grygoryan RD. Principles of multicellular physiological systems. Slovak int. scientific j, 2019, 33: 45-50.
- [19] Grygoryan R.D. The unknown aspects of arterial pressure. Znanstvena misel journal, 2019, 33: 19-23.
- [20] Grygoryan RD. Principles of the multicellularity: a view from inside. Znanstvena misel journal, 2019, 34: 48-53.
- [21]Cannon WB. Organization for physiological homeo-

stasis. Physiol 1929, 9: 399-431.

- [22]Woods HA, Wilson JK. An information hypothesis for the evolution of homeostasis. Trends Ecol Evol, 2013, 28: 283–289. [PubMed] [Google Scholar]
- [23] Modell H, Cliff W, Michael J, McFarland J, Wenderoth MP, Wright A. A physiologist's view of homeostasis. Adv Physiol Educ. 2015, 39(4): 259-266. DOI: 10.1152/advan.00107.2015
- [24] Lopez-Gambero AJ, Salazar K, Martínez F, Cifuentes M, Nualart F. Brain glucose-sensing mechanism and energy homeostasis. Molecular Neurobiology, 2018, 56(14).

DOI: 10.1007/s12035-018-1099-4

- [25] McEwen BS. Central Role of the Brain in Stress and Adaptation. In Stress: Concepts, Cognition, Emotion, and Behavior, Handbook in Stress Series, V. 1, Ed. By G. Fink, Academic Press, 2016.
- [26] Lester BM, Conradt E, Marsit C. Introduction to the Special Section on Epigenetics. Child Dev. 2016, 87(1): 29–37.

DOI: 10.1111/cdev.12489

- [27] Liang M. Epigenetic Mechanisms and Hypertension. Hypertension. 2018, 72: 1244–1254. https://doi.org/10.1161/HYPERTENSIONA-HA.118.11171
- [28] Korkmaz A, Manchester LC, Topal T, Ma S, Tan DX, Reiter RG. Epigenetic mechanisms in human physiology and diseases. Journal of Experimental and Integrative Medicine. 2011, 1(3): 139-147. DOI: 10.5455/jeim.060611.rw.003
- [29] Lacal I, Ventura R. Epigenetic Inheritance: Concepts, Mechanisms and Perspectives. Front Mol Neurosci. 2018, 11: 292.

DOI: 10.3389/fnmol.2018.00292

- [30] Meerson FZ. Adaptation, stress and prophylaxis. Springer, 1984.
- [31] Hardie DG, Ashford ML. AMPK: regulating energy balance at the cellular and whole body level. Physiology (Bethesda). 2014, 29(2): 99–107.
- [32] Chance B, Leigh J, Kent J, McCully K. Metabolic control principles and P31NMR. Federation Proc.,1986, 45: 2915-2920.
- [33] Pan Y, Mansfield KD, Bertozzi CC, Rudenko V, Chan DA, Giaccia AJ, et al. Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Mol Cell Biol. 2007, 27: 912– 925.

DOI: 10.1128/MCB.01223-06

[34] Grygoryan RD. The relativity concept for human physiology and health assessment. Slovak Int. Scientific J, 2019,34: 45-50.

ISBN: 978-966-02-7781-6

- [35] Guyton AC, Coleman TG, Granger HJ. Circulation: overall regulation. Annu.Rev. Physiol., 1972, 34: 13-46.
- [36] Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM. Classical Renin-Angiotensin system in kidney physiology. Compr Physiol. 2014, 4(3): 1201–1228.

DOI: 10.1002/cphy.c130040

- [37] Guyton AC. Blood pressure control special role of the kidneys and body fluids. Science. 1991, 252: 1813–1816.
- [38] Montani J-P, Van Vliet BN. Understanding the contribution of Guyton's large circulatory model to longterm control of arterial pressure. Exp Physiol. 2009, 94: 382–388.
- [39] Cowley AW Jr. Long-term control of arterial pressure. Physiol Rev. 1992, 72: 231-300.
- [40] Cowley AW Jr. Renal medullary oxidative stress, pressure-natriuresis, and hypertension. Hypertension. 2008, 52: 777–786.
- [41] Semenza G L, Wang G L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992, 12(12): 5447–5454.
- [42] Rey S, Semenza GL. Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc Res. 2010, 86(2): 236-42. Epub 2010 Feb 17.
- [43] Dengler VL, Galbraith M, Espinosa JM. Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol.2014, 49: 1–15. DOI: 10.3109/10409238.2013.838205
- [44] Semenza GL. Hypoxia-inducible factors: coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype. EMBO J. 2017, 36: 252 – 259.
   DOI: 10.15252/embj.201695204
- [45] Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004, 5(5): 343-54.

DOI: 10.1038/nrm1366

- [46] Chistiakov DA, Shkurat TP, Melnichenko AA, Grechko AV, Orekhov AN. The role of mitochondrial dysfunction in cardiovascular disease: a brief review. Ann Med. 2018, 50(2): 121-127. DOI: 10.1080/07853890.2017.1417631
- [47] Cheng J, Nanayakkara G, Shao Y, Cueto R, Wang L, Yang WY, Tian Y, Wang H, Yang X. Mitochondrial Proton Leak Plays a Critical Role in Pathogenesis of Cardiovascular Diseases. Exp Med Biol. 2017, 982: 359-370.

DOI: 10.1007/978-3-319-55330-6 20

- [48] Grünewald A, Kumar KR, Sue CM. New insights into the complex role of mitochondria in Parkinson's disease. Progress in Neurobiology.2019, 177: 73-93. DOI: org/10.1016/j.pneurobio.2018.09.003
- [49] Farag E, Maheshwari K, Morgan J, Sakr Esa WA, Doyle DJ. An update of the role of renin angiotensin in cardiovascular homeostasis. Anesth Analg. 2015, 120(2): 275–292.
- [50] Briones AM, Toyus R. Oxidative Stress and Hypertension: Current Concepts. Current Hypertension Reports, 2010, 12(2): 135-142.
   DOI: 10.1007/s11906-010-0100-z
- [51] Fogg VC, Lanning NJ, Mackeigan M. Mitochondria in cancer: at the crossroads of life and death. JP. Chin J Cancer. 2011, 30(8): 526-39. DOI: 10.5732/cjc.011.10018
- [52] Lee HC, Huang KH, Yeh TS, Chi CW. Somatic alterations in mitochondrial DNA and mitochondrial dysfunction in gastric cancer progression. World J Gastroenterol. 2014, 20(14): 3950-9. DOI: 10.3748/wjg.v20.i14.3950
- [53] Sajnani K, Islam F, Smith RA, Gopalan V, Lam AK. Genetic alterations in Krebs cycle and its impact on cancer pathogenesis. Biochimie.2017, 135: 164-172. DOI: 10.1016/j.biochi.2017.02.008
- [54] Lee RG, Sedghi M, Salari M, Shearwood AMJ, Stentenbach M, Kariminejad A, Goullee H, Rackham O, Laing NG, Tajsharghi H, Filipovska A. Early-onset Parkinson disease caused by a mutation in CHCHD2 and mitochondrial dysfunction. Neurol Genet, 2018, 4.

DOI: 10.1212/NXG.00000000000276

- [55] Larsen, S.B., Hanss, Z. & Krüger, R. The genetic architecture of mitochondrial dysfunction in Parkinson's disease. Cell Tissue Res. 2018, 373 (1): 21–37. https://doi.org/10.1007/s00441-017-2768-8
- [56] Anilkumar U, Weisová P, Düssmann H, Concannon CG, König HG, Prehn JHM. AMP-activated protein kinase (AMPK)-induced preconditioning in primary cortical neurons involves activation of MCL-1. J. Neurochem. 2013. 124, 721–734. DOI: 10.1111/jnc.12108
- [57] Jeon SM. Regulation and function of AMPK in physiology and diseases. Exp Mol Med. 2016, 48(7): e245.

DOI: 10.1038/emm.2016.81

- [58] Dasgupta B, Chhipa RR. Evolving lessons on the complex role of AMPK in normal physiology and cancer. Trends Pharmacol Sci. 2016, 37(3): 192-206.
- [59] Hardie GH. Keeping the home fires burning: AMP-activated protein kinase. J. R. Soc. Interface.

2018, 15: 20170774.

http://dx.doi.org/10.1098/rsif.2017.0774

- [60] Fiala D, Psikuta A, Jendritsky G, et al. Physiological modeling for technical, clinical and research applications. Frontiers in bioscience (Scholar edition). 2010, 2(3): 939-968.
  DOI: 10.2741/S112
- [61] Olsen HC, Ottesen JT, Smith R, Olufsen M. Parameter subset selection techniques for problems in mathematical biology. Biological Cybernetics. 2018, 113(6).
  - DOI: 10.1007/s00422-018-0784-8
- [62] Hester RL, Iliescu R, Summers R, Coleman TG. Systems biology and integrative physiological modeling. J Physiol. 2011, 589(5): 1053–1060.
   DOI: 10.1113/jphysiol.2010.201558
- [63] Jazek F., Kulhanek T., Konfranek J. Lumped models of the cardiovascular system of various complexity. Biocybernetics and Biomedical Engineering, 2017, 37(4).
- [64] Grygoryan RD, Aksionova TV, Degoda AG. A computer simulator of mechanisms providing energy balance in human cells. Cybernetics and computer engineering, 2017, 184: 72-83. (Rus.).
- [65] Grygoryan RD, Degoda AG, Dzhurinsky EA, Aksenova TV. A simulator of human physiology under energy balance in cells. Problems in programming, 2019, 4: 93-100.
- [66] Lohmeier TE, Iliescu R. The Baroreflex as a Long-Term Controller of Arterial Pressure. Physiology (Bethesda). 2015, 30(2): 148–158. DOI: 10.1152/physiol.00035.2014.
- [67] Cross MJ, Claesson-Welsh L. FGF and VEGF function in angiogenesis: Signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol. Sci. 2001, 22: 201–207. DOI: 10.1016/S0165.6147(00)01676 X

DOI: 10.1016/S0165-6147(00)01676-X

- [68] Thangarajah H, Yao D, Chang EI et al., The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc. Nat. Acad. Sci. USA, 2009, 106(32): 13505–13510.
- [69] Maechler P, Carobbio S, Rubi B. In beta-cells, mitochondria integrate and generate metabolic signals controlling insulin secretion. Intern. J Biochem. Cell Biol., 2010, 38: 696-709.
- [70] Caporarello N, Meridew JA, Jones DL, Tan Q, Haak AJ, Choi KM, Manlove LJ, Prakash YS, Tschumperlin DJ. Ligresti G. PGC1alpha repression in IPF fibroblasts drives a pathologic metabolic, secretory and fibrogenic state. Thorax. 2019, 74(8): 749-760. DOI: 10.1136/thoraxjnl-2019-213064
- [71] Otrock ZK, Mahfouz RA, Makarem JA, Shamsed-

dine AI. Understanding the biology of angiogenesis: review of the most important molecular mechanisms. Blood Cells Mol Dis. 2007, 39(2): 212-220.

- [72] De Mello WC, Frohlich ED. On the local cardiac renin angiotensin system. Basic and clinical implications. Peptides. 2011, 32: 1774–1779.
- [73] Ho TK, Abraham DJ, Black CM, Baker DM. Hypoxia-inducible factor 1 in lower limb ischemia. Vascular. 2006, 14(6): 321-327.
- [74] Minet E, Michel G, Remacle J, Michiels C. Role of HIF-1 as a transcription factor involved in embryonic development, cancer progression and apoptosis (review). Int J Mol Med, 2000, 5: 253–9. DOI: 10.3892/ijmm.5.3.253
- [75] Yoon D, Ponka P, Prchal JT. Hypoxia and hematopoiesis. Am. J.Physiol.-Cell Physiol., 2011, 300 (6): C1215–C1222.
- [76] Adach W, Olas B. Carbon monoxide and its donorstheir implications for medicine. Future Med Chem. 2019, 11(1): 61-73.
- [77] Semenza GL. Involvement of oxygen-sensing pathways in physiologic and pathologic erythropoiesis. Blood J., 2009, 114(10): 1-27.
- [78] Efremov RG, Baradaran R, Sazanov LA. The architecture of respiratory complex I. Nature, 2010, 465: 441-445.
- [79] Beard D, Muriel M. Mechanisms of pressure-diuresis and pressure-natriuresis in Dahl salt-resistant and Dahl salt-sensitive rats. BMC Physiology, 2012, 12(1): 6.

DOI: 10.1186/1472-6793-12-6

- [80] Ivy JR, Bailey MA. Pressure natriuresis and the renal control of arterial blood pressure. J. of physiol., 2014, 592(18): 3955-3967. https://doi.org/10.1113/jphysiol.2014.271676
- [81] Braganza A, Corey CG, Santanasto AJ, Distefano G, Coen PM, Glynn NW, Nouraie SM, Goodpaster BH, Newman AB. Shiva S. Platelet bioenergetics correlate with muscle energetics and are altered in older adults. JCI Insight. 2019, 23: 5. DOI: 10.1172/jci.insight.128248
- [82] Chan CM, Huang DY, Sekar P, Hsu SH. Lyin WW. Reactive oxygen species-dependent mitochondrial dynamics and autophagy confer protective effects in retinal pigment epithelial cells against sodium iodate-induced cell death. J Biomed Sci. 2019; 26(1):40.

DOI: 10.1186/s12929-019-0531-z

[83] Malińska D, Więckowski MR, Michalska B, Drabik K, Prill M, Patalas-Krawczyk P, Walczak J, Szymański J, Mathis C, Van der Toorn M, et al. Mitochondria as a possible target for nicotine action. J Bioenerg Biomembr. 2019, 51(4): 259-276. DOI: org/10.1007/s10863-019-09800-z

[84] Salin K, Rey B, Selman C, Metcalfe NB. Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance. Proceedings of the Royal Society B, 2015, 282(1812).

https://doi.org/10.1098/rspb.2015.1028

- [85] Zucker HI, Xiao L, Haack KKV. The Central RAS and Sympathetic Nerve Activity in Chronic Heart Failure. Clin Sci (Lond), 2014, 126(10): 695-706. DOI: 10.1042/CS20130294
- [86] Grygoryan RD, Aksenova TV, Degoda AG. A simulator of mechanisms providing energy balance in human cells. Cybernetics and Comput. Technologies.

2017. 2: 67-76.

[87] Lee JW. Ko J. Ju C. Eltzschig HK. Hypoxia signaling in human diseases and therapeutic targets. Exp Mol Med. 2019, 51(6): 68. DOI: 10.1038/s12276-019-0235-1

[88] Mesarwi OA, Shin MK, Bevans-Fonti S, Schlesinger C, Shaw J, Polotsky VY. Hepatocyte Hypoxia Inducible Factor-1 Mediates the Development of Liver Fibrosis in a Mouse Model of Nonalcoholic Fatty Liver Disease. PLoS One. 2016, 11(12): e0168572. DOI: 10.1371/journal.pone.0168572

[89] Menendez-Montes, Escobar B, Palacios B, Gómez MJ et al., 2016. Developmental Cell 39: 724–739. http://dx.doi.org/10.1016/j.devcel.2016.11.012



Journal of Human Physiology

https://ojs.bilpublishing.com/index.php/jhp



### ARTICLE Low-intensive Microwave Signals in Biology and Medicine

#### **Oleksiy Yanenko**<sup>\*</sup>

National Technical University of Ukraine "Kyiv Polytechnic Institute", Kyiv, Ukraine

#### ARTICLE INFO

Article history Received: 20 November 2019 Accepted: 27 November 2019 Published Online: 15 November 2019

*Keywords:* Low-intensive microwave signal mm-band therapy Metrological support Radiometric equipment

#### ABSTRACT

Millimeter range signals have been widely used in biology and medicine over the 20-30 years of the last century. At this time in Ukraine have been developed and implemented treatment technologies, the main ones are millimeter therapy (MMT), microwave resonance therapy (MRT), information-wave therapy (IWT). The features of this technologies are the use of signals in the frequency band 40-78 GHz with extremely low signal levels -  $10^{-9}$ - $10^{-11}$  W / cm<sup>2</sup>, the parameters are immanent to own communication signals of the human body. The author of the article attempts to conduct a combined analysis of hardware and software of these treatment technologies with mm-band signals. Thus the specialized equipment used for the treatment, technologies and the statistical results of its use for various diseases are considered. The problems of metrological support and measuring the weak signals of the mm range are proposed to solve by creating highly sensitive radiometric systems. The results of measurements of microwave signals of natural objects that can be used for physiotherapy and physical bodies that are in contact with or in human environment are submitted. Promising areas of the using the highly sensitive radiometric measurement equipment for research in biology and medicine are presented.

#### 1. Introduction

Multiplication of the technologies with the advector of metaresearch, and the development and implementation of metaical equipment and treatment technologies with metasignals with the body. The largest contribution to this research, and the development and implementation of metical equipment and treatment technologies with mm-signals made teams led by Academician Devyatkov M.D. and Prof. S.P. Sitko. Directions of researches conducted by these groups have focused on determining the parameters of mm-signals for therapeutic intervention on the patients and the list of diseases and their treatment technology.

As a result, the first specialized medical devices for millimeter therapy "Явь" ("Yav") and "Поріг-1" ("Porog, Threshold - 1") and appropriate technologies for their use in medical practice were created. However, the parameters of these devices (signal type, operating frequency, output level) significantly differed among themselves, and therefore have differences, and even in the names of treatment technologies. So the technologies developed by Kyiv specialists combined with name - Quantum medicine because they use extremely low power as noise so harmonic signals <sup>[1,2]</sup>.

At this time in Ukraine have been developed and

\**Corresponding Author: Oleksiv Yanenko*,

National Technical University of Ukraine "Kyiv Polytechnic Institute", Kyiv, Ukraine; Email: op291@meta.ua implemented treatment technologies, the main ones are millimeter therapy (MMT), microwave resonance therapy (MRT), information-wave therapy (IWT). The features of this technologies are the use of signals in the frequency band 40-78 GHz with extremely low signal levels -  $10^{-9}$ - $10^{-11}$  W/cm<sup>2</sup>, the parameters are immanent to own communication signals of the human body.

In contrast to the treatment with a low-frequency signals (HF, UHF), which are associated with heating and thermal effects, the MMT is based on non-ionizing energy-effects on the human body. Areas of influence in MMT are biologically active zones and points (BAP) of the human body. Millimeter signals are absorbed by BAT at the resonant frequencies, simulating the natural tones of the human body. In some cases for body as a self-regulating system the insignificant proportion of the MM-wave energy is quite enough to reduce pathological phenomena and restore normal physiological state. There are several hypotheses to explain the mechanisms of electromagnetic radiation action on biological objects <sup>[2,3]</sup>. Almost all of them say that the primary target of MM signals are water molecules that strongly absorb such signals first of all in dermal nerve receptors and immune-competent cells.

Under the influence of MM-radiation the synthesis of ATP in cells and biologically active substances that affect the immune status increases. Observed changes in cellular metabolism are the prerequisite for further recovery of the functions at the level of the whole organism. This improved immune system parameters, blood parameters, condition of the nervous system, as evidenced by laboratory diagnostic methods during treatment of MM therapy. The effectiveness of therapy increases with using the mm-signal in the resonant frequency <sup>[1,2]</sup>, since this increases the amount of absorbed energy. All kinds of MMT are shown to be used in many serious diseases like kids cerebral palsy, aseptic necrosis of the femoral head, stomach and duodenal ulcers, diabetes and its complications, and others as additional complementary treatment. MMT can be used in different oncologic diseases as before surgical intervention so after it in standard treatment methods.

#### 2. Main Body

#### 2.1 Devices and Special Radiation Sources of Millimeter-range Frequencies

Currently, therapy with mm-range signals use about 25-30 types of specialized medical equipment <sup>[2]</sup>.

Creation of the mm-wave band generators with low output associated with the solution of a number of complex technical problems. The main ways of obtaining low-intensity signals from devices for practical medicine are <sup>[4]</sup>:

(1) create generators for tens microwatt with subsequent reduction of power via attenuators;

(2) use second harmonic generator with resetting output by applying on its output high pass filter;

(3) use the frequency multipliers for the formation and allocation *n*-th harmonic signal;

(4) use of heat and spark generators.

There are several developed apparatus generating mm-range waves for medical purposes <sup>[1]</sup>:

(1) sets of harmonic signals with fixed operating frequencies, "Явь-1" ("Yav-1"), "Электроника-КВЧ" ("Electronics-UHF"), "РАМЕД-ЭКСПЕРТ" ( "RAMED-Expert");

(2) "broadband generators" of the harmonic signals, "AMPT-01" ("AMRT-01"), "AMPT-02" ("AMRT-02"), later types of devices "Електроніка" ("Electronics"), "AMT-Коверт-04" ("AMT-Covert-04"), "ARIA-SC";

(3) "broadband devices" of noise signals "Поріг-1" ("Porog - 1"), "Поріг-3" ("Porog -3"), "Поріг-3М" ("Porog -3M"), "Арцах" ("Artsakh"), "Шлем" ("Shlem (Helmet)");

(4) combined devices generating as noise so harmonic signals, "AMPT-01" ("AMRT-01"), "Apцax" ("Artsakh");

(5) devices with additional modes of quasi noise signals formating due to "spill" the spectrum of harmonic signals, frequency sweeping within the operating frequency range "AMT-Коверт-04" ("AMT-04 Covert"), "ARIA-SC". This mode is easily implemented in new devices with embedded microprocessor (microcomputer).

The main types of such devices and their parameters are given in Table 1.

By operating frequency range of equipment located mainly in the 37 to 78 GHz, some devices (mainly noise signals generators) cover bands up to 90 GHz and 118 GHz even (Table. 1).

| Name of the device                             | Country of<br>origin | Type of<br>signal       | Operatin<br>grange, GHz | Output<br>power, Wt                                                |
|------------------------------------------------|----------------------|-------------------------|-------------------------|--------------------------------------------------------------------|
| "AMRT-01"                                      | Ukraine,<br>Kharkiv  | harmonic,<br>noise      | 58-62<br>53-78          | 3.10-3                                                             |
| "Electron-<br>ics-UHF-101"<br>(2 modification) | Ukraine,<br>Kyiv     | _ // _                  | 59-63<br>57-65          | 5 <sup>-</sup> 10 <sup>-3</sup><br>5 <sup>-</sup> 10 <sup>-5</sup> |
| "Artsakh"<br>(4 modification)                  | Armenia,<br>YRFE NAS | _ // _                  | 59-61,<br>42-95         | 5 м Wt /<br>см <sup>2</sup><br>10 <sup>-19</sup> Wt /<br>Hz        |
| "AMRT-02"                                      | Ukraine,<br>Kharkiv  | harmonic,<br>quasinoise | 5262                    | 1.10-4                                                             |
| "ARIA-SC"                                      | Ukraine,<br>Kharkiv  | _ // _                  | 5364                    | 5.10-5                                                             |
| LDK "Sharm",<br>"Yav-1"),                      | Russia,              | _ // _                  | 42,2;<br>53,5           | 1.10-2                                                             |
| "Stela- 2"                                     | Russia,<br>Tomsk     | _ // _                  | 5963                    | 1.10-4                                                             |

#### Table1. Apparatus for millimeter therapy

|                                                          |                   |            |      | 1.0. 11                                    |
|----------------------------------------------------------|-------------------|------------|------|--------------------------------------------|
| "Porog -3"<br>(4 modification)                           | Ukraine,<br>Kyiv  | noise      | 5378 | $ 10^{-17} - 10^{-19} $ Wt /Hz             |
| "Covert -01"                                             | Russia,<br>Moscow | _ // _     | 5378 | 10 <sup>-20</sup> Wt /<br>Hz               |
| MU-2001                                                  | Switzerland       | - // -     | 4278 | 1 <sup>.</sup> 10 <sup>-21</sup> Wt<br>/Hz |
| " Electron-<br>ics-UHF -011,<br>013"<br>(2 modification) | Ukraine,<br>Kyiv  | quasinoise | 5765 | 5.10-5                                     |

There are attempts to create devices designed at more high frequency, which work even in the range of terahertz waves. The level of power generated also varies widely and covers the area from 10 mW to 1 nW for monochromatic and  $1 \cdot 10^{-8}$  to  $1 \cdot 10^{-20}$  W/Hz for noise signals.

Figure 1 shows the distribution of power and frequency range of devices for millimeter therapy.

The information about the feasibility of the submillimeter range signals usage in practice of medicine have appeared recently.

Figure 2 shows two types of noise generators with low-intensive output signals, positive flow "Porog-VT" and negative flow "Porog-NT".



Figure 1. Distribution of power and frequency rangeof devices

*Note:* Microwave resonance therapy: 1 – "Yav-1"), 2 – "Alenushka", (Ukraine), 3 – "Electronics-UHF"), (Ukraine); ГНТВ – "Porog-NT" (Ukraine); ГВТВ – "Porog-VT"(Ukraine), the line AB – power level natural human radiation



"Porog-VT" Patent of Ukraine №265 (Bulletin №2 from 25.07.1994)



"Porog-NT" Patent of Ukraine №53743 (Bulletin №2 from 7.02.2003)

Figure 2. Noise generators with low-intensive output signals, positive flow "Porog-VT" and negative flow "Porog-NT"

#### 2.2 Metrologic Apparatus Software and Technologies of Low-Intensive Microwave Therapy

One of the problems to be solved in quantum medicine technologies are providing metrology and inspection of the equipment attribution during its operation.

It should be noted that the lack of standard tools for measuring such small capacities does not allow to provide metrological support the equipment for quantum medicine and for biomedical research in the millimeter wavelength range <sup>[1]</sup>.

Radiation of the ultra-low levels is monochromatic so noise signals are used in the new microwave technologies. The minimum values of integral power of monochromatic signals can be  $10^{-10}$ - $10^{-12}$ Wt (eg, ,ARIA-SC, AMPT-02), and the power spectral density of the noise signal is  $10^{-16}$ - $10^{-21}$ Wt/Gz ("Porog -3", "Porog-VT", "Porog-NT", "Covert-01"). To measure such power levels it is necessary to radiometric sensitivity setting was at least an order of magnitude higher, and the measurement accuracy is not worse than the standard equipment of the same long-range power, ie 10-15%<sup>[5,8]</sup>.

To solve this problem have been developed and certified by Standards Committee of Ukraine two highly sensitive radiometric systems (RMS) with a modulation transportation of the signal and sensitivity  $0.5 \cdot 10^{-22}$  W / Hz in frequency bands 37-53 GHz and 53-78 GHz, which provided Metrology maintenance and measurement of specialized medical mm range equipment in Ukraine <sup>[1.9]</sup>.

#### 2.3 Technologies of Therapy with Low-intensive Microwave Signals. Peculiarities and Appliance Fields of Millimeter Therapy

The use of mm-range signals in the practical medicine stimulated the emergence of several types of medical tech-

nologies that practically used <sup>[1]</sup>. Classification of the main technological directions of mm-range signals treatment is shown in Figure 3.



Figure 3. Classification of main technologies of quantum – medicine

Despite the different names, these technologies have in common is that their use of millimeter wave signals using low intensity level reaches  $10^{-20}$ - $10^{-21}$  W / Hz cm<sup>2 [5]</sup>.

The most common among these technology areas is microwave resonance therapy (MRT), which by order of the Ministry of Health of Ukraine  $N \ge 136$  from 06.22.1989, is officially recommended for implementation in the hospitals of the country in separate MRT-cabinets <sup>[2]</sup>. The use of MRT is characterized by a general positive impact on the functional systems of the human body, and therefore used in various areas of practical medicine Figure 4 <sup>[6]</sup>.



Figure 4. Applications areas of Quantum Medicine

The most practical checking of the effectiveness of MRT was conducted in such areas of the medical practice: orthopedics and traumatology, gastroenterology, hematology, oncology. Promising is the use of MRI in cardiology in acute coronary disease - heart attacks, strokes and other diseases of the cardiovascular system. The experience of the Ambulance and infarction branch Department of the National Medical Academy for Advanced Training on over 100 patients in which MRT was used, along with the use of pharmacological agents significantly improves patient's state: decreases blood pressure, decreases tachycardia, stroke and minute cardiac output, as peripheral vascular resistance normalizes <sup>[6]</sup>. The use of MRT dramatically increases the effectiveness of pharmaceuticals.

The use of MRT in endocrinology at stages I-II of diabetes mellitus and insulin-independent diabetes with

manifestations of diabetic macro-and micro angiopathies, polyneuropathy normalizes hemodynamic parameters in the lower extremities, increased pulse blood current, improves the conduction of nerve impulses in peripheral nerves.

MRT is effective in treatment of pain and paraesthetic syndromes in Dentistry. We have experience of good effect of MRT using in treatment of glossodynia (burning mouth syndrome) and in neuropathy of inferior alveolar nerve.

In addition, MRT gives a therapeutic effect without the deductive use of drugs, which reduces the load side and a negative impact on the patient of pharmatheutical therapy. The method can be widely used in the hospital and in the outpatient treatment of diabetes. The course of treatment is 10-15 sessions duration of 30-50 minutes of MRT.

MRT provides high efficiency in the treatment of stomach ulcers, enshrined on clinical examination in more than 6000 patients <sup>[6]</sup>. The results of MRT show favorably high therapeutic effect - complete healing of gastric ulcers by gastroduodenoscopy observed in 80-85% of patients.

The process of treatment (10-15 sessions) accompanied by relief of pain syndromes, the normalization of the secretory and motor functions of the stomach, decreasing the concentration of hydrochloric acid and the volume of gastric juice. Concentration of the adrenaline and cortisol in the blood decreases, and levels of prolactin and aldosterone increases, which ensures normalization of fluid and electrolyte metabolism.

Promising is the use of MRI technology and Sitko-MRT in the treatment of cancer patients in stage III-IV, who received standard treatment <sup>[2,6]</sup>. If the cancer disease is characterized by significant pain, which is facilitated by the use or docked pharmaceuticals containing narcotic substances with following violations the use of MRT allows decrease the dose of narcotic medicines.

Quantum medicine technologies can be a good alternative to pharmacological methods of pain relief, with a significant improvement in the "quality" of life. The example of more than 40 cancer patients in stage III-IV who received standard treatment and were treated at the Center of quantum medicine "Vidhuk" ("Feedback") <sup>[2,6]</sup> shows that Sitko-MRT provides quick anesthetic effect, even for a few minutes, common state of patients improves; after treatment with MRT course of 10 - 20 sessions 85% of cancer patients report decrease of pain during 10 and more days <sup>[2]</sup>. After using of MRT immune-modulating effect was received: the amount and subpopulation correlation of immunocompetent cells normalized, their functional activity increased. In fact, MRT technologies effectiveness does not yield to traditional medicinal preparations.



Figure 5. Effects of Quantum Medicine

At the last time diseases of bronchopulmonary system become widespread. MRT can be a good assistant in the treatment of nonspecific lung diseases with bronchial obstructive syndrome because bronchodilator medicines usage in great quantity can lead complications. MRT technologies allow receive positive effect without complications in acute and chronic bronchitis, pneumonia, asthma, in breath insufficiency I-II stages. In these cases use of MRT improve health in more than 80% patients simultaneously to abolition of pharmaceutical medicines.

The results of the use of MRI in some diseases listed in the table 2  $^{\left[7\right]}$ 

 Table 2. There sultsof treatment by microwave resonance therapy

| Diseases                             | Improvement(%) | Recovery (%) |
|--------------------------------------|----------------|--------------|
| Alcoholism                           | 90             | 40           |
| Aseptic necrosis of the femoral head | 98             | 60           |
| Bronchial asthma                     | 85             | 60           |
| Bronchial obstructive syndromes      | 90             | 82           |
| Vegetative and vascular dystonia     | 85             | 70           |
| Gastritis, gastroduodenitis          | 95             | 89           |
| Kids cerebral palsy                  | 100            | 60           |
| Osteochondrosis                      | 94             | 70           |
| Polyarthritis                        | 80             | 67           |
| Diabetes                             | 80             | 63           |
| Sores                                | 92             | 68           |
| Ulcer of stomach and duodenum        | 98             | 90           |
| Other pathologies                    | 60-95          | 35-90        |

It proved that the use of the MRT is quite promising in the treatment of a wide range of diseases and helpful in most of them.

Microwave therapy is widely used in various fields of practical medicine as a separate type of treatment, or in combination with other methods of influence on the patient.

Medical apparatus for microwave therapy is characterized by low output power ( $10^{-6}-10^{-13}$  Wt) and use mostly 37,5-78,3 GHz frequency range and is sufficiently safe for both the patient and for staff.

Further development of the considered therapeutic areas is possible through the creation of a new generation of equipment that would provide feedback to the patient and self-adjusting output parameters, as well as mastery of higher frequency millimeter range waves.

#### 2.4 Scientific Directions of Low-intensity Electromagnetic Fields and Radiation of Millimeter Range Researches

Thus, the development and deepening of biomedical researches and technologies require the creation of highly sensitive radiometric equipment using new achievements of microwave technologies and element base and exploring possible directions for its use.

Promising is the use of radiometric instrumentation for early diagnosis of diseases associated with the presence thermal irregularities in humans, as well as for the study of electromagnetic fields and radiation (EMR) of the biological objects and of the human body characterizing the exchange of information both within the living organism and with the external environment.

Early diagnosis and measurement of thermal irregularities within the human body (at the (50-80) mm of depth) is possible with the radiometer operating at low frequencies, (0.9-1.5) GHz, and the sensitivity of such equipment should be at the level of  $(10^{-15} - 10^{-16})$  Wt.

The research of natural electromagnetic fields and radiation and their interaction with the environment also requires the development of radiometric equipment with the sensitivity of the order of  $(10^{-14} - 10^{-16})$  Wt, depending on the range of operating frequencies.

Given the above, a classification of medical and biological problems that can be solved with the use of microwave radiometry equipment was developed Figure 6.



Figure 6. Classification of radiometric problems in the medical and biological applications

Analysis of the Figure 1 data shows that, depending on the task of the biomedical applications, operating frequency range of radiometric equipment can vary from a few to hundreds of gigahertz, and the sensitivity – from  $10^{-13}$  to  $10^{-17}$  Watts.

Implementation of structural schemes of radiometric

equipment such sensitivity is usually performed using the compensation, correlation or modulation method of transformation of input signals<sup>[5,8]</sup>.

Promising direction to use the microwave radiometric equipment is studying the parameters of own electromagnetic radiation (EMR) of living organisms.

Figure 7 shows the classification of the possible parameters of bio object own EMR, measurement of which can be performed using radiometric equipment.



Figure 7. Classification of measuring tasks in the study of the bioobject own EMR

For reliable signal recording the sensitivity of such circuits, operating on the difference signals, should be at the level  $(10^{-15} - 10^{-16})$  Wt.

Another area to use radiometric equipment when examining biological objects own EMR is to measure the correlation characteristics of the radiation.

Radiothermal radiation, which is formed in equilibrium processes has a noise character, and its intensity is proportional to the temperature of the object *T*. Bioinformatic (non-thermal) radiation at the cellular level, which is determined by the non-equilibrium processes and provides synchronization of the body is deterministic. Due to the small size of the cell the energy density EMR already at a short distance from the biological object is reduced in many times, besides this reduction is accompanied by stochastization of the radiation. The total radiation of a living organism can be represented as a superposition of a deterministic and noise signal

$$U_{\Sigma}(t) = U_{\omega}(t) + U_{T}(t) \tag{1}$$

Registration of the deterministic weak signal  $U\omega(t)$  against a background of strong noise signal  $U\omega(t)$  is a difficult technical problem, the solution of which is possible only with the use of specialized highly sensitive radiometric system that measures the autocorrelation function.

Register autocorrelation function opens the possibility of identifying deterministic processes that can be masked by noise and thus to identify the source of bioinformatic radiation of the living organism.

An important parameter may be the cross-correlation characteristics of the two signals, providing registration of distribution (location) of the deterministic signal on those or other bio object areas.

Measurement of inter-correlation function allows exploring the gradients of temperature fields in the presence of selected sources in the bio object body (local thermal irregularities). Sensitivity of such RMS must be on the level of  $(10^{-16} - 10^{-17})$  Watts.

Temperature anomalies in alive organism arising from tumors, trauma, inflammation, etc. strongly influenced the frequency features of EMR. Localization of the thermal irregularities sources may be at different depths from the body surface. Emission wavelength varies depending on the depth of its occurrence. Therefore, recording the frequency dependences of the intensity of EMR can detect and localize thermal irregularities sources in the human body.

Shape of the curve in the coordinates of frequency-voltage  $U=f(\omega)$  provides information on the nature of the thermal irregularities and temperature gradient inside the object. Intensity on the frequency coordinate allows determining the depth of the source of thermal radiation.

One example of the use high-sensitive radiometric system is conducted by the authors <sup>[10,11]</sup> studies the electromagnetic characteristics of dental materials, in order to determine the parameter which would provide a more accurate identification (compatibility, matching) with the natural tooth material.

These dental materials were studied: Sample  $\mathbb{N}_{2}1$  – based on resorcin-formalin mix material *Foredent* (SPO-FA, Slovenia), sample  $\mathbb{N}_{2}2$  – glass-ionomer cement Endion (VOCO, Germany), sample  $\mathbb{N}_{3}3$  – Zinc-oxide-eugenol material *Endomethazone* (Septodont, France), sample  $\mathbb{N}_{2}4$  – polymer cement AH Plus (Dentsply, USA), sample  $\mathbb{N}_{2}5$  – light-cured composite *Spectrum* (Dentsply, USA) (shade A3,5), sample  $\mathbb{N}_{2}6$  – self-cured composite *Compolux* (Septodont, France), sample  $\mathbb{N}_{2}7$  – glass ionomer cement *Cavitan* – *plus* (SPOFA, Slovenia); sample  $\mathbb{N}_{2}$ 8 – natural tooth material (enamel),  $\mathbb{N}_{2}9$  – natural tooth material (dentine),  $\mathbb{N}_{2}10$  – porous osseous tissue (cross section).

Samples N $\ge$ N $\ge$ 1-4 represent materials used for root canals sealing, thus received in study data were compared to the similar data for dentine (sample N $\ge$  9), which they contact with. Samples of materials N $\ge$ N $\ge$  5-7 use for tooth surfaces restorations so their properties were compared with dental enamel (sample N $\ge$  8), too.

During the experiment, the intensity of each material radiation was tested at a temperature of 37°C, the level of

which was recorded by approved measuring setting HV-2 with sensitivity of  $1 \cdot 10^{-14}$  W at a frequency of 52 GHz.

According to the conducted measurements, the radiation power of the considered number of dental materials was concentrated in the range of  $(1,8-3,1)\cdot10^{-13}$  W/cm<sup>2</sup>. Identification was carried out by comparing the greyness coefficient of materials, which is calculated according to the formula

$$\beta = I_T / I_{A^{4T}},\tag{2}$$

where  $I_T$  – measured power of the studied material;  $I_{AqT}$  – the intensity of blackbody radiation at the same temperature, calculated by the formula Rayleigh-Jeans.

$$I_{AYT} = \beta (f/c)^2 kT, \qquad (3)$$

where k – Boltzmann constant, T – temperature,  $\beta$  – physical body grayness ratio, f – radiation frequency, c – speed of light.

The results of the measurement and the calculation of the grayness coefficient of the material are presented in the on Figure 8.



**Figure 8.** The factor  $\beta$  of dental materials samples N $\mathbb{N}$  $\mathbb{N}$  $\mathbb{I}$ -10.

Identification of the grayness coefficient values gives deviation 38.0% of the materials paired N $\ge$ N $\ge$  4 and 9, and 7.6% in the pair N $\ge$ N $\ge$  1 and 9 used in root canals sealing, and from 0% in the materials paired N $\ge$ N $\ge$  5 and 8 to 10.8% in a pair N $\ge$ N $\ge$  6 and 8 – in the materials are used to filling the tooth surface.

Therefore, the preference should be given to matching materials. In addition, such verification is promising in the development of new dental materials.

Conducted studies allow to make some conclusions: (1) Alive organisms are characterized by large set of parameters of their own microwave EMR; its measurement and study contributes not only to deepen the knowledge of living objects, but also the development of new diagnostic and treatment methods.

(2) Radiometric methods and tools have great potential for solving of practical and research problems in biology and medicine - metrological provision of specialized equipment, diagnosis of the state of alive organism, the study of the own microwave EMR parameters and their relationship with the environment.

(3) Radiometry use in biomedical applications due to the need for fluctuation sensitivity to the level (10<sup>-15</sup>-10<sup>-17</sup>) Wt, which is a complicated technical task requiring its decision to create new options for highly sensitive radiometric equipment.

(4) The proposed technical solutions, while providing the required sensitivity, extend the functionality of radiometric equipment, in relation to the objects of wildlife and humans.

#### 2.5 Natural Sources of the mm-range Irradiation and Using Peculiarities in Physiotherapy

Using low- intensive signals of the mm-range is effective enough in many areas of practical medicine - orthopedics, neurology, endocrinology pulmonology and other branches and technologies of physiotherapy. At the same time, along with specialized medical equipment, the materials and objects of natural origin are widely used in different technologies of the physiotherapy. First of all, these materials include primarily mineral wax, mud, paraffin, salt and a wide range of minerals used in lithotherapy<sup>[12]</sup>.

The study of electromagnetic microwave fields and irradiations (EMR) of the minerals conducted by authors <sup>[5,13,14]</sup> confirmed the presence in the spectrum signal components of the millimeter range, which can be used as a therapeutic component when minerals are heated to therapeutically acceptable temperatures (40-50) <sup>o</sup>C. In the course of the studies were selected minerals with high emissivity which include jade, agate, onyx. When the human body temperature is 36 <sup>o</sup>C the radiation level of these minerals is greater than the level of human body emission that promotes positive flow of EMR. Also were found minerals that at this temperature have less radiation level, thus in this case negative flow of EMR forms.

For the first time negative flows of the mm-range waves were recorded and studied by group of authors <sup>[15]</sup>.

Considering these features authors <sup>[16]</sup> proposed a heat generator with reversible temperature control and appropriate formation of various streams EMR. Effective enough action of the negative flows confirm laboratory and clinical researches conducted at the R.E. Kavetsky Institute of Oncology (NAS of Ukraine) and Research Center of Quantum Medicine (Ministry of Health of Ukraine), as reflected in treatment technology, approved with patent <sup>[16]</sup>. In vitro studies show the inhibition (for 27.4%) of model "Sarcomas C-37" in laboratory animals when they were irradiated with negative flows. The positive flow accelerates (for 13,5%) tumor growth.

The effectiveness of natural materials using for Physiotherapy is explained mainly by heat and warming the respective areas of the patient's body. They don't take into account that during heating these materials emit a wide range of radio-frequency signals <sup>[5,13,14]</sup>. The therapeutic total effect will consist of thermal and microwave components, and therefore more in-depth study of the structure of natural materials signals for Physiotherapy is an urgent task.

# **2.5.1 Research EMR Natural Treatment Formula** for Physio Procedures

To study EMR properties of the natural mixed materials were chosen commonly used for the Physiotherapy materials - ozokerite (Borislav deposit, Lviv region.), mud (Mykulyntsi, Ternopil region.) crystalline salt (Artemivsk) and paraffin as a component of therapeutic compounds<sup>[14]</sup>.

Emissivity of the slice of wood (ash) and a fragment of bone were also examined for comparison records. Ozokerite has a high heat capacity and low thermal conductivity with the possible temperature to use in thermal applications 40-50<sup>o</sup> C. It includes paraffin, ceresin, as well as in the composition of the curative mud - biologically active substances. As a result of measuring in the frequency  $f = 45\Gamma T \mu$  the following values of the irradiation samples were obtained. They are presented in Table 3.

| Studied sample                              | The value of power ( <i>W</i> /s <sup>2</sup> ) | β    |
|---------------------------------------------|-------------------------------------------------|------|
| Ozokerite(pure)                             | 1,8.10-13                                       | 0,1  |
| Themud (pure)                               | 1,6.10-13                                       | 0,08 |
| Paraffin (pure)                             | 1,05.10-14                                      | 0,05 |
| Paraffin+ mud (used)                        | 0,5.10-13                                       | 0,02 |
| Wood                                        | 6.10-13                                         | 0,3  |
| Salt                                        | 2,2.10-13                                       | 0,11 |
| Manhand (t <sub>r</sub> =31 <sup>o</sup> C) | 4·10 <sup>-13</sup>                             | 0,21 |
| Bone                                        | 6,8.10-13                                       | 0,35 |

Table 3. EMR properties of the natural mixed materials

The process of measuring the values of irradiation power was conducted using certified radiometric system with sensitivity 10<sup>-14</sup> Wt, which makes it possible to confidently talk about the accuracy and reliability of the results.

Table 3 shows that the radiation level of the areas of

the palm of the person, even at a temperature  $(31^{\circ}C)$ , significantly lower than the temperature of the heated material  $(40^{\circ}C)$ , is greater in 2 times compared to pure wax and in 4 times in relation to the treatment mix mud and paraffin.

Analysis of the results shows that along with warming ozokerite and mud applications (creation of positive flows) a microwave component is formed which creates "negative flow" in relation to the patient's body that can reduce pain syndromes with excess temperature. Paraffin, which added to the ozokerite and mud in the preparation of therapeutic mixture to stabilize it, reduces the emissivity of the mixture in the microwave range, the value of which depends on the percentage of components. This ratio can adjust the "negative" flow, adding to the mixture a higher percentage of paraffin, and therefore the effectiveness of pain syndromes treatment increases. The same ability has salt and solutions based on it (salt applications, baths, etc.), in opposite to wood and bone that have a higher level of radiation than the human body and form towards it EMR positive flows.

The dynamics of change of the material proper EMR when it cooled from the maximum heating temperature used during the procedure ( $50^{\circ}$ C) to body temperature (controlled palm point) was also investigated. The graph showing the integrated power change is presented in Figure 9.



Figure 9. The graph of the integrated power changes

*Note:* 1 —human body; 2 —ozocerite mix; 3 —mud with added paraffine; 4 —paraffine; 5 —mud (pure); 6 —wood; 7 —bone.

The level of the human body emission for the temperature control points  $31^{\circ}$ C,  $40^{\circ}$ C and  $50^{\circ}$ C was calculated using the Nyquist formula

$$P = kT\Delta f , \qquad (4)$$

where  $\Delta f = 10^8$  Hz - analysis band of highly sensitive radiometric system.

For point  $31^{\circ}$ C the calculated value is  $4.18 \ 10^{-13} \text{ W/cm}^2$  which is different from the measured less than for 5 percent, which is suitable for microwave measurements and verifies

measurements certainty well. The human body radiation levels were calculated for temperature  $40^{\circ}$ C and  $50^{\circ}$ C similarly.

From the studies of the EMR of medical materials using for physio procedures the following conclusions may be done:

(1) Effective use of natural materials in the thermal physiotherapy should be associated not only with the presence of infrared components, but as studies have shown with the presence of microwave component, which has a significant impact on treatment outcome.

(2) Microwave EMR of the studied therapeutic materials has negative flow in relation to the human body, which creates the effect of "selection" of energy at local inflammatory processes.

(3) Using a material with low radiating ability (paraffin) mixed with the main component (ozokerite or mud) can not only stabilize the therapeutic mix, but also adjust the power of the negative flow.

(4) It should be noted also that human bones have higher levels of microwave radiation component, compared with soft tissue and are a kind of microwave generators that stimulate the cells of our body.

# 2.5.2 Research EMR minerals and Precious Stones

In folk medicine for the treatment of certain diseases different gems and minerals are using, too.

The research results presented in <sup>[5]</sup> confirm the difference of the electromagnetic activity of gems and minerals from other bodies creating in this way the possibility of their use for medical purposes. Measuring the level of EMR of the gems and minerals was performed at the frequency of 60 GHz and the temperature of 37°C, which corresponds to the upper boundary of the normal human body temperature.

Figure 10 shows the intensity distribution of various minerals.



Figure 10. Emittance distribution of minerals and other materials

The radiation level of minerals is given in columns di-

agram. Minerals were assigned to the following digital indexing: jade - 1, onyx - 2, agate - 3, coquina (shell rock)-4, big femoral bone - 5, amethyst - 6, amber - 7, jasper -8, pyrite - 9, small bones - 10, quartz (single crystal) - 11, chalk - 12, sulfur - 13, fluorite - 14, flint - 15, amazonite - 16, rhinestone - 17, calcite (feldspar) - 18, topaz - 19, morion (quartz) - 20. Under number 21 denotes the level of human palm radiation and column under number 22 characterizes the position of the electromagnetic properties of the water at a temperature of  $37^{\circ}C$ .

The listed minerals can be divided into two groups according to their microwave EMR levels - greater or less than proper human body EMR at the normal temperature (36-37°C). It reflected on the Figure10 with a dotted line. Minerals with a larger radiation are jade, onyx, agate, amethyst, amber, jasper. In the thermal contact with a human body these minerals generate a microwave signal, which is redundant to human skin, and it is completely absorbed. Thus, these minerals provide "recharging" the energy in the case of continuous wear them on the human body.

The second group of objects contains minerals such as sulfur, fluorite, silicon, amazonite, rock crystal, calcite, topaz, morion. When these minerals are heated to the body temperature the radiation level is below the person's own radiation and they provide the absorption of the human microwave energy in thermal contact with the human body. In some minerals, such as chalk and a single crystal of quartz, almost the same with the person's level of radiation was recorded, so they are balanced (neutral) in electromagnetic respect.

It should be noted also that the electromagnetic activity of "big" and "small" human bones is significantly higher than radiation intensity of the skin, as well as water as a main component of a living organism. A similar situation is with coquina (shell rock), which is mineral residue of biological objects - its EMR intensity is also higher than the body, especially the human palm. At the same time the structure of coquina and of the bone is different. If seashells are formed by deposition of calcium flat layers, some human bones have pipe shape. This provides the effect of some kind of resonance. The presence of calcium in the bones and coquina, despite structural difference, provides a high level of EMR. The positive effect of calcium on the radio- and thermal activity is also confirmed by the analysis of the chemical composition of minerals - jade and onyx, in which fixed the maximum intensity of the radiation and which contain a significant percentage of calcium.

Thus, living beings bones provide significantly greater level of radiation compared with surrounding soft tissues, obviously performing the function of thermal generators of the mm-range microwaves and play an important role in the external electromagnetic fields (EMF) influence on living organism.

Based on the results of experimental radiometric studies of physical bodies in mm-wave band it can be stated that in the simulated temperature gradients that actually occur in the natural environment, electromagnetic fields and radiation of mm-radiation are generated. The sources of these emissions are the various physical bodies and the environment (water, soil, stones). Similar EMFs are formed around human and living beings.

As can be seen from Figure10, nephritis has significantly higher levels of radiation (13.5 dB) than human skin (7 dB), and quartz (morion) EMR level is slightly below the water data. A possible cause of increased level of radiation in the past three objects is the presence calcium salts in the human bones, shell rock and nephritis (for example, in bones - calcium phosphate  $Ca_3(PO4)_2$ ). It is known that Ca atoms are responsive actively to thermal impacts. The mean square displacement of Ca atoms during thermal oscillations is equal to 0.114  $Å^{[17]}$ . By the reaction on thermal influence Ca takes place among such active elements as Li, Na, K, Rb and Cs, some of which (K, Na, Ca) are commonly used in biological objects during their life support. Obviously the raising of the radiation levels of the considered elements (bones, jade and shell rock) is associated with an increased rate of theirs grevness coefficient  $\beta$ . Human bones are the kind of generator and a waveguide of the microwave oscillations and provide irradiation and transmitting the electromagnetic waves inside a biological object, in contrast to the human skin, which absorbs low-intensity mm range signals.

Considered the listed above, the reaction of the human body on the external low intensity microwave radiation was studied.

Figure 11 is a diagram showing the distribution of relative absorbance abilityofthe biological object  $K_{\Pi}$  according to the irradiating signal  $I_C$  level and the level of the object own radiation  $I'_0$  at a resonant frequency

$$K_{\Pi} = 10 \lg \frac{I_C}{I_0}, \, \mathrm{dB}, \tag{5}$$

where  $I_0 = I'_0 + I''_0$ , and  $I'_0$  – the level of the object own radiation and  $I''_0$  – the level of the reflected signal.

Considering meaning  $I_o$  equation (4) can be written as

$$K_{\Pi} = 10 \lg \frac{I_C}{I'_0 + I''_0}, \, \mathrm{dB}.$$
 (6)

Increasing capacity of the irradiating generators within1 $\cdot$ 10<sup>-21</sup><  $I_C$  <1 $\cdot$ 10<sup>-19</sup> W/Hz at selected frequencies leads to full absorption of the acting signal (AB portion of Figure 11).



**Figure 11.** Distribution of the human palm absorbance ability in contact with the positive and negative EMR flows

At further increase in capacity  $I_C > 1 \cdot 10^{-20}$  W/Hz the reflected signal appears, which characterizes the saturation effect of the treated area (BC in Figure 11) of the skin. In this case, the reflection component  $I''_0$  increases, and the resulting bioobject radiation  $I_0$  is relatively increased with the coefficient  $K_{\Pi}$  decreasing (Figure 11).

Physical reduction of absorption, in our opinion, is connected to the saturation of the upper energy levels of biomolecules and the lack of free carriers that can absorb EMR photons. A further increase in the irradiation power (up to the appearance of thermal effects) favors a slight increase in absorption. Thus, living beings show the dosage ability to absorb mm-band EMR<sup>[5]</sup>.

Note that the slope of increase of the reflected power exceeds the rising slope of the irradiation power. As a result the saturation occurs with the characteristics curvature on the section BC (Figure 11). Based on the experimental data <sup>[5]</sup> and the distribution illustrated in Figure 11, it can be concluded that the dynamic range of the bio object absorptive capacity in levels that exceed its own level of radiation, is 15-20 dB. By the way, about the same level of microwave radiation has a wormwood cigarette, which is used in Chinese moxi bustion. Levels of capacity placed on the intensities axis at the right of the point A, create a positive flow of EMR comparing to own biological object radiation, and placed on the left - negative flow<sup>[5,15]</sup>.

In studies <sup>[6,7]</sup> the results of experiments on the effects of positive flows of EMR, which are used for the construction of the ABC distribution area (Figure 11) are listed. Experimental verification of the negative EMR flows impact was carried with power levels about 10-15 dB lower than the power level of self-radiation (AD site). A further power reduction of the negative flows source (generator), and experimental verification of distribution represent a significant technical challenge that requires further additional research.

At the same time, as shown by laboratory and clinical

studies<sup>[16]</sup> medical devices on the negative flows are very effective method for use in a variety diseases with the manifestation of "syndrome of excess", especially with pain syndromes - dystrophic lesions of the joints and spine: arthrosis, arthritis, osteochondrosis. Positive changes in patients with bronchial asthma and chronic obstructive bronchitis, in some number of cancer patients were noted also. From the above we can conclude:

(1) Using a RMS to assess the objects absorbance abilities allow significantly reduce the levels of irradiating signals that reliably analyzed and are  $1 \cdot 10^{-12} - 1 \cdot 10^{-14}$  W/Hz for monochromatic and  $1 \cdot 10^{-20} - 1 \cdot 10^{-22}$  W/Hz for noise signals.

(2) The absorbance and reflection abilities of living organisms has a pronounced non-linearity with respect to the level of exposure.

(3) Analysis of experimental data of the biological objects absorbance ability shows that the human body responds to the signal level, which differs in 2-5 times from its own radiation.

(4) Substantial (in 10-100 times) increase in intensity leads to reflection of the illuminating signal power which indicates the protective properties of living organisms.

#### 2.5.3 The Study of Electromagnetic Parameters of Textile and Leather for Clothes and Shoes Manufacturing

Measurement of weak EMF via RMS opens up the possibility of studying the interaction of human own field with textile and leather materials which are used for clothing and footwear manufacturing <sup>[5]</sup>.

Methodology of the experiment: the studied materials were heated in an oven at a temperature of  $36.0 \pm 0.5$ °C, which corresponds to the average human body temperature at the comfortable climatic conditions, and then their radiation was measured. Evaluation of the emissivity was carried out using the RMS at a frequency of 52 GHz. The results of experimental research textile materials are shown in Figure 12. ).



*Note:* 2 - nutriafur, 3 - foxfur, 4 - linen, 5 - sheepskin, 6 - cotton, 7 - glsin (35% polyester, 65% cotton), 8 - glzel (65% polyester, 35% cotton), 9 - 100% polyester; the column 1 - show the mean data of the human body irradiation.

Because of the intensity distribution (I $\omega$ ), it is clear that natural materials (fur, cotton, linen) are closest to the emissivity of the human body. Synthetic or mixed materials have significantly lower emissivity and, in fact, are the source of electromagnetic negative flow, leading to increased energy extraction from the human body surface. At the same time, natural fibers help maintain the body temperature, and are more compatible with the human microwave field; they weakened it less.

Separate studies were carried out to assess irradiative abilities of the leather. During experimental studies of leather samples checked: the proper microwave irradiation at 36°C and radio transparency by two figures - delay and bypass of the probing signal, which are difficult to define in the technological cycle of leather.

Heating the leather sample to the temperature of the human body, as seen from the formula (3), lead to the formation of extremely low signal with intensity within  $10^{-13}$  Watts. To register this signal RMS with a sensitivity of  $10^{-14}$  Watts was used. The measurement results are shown in Figure 13.



Figure 13. Distribution of own radiation of skin samples

*Note:* Name of the leather samples: 1- goby; 2 - as; 3 - shark; 4 - crocodile; 5 - goats glazed kid leather (black); 6 - sheep (brown); 7 - pig leather; 8 - pork leather; 9 - goats; 10 - sheep chevron; 11 - white sheepskin; 12 - half- sheepskin; 13 - black sheepskin; 14 - blue shark; 15- goats glazed kid leather (brown); 16 - sheepskin (gray); 17- bull; 18- "fish" dressed pork leather; 19 - bull; 20 - OPOEK elastic; 21- bullok; 22horse leather; 23- vymitka; 24 - Elastic grown-up; 25 - Elastic lot.

There are follow groups of leather samples for theirs proper irradiation: with low intensity at the level  $0.5 \cdot 10^{-13}$  W/cm<sup>2</sup> (samples 1 - 4); with intensity about  $1 \cdot 10^{-13}$  W/cm<sup>2</sup> (samples 5-16); samples with emissivity banding 1.5-2.5 W/cm<sup>2</sup> (17-23); and samples of leather with elastic dressing which have radiation intensity more than  $3 \cdot 10^{-13}$  W/cm<sup>2</sup> (samples 24, 25).

Considering the compatibility of the leather samples with the human body skin, which has the radiation level about  $3.5 \cdot 10^{-13}$  W/cm<sup>2</sup>, materials with higher level of irradiation have the benefits.

Measuring procedure of the radio transparency (Figure 14) was performed as follows. At the beginning signal from the approved reference oscillator of low intensity noise G ( $10^{-12} - 10^{-13}$  W/cm<sup>2</sup>) by transmitting  $X_1$  and  $X_2$  receiving antenna was directly measured by RMS. ).



Figure 14. Scheme to study radio transparency of leather samples

Then the leather sample was placed between antennas and power that passes through it was measured  $-P_{in}$ .

Power that delay or reflect by the leather sample determined with ratio

$$P_{abs} = P_{out} - P_{in}, \tag{7}$$

where  $P_{out}$  – power on the output of the transmitting antenna X1,  $P_{in}$  –power on the inlet of the receiving antenna X2.

For skin thickness in the range of 0.1 to 3 mm the absorption and radio transparency is almost at the same level, despite the low level of the probe signal  $(1 \cdot 10^{-13} \text{ W} / \text{ cm}^2)$ . Dispersion of the figures of absorption and radio transparency does not exceed 15%.

Thus, the study of microwave properties of leather samples for light industry showed the possibility to evaluate some of its parameters with radiometric control method. It's enough to assess its suitability for quality manufacturing a particular type of footwear and clothing for the population.

In addition, the devices of high sensitivity are necessary to measure the thickness and density of the leather, its moisture and the presence of hidden defects.

# **3.** Future Areas of Research Intensive Low Signals in Biology and Medicine

Creating radiometric systems with sensitivity of  $10^{-13}$  to  $10^{-17}$  Watts enhances the research of weak fields and radiation from alive and inanimate objects. The main directions of promising scientific research using highly sensitive radiometric systems are:

(1) study the dynamics of natural radiation the human body during his life;

(2) evaluation of correlations between the various parameters of the human body;

(3) study the electromagnetic properties of water and aqueous solutions as key components of the human body;

(4) measuring proper electromagnetic radiation of bio objects, materials and substances that come into contact or are close to human and can affect it.

Application problems that can be solved by using highly sensitive RMS include:

(1) measuring the level of radiation of bone and tooth tissue and it substitutes for the identification and assessment of electromagnetic compatibility with the human body;

(2) assessing the compatibility of textiles with the human body and their comfort considering electromagnetic properties;

(3) measuring the emissivity of precious minerals and stones so as products with them;

(4) assessing the possibility of the registration of impurities in dielectric materials for their emissivity;

(5) carry out the flaw of dielectric materials and establishing correlation between radiation and the presence of defects (cracks, irregularities included).

During radiometric studies a number of features associated with the body and properties of some materials were revealed:

(1) the proper radiation of the human body is within  $1 \cdot 10^{-21} - 1 \cdot 10^{-22}$  W/Hz cm<sup>2</sup>;

(2) thelevel of radiation an individual organism is constant, which is determined by the intensity of its cell metabolism and skin temperature. In fact, this level describes "electromagnetic homeostasis" of the living organism that is disturbed in diseases, stress conditions, which can be used as diagnostic sign;

(3) the correlation coefficient between the level of radiation and temperature of the body part is situated in the limits 0,85-0,87;

(4) registered experimentally sensitivity of the human body to external EMR ~  $1 \cdot 10^{-20}$  W/Hz. About this level of radiation has wormwood cigarette (moxa) used in Chinese medicine;

(5) the level radiation of the osseous tissue (bones, teeth) more than the radiation level of the soft tissues at the same temperature, and in fact, the bones are natural generators of microwaves, tanning surrounding cells of living tissues;

(6) testing the interaction of various bone and dental implants, garments items, jewelry and other materials and comparing it with the human body showed that the most consistent are the physical bodies with radiation close to the human body emission.

#### Acknowledgements

The author wishestothank:

prof., DPh Sitko S.P. – founder of the mm-therapy direction in Ukraine- for support of hard ware implementations of mm-range medical devices;

assoc. prof., PhD Peregudov S.M. – for the development of noise generators, participation in experimental and theoretical studies;

PhD Fedotova I.V. – for provide in the statistical data on treatment out comes of some diseases and participating the discussion;

assoc. prof., PhD Golovchanska O. D. – for providing dental materials, participation in experimental and theoretical studies and assistance in preparingthis material.

The author notes (posthumously) great contribution prof. Skrypnyk Y.O. and its active participation in the development of highly sensitive radiometric mm-range systems to measure low intensive microwave signals and devices for medical use.

#### References

- [1] Sit'ko S.P. eds., Skripnik Yu.A. and Yanenko A.F.. Apparaturnoe obespechenie sovremennykh tekhnologii kvantovoi meditsiny [Instrumental provision of modern technology of quantum medicine]. Kiev, FADA LTD Publ., 1999: 199.
- [2] Sit'ko S.P. and Mkrtchyan L.N.. Vvedenie v kvantovuyu meditsinu [Introduction to quantum medicine]. Kiev, Pattern Publ., 1994: 148.
- [3] Frohlich H. Bose condensation of strongly excited longitudinal electric modes / H. Frohlich // Physics Letters A. 1968, 26(9): 402-403.
- [4] YanenkoO.P., KutsenkoV.P., PeregudovS.M. Elektronna aparatura likuvalno-dIagnostichnih tehnologiy: navchalniy posIbnik – Donetsk :IPShI Naukaiosvita, 2011: 212.
- [5] SkripnikYu.A., YanenkoA.F., ManoilovV.F., KutsenkoV.P. and GimpilevichYu.B.) [Microwave radiometry of physical and biological objects]. Zhitomir, Volyn' Publ, 2003: 408s.
- [6] Sbornyk metodycheskykh rekomendatsyy y normatyvnykh aktov mykrovolnovo yrezonansnoy terapyy / Bynyashevskyy Э.V., Hrubnyk B.P., Derendyaev S.A. y dr. – K.: Oberyh, 1997: 127.
- [7] Yanenko O.P. Peregudov S.M., Fedotova I.V.,

GolovchanskaO.D. Eguipmen and technologies of low intensity millimeter therapy Visnyk NTUU "KPI" Seriya: Radiotekhnika. Radioaparatobuduvannya, 2014, 59: 103-110

- [8] Yanenko O..P. Microwave radiometryin medico-biologica lapplications Visnyk Ternopil's'koho natsional'noho tekhnichnoho universyteta, 2014, №4 (76): 155-163
- [9] Yanenko O.P. Microwave Radiometry in Biology and Medicine: Structural Solutions opportunies and Prospect, 7 European Congress for Integrative Medicine, Belgrade, Serbia, 2014.
- [10] Yanenko O.P., Peregudov S.M., Golovchanska O.D. Sposib vymiryuvannya elektromahnitnykh syhnaliv ta identyfikatsiyi stomatolohichnykh materialiv. PatentUA №.49357 Opublik.11.08.2008 Byul. №15.
- [11] A.Janenko, S.Peregudov, A.Politun, O.Golovchanska. Evaluation of irradiative abilities of dental materials. Materials of the 9th World Endodontic Congress. Tokio, Japan. 2013, 23.05-26.05.
- [12] Nikolova L.. Spetsial' nayafizioterapiya [Special physiotherapy]. Sofiya :Meditsina I fizkul' tura Publ. 1983: 433.
- [13] Yanenko, A. F., Movchanyuk, A. V. and Vinokurov, V. S.. Research of a radiate ability of minerals is for the construction of microwave generators of the medical setting. Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv., 2011, №.47: 158-164. (in Ukrainian)
- [14] Yanenko O.P., Yavors'kyy B. I., Tkachuk R.A., Rusynchuk V. P. . Osoblyvosti mikrokhvyl'ovykh nyz'kointensyvnykh vyprominyuvan materialiv dlya fizioterapevtychnykh protsedur. Visnyk NTUU "KPI" Seriya: Radiotekhnika. Radioaparatobuduvannya. -№ 60 - K.: 2014: 114-121.
- [15] Ponezha G.V., Sit'ko S.P., Skripnik Yu.A. and Yanenko A.F.. Polozhitel'nye I otritsatel'nye potoki mikrovolnovogo izlucheniya ot fizicheskikh I biologicheskikh obektov [Positive and negative flows of the microwave radiation from physical and biological objects]. Physics of Alive, 1998, 6(1): 11-14.
- [16] BundiukL.S., KuzmenkoO.P., PonezhaH.V., SitkoS. P., SkrypnykIu.O., YanenkoO.P. Sposib mikrokhvylovoi terapii [Method of microwave therapy]. PatentUA № 59399 MKI A61N5/02 .Byul. № 9, 2003.
- [17] Fiziko-khimicheskie svoyistva elementov //Spravochnik pod redaktsiyey SamsonovaH,B. – K.: Izd. Naukova dumka- 1965: 809 s.

# **Author Guidelines**

This document provides some guidelines to authors for submission in order to work towards a seamless submission process. While complete adherence to the following guidelines is not enforced, authors should note that following through with the guidelines will be helpful in expediting the copyediting and proofreading processes, and allow for improved readability during the review process.

#### I. Format

- Program: Microsoft Word (preferred)
- Font: Times New Roman
- Size: 12
- Style: Normal
- Paragraph: Justified
- Required Documents

#### **II** . Cover Letter

All articles should include a cover letter as a separate document.

The cover letter should include:

• Names and affiliation of author(s)

The corresponding author should be identified.

Eg. Department, University, Province/City/State, Postal Code, Country

• A brief description of the novelty and importance of the findings detailed in the paper

#### Declaration

v Conflict of Interest

Examples of conflicts of interest include (but are not limited to):

- Research grants
- Honoria
- Employment or consultation
- Project sponsors
- Author's position on advisory boards or board of directors/management relationships
- Multiple affiliation
- Other financial relationships/support
- Informed Consent

This section confirms that written consent was obtained from all participants prior to the study.

• Ethical Approval

Eg. The paper received the ethical approval of XXX Ethics Committee.

- Trial Registration
- Eg. Name of Trial Registry: Trial Registration Number

#### • Contributorship

The role(s) that each author undertook should be reflected in this section. This section affirms that each credited author has had a significant contribution to the article.

1. Main Manuscript

2. Reference List

3. Supplementary Data/Information

Supplementary figures, small tables, text etc.

As supplementary data/information is not copyedited/proofread, kindly ensure that the section is free from errors, and is presented clearly.

#### **Ⅲ**. Abstract

A general introduction to the research topic of the paper should be provided, along with a brief summary of its main results and implications. Kindly ensure the abstract is self-contained and remains readable to a wider audience. The abstract should also be kept to a maximum of 200 words.

Authors should also include 5-8 keywords after the abstract, separated by a semi-colon, avoiding the words already used in the title of the article.

Abstract and keywords should be reflected as font size 14.

#### **W.** Title

The title should not exceed 50 words. Authors are encouraged to keep their titles succinct and relevant.

Titles should be reflected as font size 26, and in bold type.

#### **IV. Section Headings**

Section headings, sub-headings, and sub-subheadings should be differentiated by font size.

Section Headings: Font size 22, bold type Sub-Headings: Font size 16, bold type Sub-Subheadings: Font size 14, bold type Main Manuscript Outline

#### V. Introduction

The introduction should highlight the significance of the research conducted, in particular, in relation to current state of research in the field. A clear research objective should be conveyed within a single sentence.

#### **VI.** Methodology/Methods

In this section, the methods used to obtain the results in the paper should be clearly elucidated. This allows readers to be able to replicate the study in the future. Authors should ensure that any references made to other research or experiments should be clearly cited.

#### **W**. Results

In this section, the results of experiments conducted should be detailed. The results should not be discussed at length in

this section. Alternatively, Results and Discussion can also be combined to a single section.

#### **W**. Discussion

In this section, the results of the experiments conducted can be discussed in detail. Authors should discuss the direct and indirect implications of their findings, and also discuss if the results obtain reflect the current state of research in the field. Applications for the research should be discussed in this section. Suggestions for future research can also be discussed in this section.

#### IX. Conclusion

This section offers closure for the paper. An effective conclusion will need to sum up the principal findings of the papers, and its implications for further research.

#### X. References

References should be included as a separate page from the main manuscript. For parts of the manuscript that have referenced a particular source, a superscript (ie. [x]) should be included next to the referenced text.

[x] refers to the allocated number of the source under the Reference List (eg. [1], [2], [3])

In the References section, the corresponding source should be referenced as:

[x] Author(s). Article Title [Publication Type]. Journal Name, Vol. No., Issue No.: Page numbers. (DOI number)

#### XI. Glossary of Publication Type

J = Journal/Magazine

- M = Monograph/Book
- C = (Article) Collection
- D = Dissertation/Thesis
- P = Patent
- S = Standards
- N = Newspapers
- R = Reports

Kindly note that the order of appearance of the referenced source should follow its order of appearance in the main manuscript.

Graphs, Figures, Tables, and Equations

Graphs, figures and tables should be labelled closely below it and aligned to the center. Each data presentation type should be labelled as Graph, Figure, or Table, and its sequence should be in running order, separate from each other. Equations should be aligned to the left, and numbered with in running order with its number in parenthesis (aligned right).

#### XII. Others

Conflicts of interest, acknowledgements, and publication ethics should also be declared in the final version of the manuscript. Instructions have been provided as its counterpart under Cover Letter.



# Journal of Human Physiology

### Aims and Scope

*Journal of Human Physiology* publishes original research papers that offers professional review and publication to freely disseminate research findings in areas of Synthetic Biology, Cellular Diagnostics, Regenerative Medicine, Tissue Engineering and more.

Journal of Human Physiology aims to discover innovative methods, theories and studies in its field by publishing original articles, case studies and comprehensive reviews.

The scope of the papers in this journal includes, but is not limited to:

- Regenerative Medicine
- Cellular Diagnostics
- Endocrine, Nutrition and Metabolism
- Computational Physiology and Modeling
- Respiratory
- Reproduction and Developmental
- Neuroscience
- Imaging
- Tissue Engineering
- Disease Mechanisms
- Synthetic Biology

#### **Bilingual Publishing Co. (BPC)**

Tel:+65 65881289

E-mail:contact@bilpublishing.com

Website:www.bilpublishing.com

#### **About the Publisher**

Bilingual Publishing Co. (BPC) is an international publisher of online, open access and scholarly peer-reviewed journals covering a wide range of academic disciplines including science, technology, medicine, engineering, education and social science. Reflecting the latest research from a broad sweep of subjects, our content is accessible world-wide—both in print and online.

BPC aims to provide an analytics as well as platform for information exchange and discussion that help organizations and professionals in advancing society for the betterment of mankind. BPC hopes to be indexed by well-known databases in order to expand its reach to the science community, and eventually grow to be a reputable publisher recognized by scholars and researchers around the world.

BPC adopts the Open Journal Systems, see on ojs.bilpublishing.com



#### Google Scholar

MyScienceWork

## **Database Inclusion**

Crossref



Tel:+65 65881289 E-mail:contact@bilpublishing.com Website:www.bilpublishing.com