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The article consists of two parts. Part I shows the possibility of quantum 
/ soft computing optimizers of knowledge bases (QSCOptKB™) as the 
toolkit of quantum deep machine learning technology implementation in 
the solution’s search of intelligent cognitive control tasks applied the cog-
nitive helmet as neurointerface. In particular case, the aim of this part is 
to demonstrate the possibility of classifying the mental states of a human 
being operator in on line with knowledge extraction from electroenceph-
alograms based on SCOptKB™ and QCOptKB™ sophisticated toolkit. 
Application of soft computing technologies to identify objective indicators 
of the psychophysiological state of an examined person described. The role 
and necessity of applying intelligent information technologies development 
based on computational intelligence toolkits in the task of objective esti-
mation of a general psychophysical state of a human being operator shown. 
Developed information technology examined with special (difficult in diag-
nostic practice) examples emotion state estimation of autism children (ASD) 
and dementia and background of the knowledge bases design for intelligent 
robot of service use is it. Application of cognitive intelligent control in nav-
igation of autonomous robot for avoidance of obstacles demonstrated.
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1. Introduction

The state-of-the-art sensing and processing tools, 
health-monitoring technologies attract significant 
attention in research and industry in the last three 

decades [1, 2]. The inclusion of human being operator in 
the feedback loop of intelligent control systems (ICS) for 
decision-making in complex situations creates both an in-
formation resource that can improve the efficiency of the 
development and application of ICS. Unfortunately, it is 
often associated with an increasing in the information risk 
of hazard situations due to the presence of an unpredict-
able human health-monitoring and emotion state factors [2]. 

Thus, it is necessary to have quantitative and qualita-
tive indicators that would not depend on the individual 
characteristics of the human being emotion operator and 
at the same time guaranteed objectivity of the obtained 
indicators. In that case, the developed ICS will be able to 
perceive, adapt and make decisions in difficult situations [3] 
due to the inclusion in the structure of these indicators as 
criteria for the quality of intelligent control. 

1.1 Tasks of hybrid cognitive and intelligent con-
trol

A number of studies [4-7] showed the possibility of devel-
opment a simplified mathematical model of emotions. But 
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due to physical limitations, the trade-off of informational 
boundaries on the applicability of the developed model 
also have a significant influence on the correctness of de-
scription and reliability of the extracted knowledge from 
the imperfect mathematical model. In ICS theory, one of 
the effective approaches to the risk decreasing of deci-
sion-making is the development of robust ICS structures 
with corresponding knowledge bases (KBs). 

The problems of physical limitations and information 
boundaries solved by the possibility of forming KB with 
the required level of robustness in the design process of 
ICS by extracting knowledge and valuable information 
from the dynamic behavior of the model of the physical 
control object [8].

Figure 1 demonstrates general structure of hybrid cog-
nitive intelligent control system. The structure based on 
fuzzy and cognitive controllers, includes quantum fuzzy 
inference with quantum genetic algorithm in Box “Quan-
tum computing KB optimizer” and are the background of 
quantum cognitive self-organized controller (see, in de-
tails Part II). 

The main problem of cognitive intelligent control 
system (presented in Fig. 1) is to design optimal robust 
control with minimal loss of value work and minimum of 
required initial information on external environments. 

Figure 1. Structure of hybrid intelligent cognitive control 
system based on quantum soft computing.

Let us consider briefly the solution of this problem us-
ing information-thermodynamic approach. 

1.2 Synergetic effect of information-thermody-
namic trade-off interrelations between stability, 
controllability and robustness of robotic motion 
intelligent control 

Consider the distribution equation of the trade-off control 
qualities of a dynamic system q4 i=φ(q,t,S(t),u) as control 
object in the form:
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dV
dt

= ⋅ + − ⋅ − ≤∑ i

n

=1
q q t S t u S S S Si p c p cϕ ( , , , 0( ) ) ( ) (   )  (1)

where pS  is an entropy production of control ob-
ject (plant), cS  is an entropy production of controller, 

p cS S S= −  is a generalized entropy production of dy-
namic control system.

Eq. (1) in analytical form relates such qualitative con-
cepts of control theory as stability, controllability and 
robustness based on the concept of phenomenological 
thermodynamics entropy. An approach like this allows to 
design the necessary distribution between levels of stability, 
controllability and robustness, which allows achieving the 
control goal in emergencies with a minimum consumption 
of useful resource due to the application of the minimum 
generalized entropy production included in the right-hand 
side as a fitness function in the genetic algorithm. 

Now let us look at Eq. (1), taking into account the con-
nection between thermodynamic entropy and Shannon's 
information entropy. The definitions of thermodynamic 
entropy S and information entropy H related by the von 
Neumann relation in the form:

S kH k p p= =− ln  ∑ i i i  (2)

where k J K≈ ⋅1.38 10 /−23  and is the Boltzmann con-
stant.

In Eq. (1) replace S(t) with the Shannon’s entropy:

dV
dt

= ⋅ − + − ⋅ − ≤∑
i=

n

1
q q t H H u k H H H Hi p c p c p cϕ ( , , , 0( ) ) ( ) (   )

 (3)

Thus, Eq. (3) also relates stability, controllability and 
robustness, but already based on Shannon's information 
entropy, which also allows one to determine control for 
guaranteed achievement of the control goal in emergencies 
with a minimum required amount of information about the 
external environment and the state of the control object.

A generalization of Eqs (1) and (3) is the following 
system of equations:

dV
dt

= ⋅ − + + − +∑
i=

n

1
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where (S SInt Cog+ )  and (H HInt Cog+ )  means total 
thermodynamic and information entropies of intelligent 
and cognitive controllers, respectively.

It follows from Eq. (4) that the robustness of an intelligent 
control system can increased by producing the minimum en-
tropy (value information) of the cognitive controller, which 
reduces the loss of useful life (safety increasing), and Eq. (5) 
shows that the negentropy of the cognitive controller reduc-
es the minimum requirements for the initial information to 
achieve robustness. Moreover, information action based on 
knowledge (in the knowledge base of the cognitive regula-
tor) allows get an additional resource for useful work, which 
is equivalent to the appearance of a targeted action on the 
control object to ensure the guaranteed achievement of the 
control goal in uncertainty and information risk conditions.

Due to the synergetic effect, an additional information 
resource created, and the multi-agent system is able to solve 
complex dynamic tasks for performing mutual work. The 
given task may not be fulfilled by each element (agent) of the 
system separately in various environments without external 
management, control or coordination, however, exchange of 
knowledge and information allows perform useful mutual 
work to achieve the management goal under the conditions of 
uncertainty of the initial information and limited consumption 
of useful resources. In particular, it is known that for closed-
loop control systems, the maximal amount of useful work W 
that extracted with information amount satisfies the inequality:

W t k T I dt kTImax min c( ) = ≤∫0
t



'  (6)

where k  is the Boltzmann constant, ( )minT t  is inter-
preted as the lowest achievable temperature by the system 
in time  t  for feedback control, assuming ( )min 0T T=  
and cI  determines the amount of Shannon information 
(entropy transfer), extracted by the system from the mea-
surement process [9, 10].

Figure 2 demonstrates logical interrelations of infor-
mation role in process of work extraction and trade-off of 
control qualities. 

Figure 2. Interrelations between extracted work and infor-
mation, and trade-off of control qualities.

Physically, the synergetic effect means self-organiza-
tion of knowledge and creation of additional information 
that allows the multi-agent system to perform the most 
useful work with a minimum loss of useful resource and 
with a minimum of the required initial information, with-
out destroying the lower executive level of the control 
system [9]. Together with the information-thermodynamic 
law of intelligent control (optimal distribution of the man-
agement qualities "stability - controllability - robustness"), 
an ICS is designed with multi-agent systems, ensuring the 
achievement of the management goal under the conditions 
of uncertain initial information and limited useful resource 
[9-13].

1.3 Extracted work and information

If microscopic degrees of freedom are accessible to the 
observer in the form of the Maxwell demon, then the 
second law of thermodynamics may violate (see Fig. 2). 
Szilard showed from an analysis of the Maxwell demon 
model that work is extracted from the thermodynamic 
cycle in the form as the amount, kTln2. Moreover, in [12, 

13] it is shown that the recoverable work W S
ext from the 

system determined by the amount of information I (or 
quantum-classical mutual information) that measures the 
knowledge of the system when measuring. At the same 
time, such a ratio in the form of a lower boundary exists 
for the total cost of measuring and erasing information 
W F kTIext

S S≤ −∆ +  and W kTIext
M ≥ , where ∆F S  is deter-

mines the free energy of the system. Then it is easy to no-
tice that the speed of the extracted work Wext  is limited by 
the value W kTI 

ext ≤ , i.e., it is limited by the speed of the 
extracted information [13].

Let us consider a network of loosely coupled groups 
of robots working together to solve tasks that go beyond 
individual capabilities. Different nodes of such a system 
have a different intelligent level (knowledge, algorithms, 
and computational bases) and various information re-
sources in designing. Each node should be able to mod-
ify its behavior depending on the circumstances, as well 
as to plan its communication and cooperation strategies 
with other nodes. Here the indicators of the level of 
cooperation are the nature of the distribution of tasks, 
the unification of various information resources and, of 
course, the possibility of solving a common problem in a 
given time.

1.4 Quantum algorithm of knowledge self-organi-
zation

A quantum algorithm (QA) model of ICS self-organiza-
tion, proposed in [9], is based on the principles of mini-
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mum information entropy (in the “intelligent” state of 
control signals) and a generalized thermodynamic mea-
sure of entropy production (in the system “control object 
+ controller”). The main result of the application of the 
self-organization process is the acquisition of the neces-
sary level of robustness and the flexibility (adaptability) 
of the reproducible structure. It is noted that the property 
of robustness (by its physical nature) acts as an integral 
part of self-organization, and the required level of robust-
ness of ICS is achieved by fulfilling the principle of mini-
mum production of generalized entropy, which was noted 
above.

The principle of minimum entropy production in 
control object and control system [14] serves as the phys-
ical principle of optimal functioning with a minimum 
consumption of useful work and underlies the devel-
opment of robust ICS. This statement based on the fact 
that for the general case of controlling dynamic objects, 
the optimal solution is to the finite variation problem 
of determining the maximum of the useful work W is 
equivalent, according to [15], to the solution of the finite 
variation problem of finding the minimum of the entropy 
production S. Therefore, the developed QA model used 
principle of minimum informational entropy guarantees 
the necessary condition for self-organization — the min-
imum of the required initial information in the teaching 
signals; the thermodynamic criterion of the minimum of 
a new measure of generalized entropy production pro-
vides a sufficient condition for self-organization - the 
robustness of control processes with a minimum con-
sumption of useful resource.

More significant is the fact that the average amount 

of work done by dissipation force 
W
kT

diss = S P PKL F B( || )

, i.e., the work of dissipation forces is determined by the 
Kullback-Leibler divergence for probability distributions 
PF ,PB. Note that the left side of this relation represents 
physically thermal energy, and the right side defines 
purely information about the system. A similar relation-
ship exists between the work produced by the forces of 
dissipation and the difference between generalized Renyi 
divergences [16].

Figure 3 illustrates the QA structure of self-organi-
zation (QASO) in design process of robust intelligent 
PID-controller with application of quantum fuzzy in-
ference with quantum genetic algorithm for choice the 
optimal quantum correlation type between PID-controller 
coefficient gains in temporal schedule. 

Figure 3. Quantum algorithm of self–organization based 
on quantum fuzzy inference and quantum genetic algo-

rithm

Thus, substituting the relations between the information 
and the extracted free energy and work in (4) and (5), we 
obtain the conclusion that the robustness of the intelligent 
control system can increased by producing the entropy of 
the cognitive controller. The optimal cognitive controller 
reduces the loss of useful resource of the control object, 
and negentropy of the cognitive regulator reduces the 
requirements for minimum initial information to achieve 
robustness. Therefore, the extracted information, based 
on knowledge (in the knowledge base of the cognitive 
controller), allows to get an additional resource for useful 
work, which is equivalent to the appearance of a targeted 
action on the control object to guarantee the achievement 
of the control goal in unpredicted situations.

Let us consider briefly Brain Emotional Learning 
Based Intelligent Controller (BELBIC) structure [17] as the 
consequence of the intelligent cognitive control system in 
Fig. 3. 

Example. In a biological system, emotional responses 
of human being operator are utilized for fast decision‐
making in complex environments or emergencies. It is 
thought that the amygdala and the orbitofrontal cortex are 
the most important parts of the brain involved in emo-
tional responses and learning. The amygdala is a small 
structure in the medial temporal lobe of the brain that is 
thought to be responsible for the emotional evaluation 
of stimuli (see, Appendices 1 and 2). This evaluation 
is in turn used as a quantum basis for emotional states 
and responses and is used for attention signals and lay-
ing down long‐term memories. The amygdala and the 
orbitofrontal cortex compute their outputs based on the 
emotional signal (the reinforcing signal) received from the 
environment. The final output (the emotional responses) 
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calculated by subtracting the amygdala’s output from the 
orbitofrontal cortex’s (OFC) output (see Fig. 4).

Figure 4. Graphical depiction of the developed computa-
tional model of brain

It should observe that it essentially converts two sets of 
inputs (sensory inputs and emotional cues or reinforcing 
signals) into the decision signal (the emotional responses) 
as its output. Closed loop configurations using this block 
(BELBIC) in the feed‐forward‐loop of the total system 
in an appropriate manner have implemented so that the 
input signals have the proper interpretations. The block 
implicitly implemented the critic, the learning algorithm 
and the action selection mechanism used in the functional 
implementations of emotionally based (or, generally, re-
inforcement learning‐based) controllers, all at the same 
time.

The policies design for PID‐based controller and the 
BELBIC controller are the same due to the equal number 
of states, which needed for the feedback. The structure of 
the control circuit using the direct‐adaptive control strat-
egy illustrated in Fig. 5. 

Figure 5. System configuration using brain emotional 
controller

The PID controller contains a constant steady‐state 

position error, yet in the BELBIC the steady‐state posi-
tion error eventually decreases. Unlike the PID controller, 
learning the dynamics through online implementation 
causes the BELBIC to track the reference signal inaccu-
rately at the beginning of the experiment (shown in [17]). 
Despite the fact that the initial weights are all set to zero, 
the BELBIC rapidly learns the dynamics of the plant with-
out any offline training. During transient states, a slight 
overshoot observed in the control signal of the BELBIC 
since the servo‐valve draws more current; however, in 
the PID‐based controller no such change realized. As 
the BELBIC passes on to a steady state, the control signal 
becomes uniform and smooth, which is an important ad-
vantage in practical use, especially in high power systems 
such as EHS systems. The energy consumption of the 
BELBIC is about the same as the PID controller, whilst 
the BELBIC has less tracking error. The BELBIC tracks 
the reference signal with very low error in comparison 
with the PID controller. The BELBIC displays good ro-
bustness to a change in the dynamics of the system, an ac-
ceptable overshoot and a good tracking ability (compared 
to the PID [18]). A main advantage in the performance of 
the controlled EHS system is in the high degree of the 
adaptability of the control system and the robustness of 
the performance with respect to the initial error in relation 
to modeling and identification (even with a total lack of 
knowledge about the system model) [17, 18].

1.5 Problems in intelligent control systems design

Modern control objects are complex dynamic systems 
that characterized by information uncertainty of model 
structures and control goals, a high degree of freedom and 
essential nonlinearities, instability, distributed sensors and 
actuators, high level of noise, abrupt jump changes in struc-
ture and dynamics, and so on. It is the typical information 
resources of unpredicted control situations. The structure 
design of robust advanced control systems for unpredicted 
control situations is the corner stone of modern control 
theory and systems. The degree to which a control system 
deals successfully with above difficulties depends on the 
intelligent level of advanced control system.

In Step I of developed design technology, we focus 
the main attention on the description of particular results 
of KB design and simulating intelligent control systems 
with essentially nonlinear CO with a randomly time-de-
pendent structure and control goals. In this case, the aim 
of this step is to determine the robustness levels of control 
processes that ensure the required reliability and accuracy 
indices under the conditions of uncertainty of the informa-
tion employed in decision-making (learning situations).

For Step 2, the description of the strategy of robust 
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structure’s design of an intelligent control system based 
on the technologies of quantum and soft computing giv-
en. The developed strategy allows one to improve the 
robustness level of fuzzy controllers under the specified 
unpredicted or weakly formalized factors for the sake of 
forming and using new types of self-organization process-
es in the robust KB with the help of the quantum comput-
ing methodology. A particular solution of a given problem 
obtained by introducing a generalization of decision-mak-
ing strategies in models of fuzzy inference in the form of 
a new quantum fuzzy inference (QFI) on a finite set of 
fuzzy controllers designed in advance [19].

The basis for the development of control systems is the 
proportional-integral-differentiating controller, which used 
in 70% of industrial automation, but often does not cope 
with the control task and works very poorly in unforeseen 
situations. Fuzzy controllers allow to partially expand 
the scope of PID controllers by adding production logic 
rules and partially adapt the system. The combined use 
of genetic algorithms (GA) and a fuzzy neural network 
made it possible fully adapt the system, but it takes time 
to train such a system, which is critical in emergency and 
unforeseen situations. Modeling the optimal training sig-
nal makes it possible to create partial self-organization in 
the system due to the formation of optimal trajectories of 
the gain of the PID controller. The application of quantum 
computing and, as a particular example, quantum fuzzy 
inference (QFI) allows increasing robustness without 
spending a temporary resource in online.

Figure 6. Intelligent control system including quantum 
fuzzy inference

The Fig. 6 shows the ICS structure with the combina-
tion of several fuzzy regulators and the quantum fuzzy 
controller. The main problem in the development and 
design of this structure that it is very difficult to design 
a globally good and robust control structure for all pos-
sible cases, especially when the system works in poorly 
predictable situations. One of the best solutions is the for-
mation of a finite number of knowledge bases of a fuzzy 

controller for a variety of fixed control situations. The 
goal of a quantum regulator is to combine the knowledge 
bases obtained with the help of the soft computing opti-
mizer knowledge base into self-organizing quantum fuzzy 
regulators. The QFI model uses private individual knowl-
edge bases of the fuzzy controller, each of which designed 
using SCOptKB™ and QCOptKB™ toolkits.

Box “Kansei / Kawaii / Affective engineering” (Fig. 1) 
forming the knowledge about fillings of human being op-
erator and concentrate the attention on control goal. KBs 
of fuzzy controllers and cognitive controllers designed 
with SCOptKBTM toolkit using objective information 
of control object response from measurement system in 
feedback loop and affective response and will of human 
being operator described with new type of computational 
intelligence technology. The main performance of Part I to 
show the description of emotion estimation in Box “Kansei 
/ Kawaii / Affective engineering” and the introduction of 
physical interpretation of quantum interference in cogni-
tion as quantum models of patterns.

Example. In order to clarify the difference in the defini-
tion of emotions / feelings used in [20], Figure 7 illustrates 
concrete examples. In the Figure 7, there is stimulus A 
and a bodily state that evoke the “Fight” action, whereas a 
stimulus B and a bodily state activate the “Flight” action. 
In this case, the emotional state that stimulus A and the 
bodily sate cause is labeled as “anger,” and the emotional 
state caused by the stimulus B and the bodily sate is la-
beled as “Fear.” This definition directly connects emotions 
to the somatic marker hypothesis, which means that the 
emotion should generated by considering internal apprais-
al, external appraisal, and decision-making mechanisms.

Figure 7. Illustration of “anger” and “fear”, which high-
lights the difference: (a) emotional feeling of anger, and (b) 

emotional feeling of fear

However, the ICS structures do not have a specialized 
software module to describe and implement the processes 
of adaptation and learning of the control system to the 
qualitative characteristics of human being operator be-
havioral responses. Proven in a wide class of areas of soft 
computing (genetic algorithms, fuzzy logic and fuzzy neu-
ral networks) and computational technology in the form 
of intelligent tools (Computational Intelligence Toolkit), 
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allows to design an intelligent cognitive control system 
that has the required qualities.

The cognitive processes of non-verbal communication 
in the human brain (see Fig. 8) modeling on such a level: 
they explain the correlation between what the human per-
ceives from the clinician's communication, and what the 
human in turn communicates. The underlying condition of 
an observed human can then infer from the recorded inter-
action with the clinician.

Figure 8 describes general structure of intelligent cog-
nitive robotic control with “brain-computer-robot-device” 
neurointerface and affect decoding controller based on 
Kansei / Affective Engineering and its cognitive comput-
ing technology.

Kansei / Affective Engineering technology and its cog-
nitive computing toolkit include qualitative description of 
human being emotion, instinct and intuition that used ef-
fectively in design processes of smart / wise robotics and 
intelligent mechatronics as example robot for service use 
[11, 21] and robotic unicycle (see, for example below). 

Figure 8. General structure of intelligent cognitive hu-
man-robotic interaction control

Remark. According to general definition Kansei Engi-
neering (Japanese: 感性工学 kansei kougaku, emotional / 
affective engineering) aims at the development or improve-
ment of products and services by translating the customer's 
psychological feelings and needs into the domain of prod-
uct design (i.e. parameters). Mitsuo Nagamachi, Ph.D, Pro-
fessor Emeritus of Hiroshima University founded it. Kansei 
Engineering parametrically links the customer's emotional 
responses (i.e. physical and psychological) to the properties 
and characteristics of a product or service. In consequence, 
products can design to bring forward the intended feeling. 
The main part the mammalian brain is responsible for emo-
tional processes and called the limbic system. The compu-
tational models of the amygdala and orbitofrontal cortex 
are the main parts of the limbic system recently introduced 

for the first time. Therefore, Kansei result is a synthesis of 
sensory brain cognitive qualities. For example, it has ar-
gued that emotion, pain and cognitive control functionally 
segregated in distinct subdivisions of the cingulate cortex 
of brain (see, Appendix 1).

The processes depicted in Fig. 8 represent incredibly 
complex, non-smooth, and non-linear mappings and rep-
resentations, which indicates that it will be suitable to use 
a deep neural network [4] approach. In this paper we con-
centrate our attention on description on the box “Objective 
estimation of emotion state” of Fig. 8 for design of knowl-
edge base of robot for service use [11, 21]. Robots for service 
use can practically implemented into current education 
and therapy interventions for children ASD. 

1.6 Social human-robot emotion interaction and 
application. 

The Center for Disease Control (CDC), has recently 
announced that the incidence of autism is 1 in every 59 
children. There has been a growth rate of 250% during the 
last 15 years. Autism is now emerging as a public health 
priority. ASD occurs in all racial, ethnic, and socio-eco-
nomic groups. However, the incidence is five times more 
common among boys than among girls [22, 23]. In particular, 
according to the Centers for Disease Control and Pre-
vention, one in every 68 children (1:42 boys, 1:189 girls) 
ASD [24]. Individuals with ASD exhibit impairments in 
three key areas: (a) communication, (b) social interaction, 
and (c) restricted interests and repetitive behaviors. The 
American Psychiatric Association recently redefined qual-
ifiers for ASD, citing levels of severity, the impact deficits 
key areas have on the quality of life and the amount of 
support needed, beginning with Level I (less support, 
formerly included diagnosis of Asperger Syndrome, Per-
vasive Developmental Delay-Not Otherwise Specified), 
Level II (moderate support), and Level III (most support). 

The schema at the Fig. 9 shows how the child-robot 
interaction loop and the software modules are used by 
the robot to interact with the child: The Robot Intelligent 
Module (RIM) and the Behavior Manager (BM).

Figure 9. Artificial Intelligence System for Robot-Assist-
ed Treatment of Autism

DOI: https://doi.org/10.30564/aia.v2i1.1323
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The RIM is composed of four components: head pose, 
body posture, eye contact, and facial expression. The BM 
consist of two components: the treatment protocol and the 
NAOqi API [25].

Although robot therapists are better than human ther-
apists in these three areas, they are not yet perfect. The 
robots for the therapies come at a high cost. Robokind, 
the company that makes Milo, reports that its robot has 
an initial cost of $5,000 plus an additional cost of $4,500 
every year after. This is lower than the $29,000 cost of 
human therapy, but Robokind’s cost estimates are still too 
optimistic. A 2015 study found that parents have a pref-
erence that there is a human complementing the robot in 
autism therapy. If humans have to complement robots in 
robot-assisted therapy, the cost might even be higher than 
the human-led therapy cost of $29,000 per year.

As you can see at the Figs 10 and 11, robots used in au-
tism therapy. 

Figure 10. ROBOJJANG developed by Robocare Co., 
Ltd.

Interacting with robots can be particularly empowering 
for children with ASD, because it may overcome various 
barriers experienced in face-to-face interaction with hu-
mans. Moreover, robot assisted interventions can be tai-
lored to the needs of the specific child and can be used in 
an identical manner as often as needed.

Figure 11. Robots used in autism therapy

Figure 11 shows the robots used in autism therapy all 
around the world:

a) Kaspar (courtesy of the Adaptive Systems Research 
Group, University of Hertfordshire, UK), 

b) Tito (courtesy of F. Michaud),
c) Roball (courtesy of F. Michaud),
d) Muu (courtesy of M. Okada, Toyohashi University 

of Technology, Japan), 
e) Pleo (courtesy of Innvo Labs Corporation), 
f) Bubble blower (courtesy of D. Feil-Seifer), 
g) Nao (courtesy of Aldebaran), 
h) Robota (courtesy of A. Billard), 
i) Infanoid (courtesy of H. Kozima), 
j) Bandit (courtesy of M. Mataric, USC, USA),
k) Robojjang (courtesy of Robocare Co., Ltd.).

1.7 Therapy of the autism using the intelligent 
cognitive system

It is believed that effective therapy for autism is ex-
tremely expensive. It is not because it is complicated, 
but because the small number of the specialists who 
own behavioral techniques. There is a situation when the 
majority of families do not have access to the necessary 
treatment [26]. 

Remark. This work is a continuation of the develop-
ment of a cognitive-intelligent system for the diagnosis, 
adaptation and training of autistic children (CISDAEAC). 
A more detailed description of the CISDAEAC may be 
found in [27-29]. 

The main part of this cognitive-intelligent system is 
the data processing module (see Fig. 12). It represents 
the structure of a child’s interaction and training program 
through the application of fuzzy logic.

The data processing module is designed to extract the 
EEG based on a cognitive helmet, process and filter the 
received signal, create a cognitive process training pro-
gram on the platform, diagnose problems with the child’s 
work with the system and evaluate the operator’s response 
to the tasks generated by the training module.

CISDAEAC is designed to extract process and for-
mulate a learning program based on cognitive process-
es, in particular, EEG signals, adaptation of autistic 
children to society and training in basic household 
skills. One of the tasks of this work is the processing of 
the EEG signal, based on the recognition of emotions, 
and forming an encephalographic portrait of the child 
on the next step.

Before working with the system, a detailed assess-
ment of the current level of social interaction of the 
child, revealing the difference between the difficulties 
in acquiring. Next creating a minimum training pack-
age to determine the starting point consisting of basic 
logical tasks. To receive feedback, the Emotiv EPOC+ 
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cognitive helmet used, which allows recording the brain 
activity signal and transferring it to the data processing 
module.

Figure 12. CISDAEAC Data processing module

Next, by the EEG signal, evaluating the child's reaction 
to the interaction with environment, and monitoring pa-
rameters for solving the tasks. Then forming the strategy 
of learning using the technology of soft computing. The 
signal from the EPOC signal recognition unit, the decision 
time, the correctness of the solution and the task identifi-
cation number are using as the input data. After this, the 
system sets the appropriate coefficients for adjusting the 
training program.

2. EEG signal processing

2.1 Features of experimental EEG registration 
and informative parameters of the patient's con-
dition

The electroencephalogram (EEG) of the human opera-
tor can be used as a biometric parameter, since the brain 
activity is individual. It is made unique by synchronized 
activity of groups of neurons that process the same signals 
to form metastable group. Signals corresponding to one 
external stimulus or cognitive event trigger synchronized 
activity of neurons grouped together. A certain level of 
synchronization is maintained at rest state. Synchronized 
neuronal activity is observed on the EEG.

Recording EEG signal is a contact and long-term pro-
cedure, since the electrical activity of the brain is a value 
extended in time, and the data cannot be recorded for a 
long time because of the nonlinear distortions of the EEG 
signal appear at large intervals. The nonlinearity of the 
signal can be solved by a series of short measurements, 
during which the signal can be considered linear. Emotiv 
EPOC+ cognitive helmet was used for recording the brain 
activity (see Fig. 13).

Figure 13. Emotiv EPOC+ cognitive helmet

EPOC has 14 electrodes, which are passive sensors 
that allow register electromagnetic signals. Sensors are 
attached to the surface of the skin (non-submersible, 
non-invasive interface). Figure 8 presents the structure of 
Emotiv EPOC+, consisting of channels AF3, F7, F3, FC5, 
T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4 and two refer-
ence sensors CMS/DRL, which purpose is to receive and 
filter bioelectric signals of muscle activity from the EEG 
signal.

Remark. In Fig. 14a, Hierarchical structure of studies 
and tasks. Dendrograms convey theoretical groupings 
of fMRI activity at levels of study (level 1: studies S1–
S18), subdomain (level 2: thermal, visceral, mechanical, 
working memory (WM), response selection (RS), re-
sponse conflict (RC), visual, social, and auditory), and 
domain (level 3: pain, cognitive control, and negative 
emotion). Colored regions illustrate model-based parti-
tioning of neural similarity into components that gener-
alize across subjects (unique to a study, top 18 squares), 
studies (unique to a subdomain, middle nine squares), 
and subdomains (unique to a domain, bottom three re-
gions). b, Decomposing multivariate pattern similarity 
into study-, subdomain-, and domain-specific compo-
nents. 

The matrix in the left panel shows the dissimilarity 
of fMRI patterns across all subjects (n = 270) in the en-
tire medial frontal cortex. Each row represents one in-
dividual participant and each element the dissimilarity 
(1–Pearson′ s correlation coefficient) in brain activity 
patterns for two individuals. Colored bars to the left 
indicate corresponding levels in the functional hierar-
chy. The right panel shows how the observed neural 
dissimilarity across pairs of images from the 18 studies 
is modeled as a weighted summation of theoretical dis-
similarity matrices constructed according to study (18 
parameters), subdomain (9 parameters), and domain (3 
parameters) membership, in addition to a constant term 
(not shown). 
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Figure 14. Hierarchical structure of studies and tasks

The supplied software allows in online to receive, rec-
ognize and register the EEG signal from the helmet [31]. As 
part of the solution of the problem it is necessary to obtain 
the most informative fragments of the signal. Frequency 
rhythms of EEG are distinguished for the analysis. The 
concept of frequency rhythm determines the type of elec-
trical activity corresponding to a certain state of the brain 
which boundaries of the frequency range are determined 
(see Fig. 15).

Figure 15. EEG frequency rhythms

This involves the decomposition of the EEG signal 
into frequency components, which is achieved by fast 
Fourier transforms (FFT), which returns for each fre-
quency buffer a complex number containing the ampli-
tude and phase.
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where N is the number of time samples, k = 0, N-1 is 
the current frequency, n = 0..., N-1 is the current sample, 
xn-input samples in the time domain, xk-output samples 
in the frequency domain.

2.2 Definition of emotional arousal

A well-known marker of cognitive processes is the 
restructuring of brain rhythms which occurs in the su-
perficially recorded human EEG. Strong emotional 
experience, as a form of cognitive activity, can lead to 
inhibition of other mental processes, realization of be-
havioral appropriate reactions, violation of conscious 
control over actions, as a result of which uncontrolled 
actions can be committed [32]. States arise against the 
will, conscious control over their actions is not possible. 
The occurrence of such situations can lead to a critical 
error in the control loop [33].

Therefore, the first task was to determine the level of 
emotional arousal of the human being operator.

Figure 16 identifying latent brain representations that 
predict the occurrence of distinct functional domains in 
each region of interest:

a) searchlight maps display where local patterns of 
brain activity are consistent with domain-specific repre-
sentation of pain (red), cognitive control (green), and neg-
ative emotion (blue; n = 270 participants).

b) Additive conjunction of searchlight maps, with each 
domain mapped onto orthogonal dimensions in the red–
green–blue (RGB) color space. Overlap between pain and 
cognitive control is depicted in yellow; overlap between 
pain and negative emotion is colored magenta. Maps are 
thresholded at P < 0.05, two-tailed, uncorrected cutoff to 
highlight any possible overlap.

c) Brain maps of Bayes factors indicating relative ev-
idence against overlap among the three domains at each 
voxel. Smaller values indicate evidence against overlap; 
values less than 0.1 are considered strong evidence (n = 
270 participants). 

d) River plots depict the similarity between searchlight 
maps and anatomical parcellation of MFC (left) and func-
tional parcellation of cortical regions from resting-state 
data48 (right). Line thickness indicates the degree of cor-
respondence between sets.
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Figure 16. Representational mapping of pain, cognitive 
control, and negative emotion in MFC

2.3 Experimental results

During the study, the operator's EEG signal was recorded 
while in a calm state and in a state of stress. The source 
signal of each sensor, with a sampling frequency of 
128Hz, is decomposed into frequency rhythms using a 
discrete Fourier transform.

For visual assessment of differences in emotional 
states, graphs of the spectral power of signals from AF3, 
AF4, F7, F3, F4, F8, FC5, FC6, T7, T8, O1, O2 sensors 
were constructed in the range of significant frequencies 
from 1 to 50 Hz. (see Fig. 17).

Figure 17. A graph of the spectral power density of the 
EEG signal obtained by discrete Fourier transform for the 

state and stress of rest

A comparative analysis of the spectral power of vari-
ous emotional states for the frontal, temporal, and occip-

ital-parietal lobes of the cerebral cortex has been carried 
out (see Figs 18, 19 and 20).

Figure 18. The level of spectral power of the EEG signal 
for sensors AF3, AF4, A3, A4 for each of the frequencies 

for two emotional states: calm and fright

Figure 19. The level of spectral power of the EEG signal 
for sensors P7, P8, O1, O2 for each of the frequencies for 

two emotional states: calm and fright

Figure 20. The level of spectral power of the EEG signal 
for sensors F7, F8, Т7, Т8 for each of the frequencies for 

two emotional states: calm and fright

Based on the assessment of the total tonic activity, 
as well as the values of the total spectral power of the 
frequency ranges, it was concluded that it is possible to 
estimate the emotional background of a human being op-
erator.

Figure 21 shows the graphs of signal activation integral 
accumulation for various emotional states. 
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Figure 21. The accumulation of signal activation when 
setting a threshold value of 1000 and 4000 µV

At calm state, the signal integral does not exceed 200 
µV, while in a state of emotional arousal a threshold value 
of 1000 µV achieved by one iteration, and for 4000 µV in 
38 iterations.

The EEG signal registered by the software product 
using the knowledge base returns the coefficient deter-
mining the level of emotional arousal. Based on this co-
efficient a warning about the level of emotional arousal 
is displayed on the screen through expert judgment (see 
Fig. 22).

Figure 22. UI of the warning about the level of emotional 
arousal

3. Detecting the mental state of a human op-
erator

First of all, we investigate the fear emotion — the mark-
er of valence measurement of emotional states. Fear is 
realized more clearly, unlike other emotions, and finding 
its causes is much easier. In the case of autistic children, 
the emotion of fear is most critical to recognition.

Figure 23 shows a graph of the EEG signal taken by 
the sensors F3, F4, FC5, FC6 in two emotional states: on 
the left is fear, on the right is a neutral state.
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Figure 23. The value of the EEG signal of different emo-
tional states

On the example of the data of the EEG signal values, the 
implementation of the visual display of the signal is consid-
ered, and also these data were used to form the knowledge 
base. This requires a transition from the representation of 
the EEG signal as a function of time, to the representation 
of the signal in the spatial frequency domain. This transi-
tion is carried out by decomposing the signal into harmonic 
components using the Fourier transform. Figure 24 shows a 
graph of the spectral power density of the EEG signal taken 
by the AF3 sensor in two emotional states: on the left is 
fear, on the right is a neutral state.
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Figure 24. The value of the total spectral power density of 
the EEG signal for various emotional states

This approach reduces the amount of processed data 
for visual assessment, makes it possible to quickly classify 
electroencephalograms. Regardless of emotions sign, it can 
be generated in both hemispheres of the brain, but a number 
of studies focuses the attention of the anterior sections of 
the brain in the generation of emotions (see Fig. 25).
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Figure 25. The location of the electrodes used in the ex-
periment

The combination of simultaneously present rhythms 
forms a specific spatial-frequency EEG pattern. Patterns 
are typical for different types of cognitive activity and are 
highly individually specific. The ability of an individual to 
establish rhythmic EEG patterns when performing certain 
cognitive tasks called “encephalographic” portrait of per-
sonality [29].

During the experiment an EEG signal was recorded 
with a sampling frequency of 128 Hz for various emotion-
al states: calm (neutral), positive emotions and negative 
emotions. There was no state of strong emotional arousal. 
The source signal of each sensor is decomposed into fre-
quency rhythms using a discrete Fourier transform. Figure 
26 shows a graph of the average spectral power of the 
frequency bands in 6 secs for the AF3 sensor in various 
emotional states.

Figure 26. Average power spectra of AF3 sensor

Determining the sign of an emotion is a classic classi-
fication task. To solve it, it is necessary to determine the 
sign of the emotion at a specific point in time by analyzing 
the EEG signal. If we consider the state of rest as 0, pos-
itive emotion as +1, negative as –1, the definition of the 
sign of the emotion can be considered as a deviation from 
the neutral state.

A number of studies shows [34] that in determining the 
sign of an emotional reaction, it is necessary to rely on 
changes in the power of the alpha rhythm and beta rhythm 
in the frontal and temporal lobes. With positive emotions, 
there is a strong depression of the alpha rhythm in com-
parison with the neutral condition, as well as an increase 
in the power of the beta rhythm (see tab. 1).

Table 1. Frequency rhythms with different emotional 
signs

Frequency 
rhythm Positive emotions Negative emotions

Alpha 
rhythm

More pronounced depres-
sion of the alpha rhythm in 
comparison with the neutral 
condition in the frontal and 

temporal lobes.

The power of the alpha 
rhythm is greater than or 
equal to the power of the 

alpha rhythm with a neutral 
condition in the frontal and 

temporal lobes.

Beta rhythm

Increase of beta rhythm 
power compared to neutral 

condition in frontal and 
temporal leads.

Decrease in amplitude in 
comparison with a neutral 
condition in frontal assign-

ments.

Theta 
rhythm

The change in the power of 
theta rhythm in the fron-
tal and temporal leads in 

comparison with the neutral 
condition depending on the 

gender.

The change in the power 
of the theta rhythm in the 

frontal and temporal leads in 
comparison with the neutral 
condition depending on the 

gender.

The coefficients are placed in accordance with the sig-
nificance of the spectral power, they also reflecting the 
weight of the frequency rhythm to determine the sign of 
emotional activity.

4. Description of the software platform

As a software platform for processing the EEG signal, the 
Python programming language version 3.7 was chosen. 
The NumPy package was chosen as a library for mathe-
matical operations. NumPy is a fundamental package for 
scientific computing in Python, providing:

• powerful N-dimensional array object;
• complex (broadcast) functions;
• tools for integrating C / C ++ and Fortran code;
• algorithms linear algebra, Fourier transform and ex-

tended possibilities of random numbers.
In addition to obvious scientific applications, NumPy 

can also be used as an effective multidimensional con-
tainer of common data. The ability to define arbitrary data 
types allows you to easily and quickly integrate with a 
wide range of databases.

4.1 Using the deep machine learning in the task of 
classifying an emotional sign

TensorFlow was used as a library for machine learning. It 
is a neural network that learns how to solve problems by 
positive amplification and processes data at various levels 
(nodes), which helps to find the desired correct result with 
a given level of the training signal approximation error. 
This kind of machine learning is very well adapted for re-
search purposes. The library was developed by the Google 
Brain team for a variety of tasks, including searching for 
images and improving speech recognition algorithms. As 
a starting point for the use of machine learning technolo-
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gies (and later - soft computing), for recognizing emotions 
through the EEG signal, the TensorFlow library makes it 
easy to integrate into the applications self-learning ele-
ments and functions of artificial intelligence designed for 
speech recognition, computer vision or natural language 
processing.

The principle of working with TensorFlow involves the 
compilation of a graph of operations, data transfer and the 
work of calculations. The graphs allow define the calcula-
tion process, where the vertices perform operations, and the 
edges describe the connection between them. Thus, when 
adding two numbers, it is necessary to define a vertex with 
two inputs (numbers for addition), some calculations (addi-
tion function of two numbers) and an output (result).

Deep learning is a subset of machine learning. Usually, 
when people use the term deep learning, they are refer-
ring to deep artificial neural networks, and somewhat less 
frequently to deep reinforcement learning. Deep artificial 
neural networks are a set of algorithms that have set new 
records in accuracy for many important problems, such as 
image recognition, sound recognition, recommender sys-
tems, natural language processing etc. We are using it to 
identify the sign of emotion.

It was decided to implement a classifier based on a 
convolutional neural network in order to be able to assign 
features in the original data set. This feature is especially 
useful in the problem under study, since it is practically 
impossible to select significant features in the initial data 
set in manual mode in accordance with desired output. 
This significantly limits the possibility of using other 
types of classifiers. The training of the classification algo-
rithm for EEG signals was based on data from four chan-
nels AF3, T7, F71 and F8. As an activation function, a 
rectified linear unit, specified by the expression, was used:

f x x( ) = max 0,  ( )  (7)

where x is the input to a neuron.
In order for TensorFlow to train the model, it is nec-

essary to set the loss function. As the loss function cross 
entropy was used. Cross entropy is extremely important 
for modern systems, because it makes it possible to create 
highly accurate forecasts, even for alternative indicators. 
Into the learning algorithm, the power values of the spectra 
are fed to the input for each of the frequencies (alpha, beta, 
gamma, theta, delta). The task of recognizing an emotion is 
the task of classification, so the loss function will return:

• Neutral state — 0; 
• Negative state — - 1; 
• Positive state — +1.
Figures 27 and 28 show the visualization of data to the 

input of the neural network. 

Figure 27. AF3 and T7 sensor power spectra for positive, 
negative emotions and a calm state

Figure 28. Power ratings of the F7 and F8 sensor spectra 
for positive, negative emotions and a calm state

Figure 27 reflects the total tonic activity of the spectra 
of emotions of a different sign for sensors located in the 
same hemisphere of the brain, and Figure 28 show sensors 
symmetrically located on opposite points of the two hemi-
spheres of the brain.

4.2 Soft Computing Optimizer

Figure 29 shows the result of the neural network process-
ing: the coefficient of deviation from the neutral state, ob-
tained after processing the EEG signal, decomposed into 
frequency bands.

Figure 29. The coefficients of deviation from the neutral 
state of emotions of a different sign

As a part of the task, machine learning is used to deter-
mine the sign of the emotion at a particular point in time. 
For a correct description of the general psychophysical 
state of the operator, it is necessary to use the soft comput-
ing optimizer. Since emotions are characterized by clearly 
pronounced intensity, limited duration, awareness of the 
reasons for its appearance; connection with a specific ob-
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ject, circumstance; polarity, an approximation of the coef-
ficient of deviation from the neutral state is necessary.

Remark. SCOptimizer software is used to create so-
phisticated knowledge bases. Soft Computing Optimizer 
of knowledge base (SCOptKB™) is a software toolkit 
for creating automatic fuzzy models and solves the uni-
versal approximator design problem of ill-defined control 
objects. The SCO uses sets of values of the input-output 
vector to create and optimize a fuzzy model. To perform 
various optimization algorithms, a learning signal is 
needed, which represents samples of input values and 
corresponding output values. Training signal files can be 
created using the SCO or taken from other sources. Text 
files are processed based on regional settings that define 
characters for the decimal point, the thousands separator, 
and so on. The default values for these parameters are set 
in Windows. If the settings do not match the signal for-
mat, they can be changed at any time. After the change, 
the parameters are saved in the model and will be used for 
further data processing. Regional settings affect the read-
ing and writing of text data and model files.

The first step of model optimization is the definition of 
shape of membership functions of fuzzy sets of input and (if 
used by the model) of output variables. SCOptimizer sup-
ports two modes of MF’s shape definition: using uniform 
distribution method or with GA1 optimization algorithm.

Uniform distribution method distributes fuzzy sets on 
signal change interval according to signal probability distri-
bution and user selected shape of membership functions.

GA1 algorithm tries to find best possible combination 
of number of fuzzy sets per variable, membership func-
tion shape and overlap coefficient between neighbor fuzzy 
sets. For each combination it performs uniform distribu-
tion algorithm and tries to maximize the mutual possibili-
ty of the fuzzy sets of each variable.

The main part of the model is a rule database. It stores 
data, which shows which output should be activated for 
given input. SCOptimizer supports two types of rule data-
base: complete database and LBRW database.

Rules of complete database present all possible combi-
nations of fuzzy sets of input variables. Number of rules 
in complete database equals to product of numbers of 
fuzzy sets of input variables. This will result in extremely 
large database and very slow optimization speed if you 
will try to use it with more than one-two variables. LBRW 
database store not all the rules, but only a number of rules 
selected with “Let the Best Rule Win” algorithm. LBRW 
algorithm selects those rules, which contribute the most 
noticeable part of the output. Reducing number of rules 
with LBRW algorithm provides faster optimization speed 
without loss of model precision.

After the database was created it should be filled with 
actual rule data. This is accomplished on the final step of 
model creation – rule database optimization. SCOptimizer 
uses genetic optimization algorithm (GA2) to tune data-
base parameters.

Quality of the model created during previous steps 
may still be inadequate. In order to improve model quality 
GA3 algorithm is used. It alters shapes of membership 
functions and optimizes model output with fixed number 
of membership functions and database structure. Error 
back propagation algorithm can be used to improve model 
output but fine-tuning database parameters using classical 
gradient optimization method.

SCOptKB™ supports model export in a C program. 
The code in these files is written with minimal use of 
functions from the standard C language library and can be 
compiled by any C compiler, including those oriented to 
embedded systems and microcontrollers [8]. To approxi-
mate the training signal, the knowledge optimizer is used 
with the selected model of fuzzy inference (Sugeno 0 
order). The coefficient of deviation from the neutral state 
and the identification value of the corresponding emotion 
are used. At the next stage of designing a knowledge base 
for fuzzy inference, a full knowledge base is automatical-
ly generated, and the right parts of the rules are further 
optimized (see Fig. 30).

The first layer is a layer of input variables: the spectral 
density of the signal power and expert evaluation. The 
second layer is fuzzy term-sets of input variables. The 
third layer corresponds to the rules of the knowledge base 
with the corresponding rule number in the rule base. The 
last layer is the output layer, which displays the numeric 
parameters of the rule.

The optimizer of knowledge bases on soft computing 
automatically forms the optimal structure of the neural 
network, allows from the point of view of computational 
mathematics to approximate the training signal with the 
required (given) approximation error, and from the point 
of view of the theory of artificial intelligence implements 
a deep machine learning algorithm.

Figure 30. The rule base is in the form of a network with 
four layers
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In Figure 31, the first graph shows the training signal 
and the model of the output variable.

Figure 31. The result of the model is the output variable

The green line displays the training signal and the blue 
line shows the model output. On the second and third 
graphs presented the maximum level of activations of the 
rules and the number of activated rules.

5. Examples of solutions 

In 1995 the robotic unicycle [35-37] and in 1994 robot for 
service use [11] was developed with the biomechanical 
mechanism description of emotion, instinct and intuition 
as corresponding look-up tables based on expert estima-
tion of finite number of production rules and linguistic 
variables with fuzzy logic inference. In addition to design 
of look-up table in [35] in the structure of intelligent con-
trol system (for the feeling support of comfort car pas-
senger) “friendly ship” bio-inspired frequency filter was 
introduced; robust control of passenger comfort feelings 
based on quantum soft computing technology is achieved 
[36]. In this article applied SCOptKB™ toolkit [37] extract 
information from EEG signal, design optimal structure 
of fuzzy neural network and create the universal approx-

imator of deep machine learning processes with optimal 
finite number of production rules, choice optimal type and 
parameters of linguistic variables for fixed model of fuzzy 
logic inference. The learning architecture and the associat-
ed unsupervised learning algorithm of recurrent quantum 
neural network [38] have been modified to take into account 
the complex nature of EEG signal. The basic approach 
is to ensure that the statistical behavior of input signal is 
properly transferred to the wave packet associated with 
the response of quantum dynamics of the network. EEG 
signals can be considered a realization of a random or sto-
chastic process. When an accurate description of the sys-
tem is unavailable, a stochastic filter [39] can be designed 
on the basis of probabilistic measures cooperated with 
fuzzy modeling. This approach for Social Robotics design 
with successful emotion state recognition of ASD children 
and for detecting early signs of dementia [40] based on 
quantum deep machine learning with smart quantum com-
putational intelligence toolkit [42] can be applied.

5.1 Cognitive intelligent control in navigation of 
autonomous robot

Usually, a regulator is installed at the facility as a control 
system, which, depending on the mental commands of the 
operator, generates a control action for the actuators. Such a 
controller can be a simple relay controller, where the same 
control actions are generated for a finite set of output com-
mands (forward, backward, left, right). In this work, we 
tested a proportional controller, a proportional-integral (PI) 
controller with a fuzzy output unit, and a proportional-inte-
gral derivative (PID) controller with various gain factors.

Figure 32. Control Unit
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For the experiment was been select the object of con-
trol — mobile robot in the form of three-wheel vehicle 
with Bluetooth-control showed in Figure 32. The control 
device as a control processor used the Arduino Uno, to-
gether with the engine drive Pololu Dual MC33926, Mo-
tor- DC 9V Motor Bluetooth module HC-05 and with the 
power supply serves 3 3.7V Li-On battery.

Figure 33. Activating the commands in the proportional 
controller

The first and easiest implementation regulator for ve-
hicle is a proportional controller. Such a regulator sends 
a proportional value of motors cars depending on which 
team has the greatest affinity to recorded in advance men-
tal command (see Fig. 33 and 34). 

Figure 34. Control impact produced p-controller while 
moving back and forth

For example, activation command associated in pairs 
of movement forward and backward was made according 
to the difference of activation levels for these commands.

Next, let us look at the process of design PI regulator 
using SCO. To do this, in the first phase the expert gener-
ates a training signal, driving based on proportional regu-
lator machine. During system operation, recording the sig-
nals received from the block recognizer. Coming from this 
signal by adding formed integral component (see Fig. 35). 
Then the expert put the respective control impact based on 
previous experience with the system.

To approximate the teaching signal (see Fig. 36) ap-
plied the developed SCO with selected the model of fuzzy 
inference (Sugeno type models). As teaching signal used 
the signal from the block signal recognition EPOC, as 
well as the integral value of the signal.

Figure 35. The training signal

Figure 36. Neural network fuzzy inference

At the next stage of design for fuzzy knowledge base 
withdrawal is carried out in automatic mode formation 
full knowledge base and further optimization of right-
hand sides (see Fig.37).

Figure 37. Block diagram the formation rules in the 
knowledge base

In other words, at the entrance to the neural net re-
ceives commands from the software module signal recog-
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nition (forward, backward, left and right) the output value 
is the commands then receives vehicle. 

The knowledge base is applied in conjunction with PI 
controller. Using soft computing need to build more "soft" 
structure to control. For this purpose, created linguistic 
variables (LV) for each of the commands recorded in the 
system, was formed a complete knowledge base (see Fig. 
38). The right side of the regulator contains appropriate 
values for control action using PI controller. Thus, the ac-
tivation level of rules in base corresponds to the activation 
level of the control action.

.

Figure 38. An example of the linguistic variable for the 
team forward

Figure 39 shows the result of cognitive motion control 
of mobile robot in maze based on the PI-regulator.

Figure 39. Controlling the trajectory of mobile robot 
based on the PI-regulator

The following verified regulator to control machines 
was PID controller with constant coefficients. The coeffi-
cients of the regulators were PID 1 [1 0.1 1] and for PID 2 [3 0.1 

10].
In Figs 40 and 41 shown the commands of control sys-

tems to manage control object. The first chart, green intro-
duced the target signal, which corresponds to a movement 
back and forth, and the rest of the colors allocated to the 
activation levels and PI controller with knowledge base.

Figure 40. Controlling actions produced by standard sig-
nal and PI regulator. Forward and backward

As can be seen from the graphs in Fig. 40, when the 
motion task is the moving the vehicle back, and the op-
erator’s concentration of the thinking process focuses on 
that command, recognition block is not always correctly 
identifying the control command. Vehicle goes in spurts 
or even to the other side (false positives motions). PI con-
trol can compensate this, and additional add-in as an inte-
gral component in the knowledge base, allows a smooth 
sequence of commands and reduce errors in reaching the 
goal. Moreover, the system becomes adaptive and learn-
able, because the basis of the base is the software tool 
SCO. 

In Fig. 41, move to right corresponds to 1, and the 
movement to the left corresponds to -1.

Figure 41. Control actions produced by relay and PI ad-
juster when moving left and right

Additionally, there was decry the problem of the mo-
tion using control system with PID regulator.

Figure 42. Detour obstacles control system with PID 
regulator

Figure 42 presents the results of an experiment using 
PID controllers with different coefficients of gain control 
action. The odds were set in manual mode. Differential 
component in PID controller associated with the speed of 

DOI: https://doi.org/10.30564/aia.v2i1.1323



19

Artificial Intelligence Advances | Volume 02 | Issue 01 | April 2020

Distributed under creative commons license 4.0

the operator activates the mental command.

Figure 43. Control actions produced PID regulators when 
driving forward

The choice of gain factors naturally influences on the 
computation the action of controller and the operation of 
the system as a whole. However, establishing the optimal 
values of coefficients for each point in time is relevant and 
very interesting task. When incorrect (false) installation 
values the same way there has been an incorrect actuation, 
control object moves in spurts. 

To compare the results obtained in the experiments 
used value is the mean deviation from the desired result. 
As can be seen from table 2 and Fig. 44, using a more 
complex controller, the deviation has reduced. However, 
the wrong setting of the gain increases the deviation of the 
system from the intended target.

Table 2. Compare mean deviation of different controllers

/ P PI PID1 PID2

Mean deviation 0,846 0,853 0,860 0,505

Figure 44. Cumulative score deviation module

Analysis of results of experiments showed that quality 
control is greatly improved when more complex control 
schemes.

5.2 Robotic unicycle

We attempted in the present work the emulation of human 
riding a unicycle by a robot. It is well known that the unicy-
cle system is an inherently unstable system and both longitu-
dinal and lateral stability control are simultaneously needed 
to maintain the unicycle's postural stability. It is an unstable 
problem in three dimensions (3D). However, a rider can 
achieve postural stability on a unicycle, keep the wheel speed 
constant and change the unicycle's posture in the yaw direc-

tion at will by using his flexible body, good sensory systems, 
skill and intelligent computational abilities. 

Investigating this phenomenon and emulating the 
system by a robot, we aim to construct a biomechanical 
model of human motion dynamics, and also evaluate the 
new methods for the stability control and analysis of an 
unstable system. We developed a new biomechanical 
model with two closed link mechanism and one turntable 
to emulate a human riding a unicycle by a robot. This 
study of rider’s postural stability control on a unicycle be-
gan from the observation of a human riding on a unicycle 
with vestibular model as intelligent biomechanical model 
including instinct and intuition mechanisms. 

We consider the dynamic behavior of the biome-
chanical model from the standpoint of mechanics, de-
cision-making process, action logic, and information 
processing with distributed knowledge base levels. The 
physical and mathematical background for the description 
of the biomechanical model is introduced. In this paper 
a thermodynamic approach is used for the investigation 
of an optimal control process and for the estimation of an 
artificial life of mobile robots [36, 37]. 

A new physical measure (the minimum entropy pro-
duction) for the description of the intelligent dynamic 
behavior and thermodynamic stability condition of a bio-
mechanical model with an AI control system for the robot 
unicycle is introduced. This measure is used as a fitness 
function in a GA for the computer simulation of the in-
tuition mechanism as a global searching measure for the 
decision-making process to ensure optimal control of the 
global stability on the robot unicycle throughout the full 
space of possible solutions. The simulation of an instinct 
mechanism based on FNN is considered as a local active 
adaptation process with the minimum entropy production 
in the learning process of the vestibular system by teach-
ing the control signal accordingly to the model representa-
tion results of [35]. Computer simulations in this study are 
carried out by the usage of thermodynamic equations for 
the motion of the robot unicycle. Entropy production and 
entropy measures for the robot unicycle motion and the 
control system are calculated directly from the proposed 
thermodynamic equations of motion. 

Figure 45. Robotic unicycle model
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In particular, Fig. 45 shows the main idea of robotic 
unicycle design using Kansei and System of System Engi-
neering approaches. With genetic algorithm the intuition 
of solution search is developed based on bio-inspired 
model of unicycle rider behavior. Instinct and emotion 
are introduced based on fuzzy neural network and corre-
sponding look-up tables. 

Fuzzy simulation and soft computing, based on GA 
and FNN, it is obvious that the intelligent behavior con-
trollability and postural stability of the robot are largely 
improved by two fuzzy gain schedule PD-controllers in 
comparison to those controlled only by a conventional 
PD and a fuzzy gain schedule PD-controller As a result 
of this investigation the look-up tables for fuzzy robust 
controllers of the robotic unicycle are formed with mini-
mum production entropy in intelligent controllers and the 
robotic unicycle model uses this approach. The FNN con-
troller offers a more flexible structure of controllers with 
a smaller torque, and the learning process produces less 
entropy. FNN controller gives a more flexible structure to 
controllers with smaller torque and the learning process 
produces less entropy than GA. 

Thus, an instinct mechanism produces less entropy than 
an intuition mechanism. However, the necessary time for 
achieving an optimal control with the learning process on 
FNN (instinct) is larger than that with the global search on 
GA (intuition). The general approach for forming a look-
up-table with GA and the fuzzy classifier system based on 
FNN. Intuition and instinct mechanisms are considered as 
global and local search mechanisms of the optimal solu-
tion domains for an intelligent behavior and can be real-
ized by GA and FNN accordingly. For the fitness function 
of the GA, a new physical measure as the minimum entro-
py production for a description of the intelligent behavior 
in a biological model is introduced.

Thus, the posture stability and driving control of a hu-
man riding-type unicycle have been realized. The robot 
unicycle is considered as a biomechanical system using an 
internal world representation with a description of emotion, 
instinct and intuition mechanisms. We introduced intelligent 
control methods based on soft computing and confirmed 
that such an intelligent control and biological instinct as 
well as intuition together with a fuzzy inference is very im-
portant for emulating human behaviors or actions. 

Intuition and instinct mechanisms are considered 
as global and local search mechanisms of the optimal 
solution domains for an intelligent behavior and can be 
realized by genetic algorithms (GA) and fuzzy neural net-
works (FNN) accordingly. For the fitness function of the 
GA, a new physical measure as the minimum entropy pro-
duction for a description of the intelligent behavior in a 

biological model is introduced. The calculation of robust-
ness and controllability of the robot unicycle is presented. 
This report provides a general measure to estimate the 
mechanical controllability qualitatively and quantitatively, 
even if any control scheme is applied. 

The measure can be computed using a Lyapunov func-
tion coupled with the thermodynamic entropy change. 
Described above interrelation between Lyapunov function 
(stability condition) and entropy production of motion 
(controllability condition) in an internal biomechanical 
model is a mathematical background for the design of soft 
computing algorithms for the intelligent control of the ro-
botic unicycle. 

Fuzzy simulation and experimental results of a robust in-
telligent control motion for the robot unicycle are discussed. 
Robotic unicycle is a new Benchmark [25] of non-linear 
mechatronics and intelligent smart control. It is confirmed 
that the proposed fuzzy gain schedule PD-controller is very 
effective for the handling of the system's nonlinearity deal-
ing with the robot's posture stability controls. Furthermore, 
an important result is that the minimum entropy production 
gives a quantitative measure concerning the controllability 
and also qualitative explanations. 

Thus, we provide a new benchmark of Kansei engi-
neering for the controllability of unstable nonlinear non-
holonomic dynamic systems by means of intelligent tools 
based on a new physical concept of robust control: the 
minimum entropy production in control systems and in 
control object motion in general.

6. Quantum computing approach – quantum 
deep learning and quantum neural network

The work carried out showed that it is possible (in prin-
ciple) to classify the mental states of a human being op-
erator, demonstrates the optimal deep machine learning 
ability of the system, the ability to create knowledge bases 
based on the recorded EEG signal and use the results to 
recognize emotions.

Since emotions are characterized by clearly pronounced 
intensity, limited duration, awareness of the reasons for 
its appearance; connection with a specific object, circum-
stance; polarity, the use of machine learning and intelli-
gent superstructure in the form of SCO, based on fuzzy 
controllers, is the best tool for correctly describing the 
general psychophysical state of the human being operator 
in Affective / Kansei Engineering approach [41, 42]. 

The ICS robustness, obtained on the basis of such an 
approach, requires a minimum of initial information, both 
on the behavior of the control object, and on external dis-
turbances.
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An assessment of the accumulation of integral error 
(without using intellectual tools) can only evaluate the 
tonic activity of the brain, which shows a strong surge 
in the emotional background. Fuzzy controls allow you 
to slightly expand the ability to recognize the emotional 
background by adding production logic rules.

The combined use of an artificial neural network and 
soft computing optimizer on fuzzy controller allows to fully 
adapt the system, but it takes a long time to learn. This is 
critical in emergency and unforeseen situations for a system 
of intelligent robust control. The percentage of successful 
classification of the emotional sign in a human operator 
when working with quantum neural networks is much high-
er than that of classical neural networks. This leads to an in-
crease in the reliability of the system as a whole, and allows 
the formation of more robust knowledge bases.

Figure 46. Intelligent control system with the integration 
of several fuzzy regulators

The Figure 46 shows the system with the integration 
of several fuzzy regulators and quantum fuzzy inference, 
contributing to the creation of a new quality of manage-
ment: self-organization of knowledge bases online apply 
quantum neural network.

6.1 Quantum neural network application 

Classic neural networks have some attractive features: 
parallel processing, error tolerance, the ability to learn 
and generalize the knowledge gained. The generalization 
property is understood as the ability of the neutral net-
work to generate the correct outputs for input signals that 
were not taken into account during the learning. However, 
artificial neutral networks also face many difficulties: lack 
of rules for deterministic optimal architectures, limited 
memory capacity, time-consuming learning, etc. But there 
are quantum neural networks that solve these problems.

Remark. The idea of a quantum neural network was 
first described in [43]. It is a combination of the concept 
of a conventional neural network and the paradigm of 
quantum computing. In 1997, A. Vlasov proposed a hypo-

thetical model of a quantum neural network using optical 
interference [42]. The first systematic review of artificial 
quantum neural networks is given in the dissertation of T. 
Menner [44]. The main advantage of quantum computing 
over classical is quantum parallelism, which allows to 
work with all valid states at the same time.

There are various prototypes of quantum neural networks. 
Some of them are very similar to their classical counterparts, 
while others use quantum operators that do not have classical 
equivalents, for example, phase shifts. Distinguish a wide 
range of different structures of the quantum neural networks. 
It is important to note that the efficiency of using neural net-
works is associated with massive parallel distributed process-
ing of information and the nonlinearity of the transformation 
of input vectors by neurons. In addition, quantum systems 
have a much more powerful quantum parallelism, expressed 
by the principle of superposition.

The idea of creating an artificial quantum neural net-
work consists in replacing the classical signals arriving at 
the input of a neuron with quantum states with amplitude 
and phase. At the same time, a quantum state, depending 
on the linear superposition of the incoming states, should 
also be formed at the output of the neuron. The weights in 
the case of a quantum neural network (QNN) are complex 
numbers (which change during the training of the network 
(see, Fig. 47)), so that each input quantum state is not only 
weighted in amplitude, but also shifted in phase. 

Figure 47. The mathematical model of a quantum neuron

The device maps inputs - a tuple of quantum and clas-
sical data - to outputs that may also contain quantum and 
classical parts, i.e., ( ) ( ), ,x x y y 


. Supervised 

training of the QNN uses input-output pairs as training 
data (e.g., the x and ( )y f x=  values from a nonlinear 
function) or quantum channel (e.g., a unitary quantum cir-
cuit or dissipative evolution), and attempts to optimize the 
QNN's parameters to make the QNN's outputs for each 
input match the training set. In addition to depending on 
the QNN architecture (the layout of the QNN and its train-
able parameters), C and W also depend on the execution 
and training protocols (which include, e.g., the input data 
encoding and learning method). Applies universally, re-
gardless of whether the learning machine and / or training 
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involves quantum, classical, or hybrid operations, wheth-
er the trained parameters are classical or quantum, how 
many uses of the QNN (or repeats of the input data) occur 
per input, or how the data is encoded. 

Figure 48. Schema of a general feed-forward QNN

Fig. 48a shows schema of a general feed-forward QNN, 
a parameterized quantum channel (which could include uni-
tary and/or dissipative quantum evolutions, classical data 
processing, ancillary parameter states, etc.) which is trained 
in a supervised fashion to optimize the classical and quan-
tum parameters ω  and / or ωρ  so that the QNN best ap-
proximates the transformation implied by the training data. 
Fig. 48b shows the schematic of a feed-forward quantum 
reservoir computer based on a Gaussian Boson Sampler. 
For classical tasks considered here, 0x =  and data is 
then encoded through the squeezing parameters, and for all 
tasks we take Win to be the identify matrix [44].

Quantum tasks, such as preparing states or learning a 
quantum circuit, are unitary approximation tasks.

6.2 EEG Data processing based on QNN

EEG signals can be considered a realization of a random 
or stochastic process [8]. When an accurate description 
of the system is unavailable, a stochastic filter can be 
designed on the basis of probabilistic measures. Every 
solution to a stochastic filtering problem involves the 
computation of a time-varying probability density func-
tion (pdf) on the state–space of the observed system. The 
architecture of recurrent quantum neural network RQNN 
model is based on the principles of QM with the Schro-
dinger wave equation (SWE) playing a major part. This 
approach enables the online estimation of a time-varying 
pdf that allows estimating and removing the noise from 
the raw EEG signal. 

Fig. 49 shows a basic architecture of RQNN model in 
which each neuron mediates a spatio-temporal field with a 
unified quantum activation function in the form of Gauss-

ian that aggregates pdf information from the observed 
noisy input signal. Thus, the solution of SWE (which is 
complex valued and whose modulus square is the pdf 
that localizes the position of quantum object in the vector 
space) gives the activation function. From a mathematical 
point of view, the time-dependent single-dimension non-
linear SWE is a partial differential equation describing the 
dynamics of wave packet (modulus-square of this wave is 
the pdf) in the presence of a potential field (or function) 
(which is the force field in which the particles defined by 
the wave function are forced to move). Thus, the RQNN 
model is based on novel concept that a quantum object 
mediates the collective response of a neural lattice (a spa-
tial structure of an array of neurons where each neuron is 
a simple computational unit.

Figure 49. Conceptual framework of RQNN model

Such RQNN filter used for stochastic filtering is able 
to reduce noise, because of its stability being highly sen-
sitive to model parameters, in case of imperfect tuning, 
the system may fail to track the signal and its output may 
saturate to absurd values. In the architecture used in Fig. 
53, the spatial neurons are excited by the input signal y(t). 
The difference between the output of spatial neuronal 
network and the pdf feedback |ψ(x, t)|2 is weighted by a 
weight vector W(x) to get the potential energy V(x). The 
model can thus be seen as a Gaussian mixture model esti-
mator of potential energy with fixed centers and variances, 
and only the weights are variable. These weights can be 
trained using any learning rule.

Figure 50. Signal estimation using RQNN model

In the RQNN architecture (see Fig. 50) makes the as-
sumption that the average behavior of neural lattice that 
estimates the signal is a time-varying pdf which is mediated 
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by a quantum object placed in the potential field V(x) and 
modulated by the input signal so as to transfer he informa-
tion about pdf. SWE to recurrently track this pdf because 
it is a well-known fact that the square of the modulus of ψ 
function, the solution of the wave equation, is also a pdf. 

( ) ( )( ) ( )
2

2

2, exp ,
2

y t x
x t x tφ ψ

σ

 −
 = − −
 
 

 (7)

The potential energy is calculated as ( ) ( ) ( ), ,V x W x t x tς φ= ,  
where and ( )y t  is the input signal and the synapses are 
represented by the time-varying synaptic weights W(x, t). 
The variable ζ represents the scaling factor to actuate the 
spatial potential energy V (x, t), and σ is the width of the 
neurons in the lattice (taken here as unity). This potential 
energy modulates the nonlinear SWE described by:

( ) ( ) ( ) ( )
2

2,
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∂
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∂

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where ψ(x, t) represents the quantum state, ∇ is the La-
placian operator and V (x, t) is the potential energy.

The neuronal lattice sets up the spatial potential energy 
V(x). A quantum process described by the quantum state ψ 
which mediates the collective response of neuronal lattice, 
evolves in this spatial potential V (x) according to (2). As 
V (x) sets up the evolution path of the wave function, any 
desired response can be obtained by properly modulating 
the potential energy. Such RQNN filter used for stochastic 
filtering. Although this filter is able to reduce noise, because 
of its stability being highly sensitive to model parameters, 
in case of imperfect tuning, the system may fail to track the 
signal and its output may saturate to absurd values.

In the architecture used in this paper (Fig. 50), the 
spatial neurons are excited by the input signal y(t). The 
difference between the output of spatial neuronal network 
and the pdf. The filtered estimate is calculated using MLE 
as ( ) ( ) ( )2 2ˆ , ,y t E x t x x t dxψ ψ = =

  ∫ , where x  represents 
the different possible values which may be taken up by 
the random process y. The variable x can be interpreted as 
the discrete version of quantum space with the resolution 
within this discrete space being referred to as δx (taken as 
0.1). Thus, all the possible values of x will construct the 
number of spatial neurons N for RQNN model. 

On the basis of MLE, the weights are updated and 
a new potential V (x, t) is established for the next time 
evolution. It is expected that the synaptic weights W(x, 
t) evolve in such a manner so as to drive the ψ function 
to carry the exact information of pdf of the filtered signal 
( )ŷ t . To achieve this goal, the weights are updated using 

the following learning rule:

( ) ( ) ( ) ( )( )2,
, , 1d

W x t
W x t x t t

t
β βφ ϑ

∂
= − + +

∂
, (9)

where β is the learning rate, and βd is the delearning 
rate. Delearning is used to forget the previous information, 
as the input signal is not stationary, rather quasistationary 
in nature.

The second right-hand side term in the above equation 
maybe purely positive and so in the absence of delearning 
term, the value of synaptic weights W may keep growing 
indefinitely. Delearning thus prevents unbounded increase 
in the values of the synaptic weights W and does not let 
the system become unstable. The variable v(t) in the sec-
ond term is the difference between the noisy input signal 
and the estimated filtered signal, thereby representing the 
embedded noise as ( ) ( ) ( )ˆt y t y tϑ = − . If the statis-
tical mean of the noise is zero, then this error correcting 
signal v(t) has less impact on weights, and it is the actual 
signal content in input y(t) that influences the movement 
of wave packet along the desired direction which results 
in helping the goal of achieving signal filtering.

Figure 51. RQNN model framework for EEG signal en-
hancement

Figure 51 shows the position of RQNN model within 
the BCI system. The raw EEG signal is fed one sample 
at a time and an enhanced signal is obtained as a result of 
filtering process. The raw EEG is first scaled in the range 
0–2 before it is fed to the RQNN model. During the off-
line classifier training process, all the trials from a particu-
lar channel of EEG are available. Therefore, the complete 
EEG is scaled using the maximum of amplitude value from 
that specific channel. During the online process, the EEG 
signal is approximately scaled in the range 0–2 using the 
maximum of amplitude value obtained from the off-line 
training data of that specific channel. The net effect is that 
the input signal during the online process is also maintained 
approximately in the region 0–2, and this enables the track-
ing of sample using a reduced range of the movement of 
wave packet. In addition, the number of spatial neurons has 
also been reduced along the x-axis from an earlier value of 
401 to 612 in the present case. The primary assumption in 
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doing this is that the unknown nonstationary and evolving 
EEG signal during the evaluation stage will stay within the 
bound of the range of 61 spatial neurons which can cover 
the input signal range up to three. If the scaling of the input 
signal is not implemented, then the number of neurons re-
quired to cover the input signal range will be larger thereby 
leading to an increased computational expense [45, 46].

7. Conclusion

One of the important tasks of the intelligent robust control 
systems is a control in unforeseen / unsharp situations. 
Modern solutions to this problem already make it possi-
ble to achieve good results, but such systems cannot be 
trained in online. Thus, the set of response methods to 
events is extremely limited. With the quantum computing 
and, in particular, the fuzzy quantum algorithm, it is possi-
ble to solve such problems by increasing the speed of deep 
machine learning. The use of quantum fuzzy inference can 
increase robustness without the expense of a time. One 
of the most optimal solutions in the design of intelligent 
robust control systems is the formation of knowledge bas-
es for a variety of fixed control situations. The goal of a 
quantum regulator is to combine the knowledge bases ob-
tained using the SCO into self-organizing quantum fuzzy 
regulators. Quantum deep machine learning on quantum 
artificial network and optimization on quantum genetic al-
gorithm are perspective and applied examples in cognitive 
intelligent robotics in Part II considered.

Appendix 1: Emotion, pain and cognitive control 
and cingulate cortex [50]. 

It has been argued that emotion, pain and cognitive con-
trol are functionally segregated in distinct subdivisions 
of the cingulate cortex. However, recent observations 
encourage a fundamentally different view. In humans 
and other primates, the cingulate — a thick belt of cor-
tex encircling the corpus callosum — is one of the most 
prominent features on the mesial surface of the brain (Fig. 
A1.1a). Early research suggested that the rostral cingulate 
cortex (Brodmann’s ‘precingulate’; architectonic areas) 
plays a key part in affect and motivation (Fig. A1.1b). 
More recent research has enlarged the breadth of functions 
ascribed to this region; in addition to emotion, the rostral 
cingulate cortex has a central role in contemporary models 
of pain and cognitive control. Work in these three basic 
domains has, in turn, strongly influenced prominent mod-
els of social behavior, psychopathology and neurological 
disorders. The most basic question is whether emotion, 
pain and cognitive control are segregated into distinct sub-
divisions of the rostral cingulate or are instead integrated 
in a common region. There is a growing recognition that 

aMCC might implement a domain-general process that is 
integral to negative affect, pain and cognitive control.

Figure A1.1 Divisions of the human rostral cingulate 
cortex

Figure A1.1 shows the divisions of the human rostral 
cingulate cortex (The rostral cingulate has been parti-
tioned on physiological and anatomical grounds at spatial 
scales ranging from the macroscopic to the molecular). 

The map depicts the results of a coordinate-based me-
ta-analysis (CBMA) of 380 activation foci derived from 
192 experiments and involving more than 3,000 partici-
pants. The uppermost panel shows the spatially normalized 
foci for each domain. The next panel shows thresholded 
activation likelihood estimate (ALE) 38,214 maps for each 
domain considered in isolation. The two lowest panels de-
pict the region of overlap across the three domains.

Figure A1.2. Negative affect, pain and cognitive control 
activate a common region
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Recent imaging data (see. Fig. A1.2) implicate the an-
terior cingulate cortex (ACC) and the midcingulate cortex 
(MCC) in the regulation of autonomic activity and the 
perception and production of emotion. 

Similarly, neuronal recordings demonstrate that MCC 
is responsive to emotionally charged words in humans. 
Especially robust links have been forged between activ-
ity in the anterior subdivision of the MCC (aMCC; Fig. 
A1.1c) and the experience of more intense states of neg-
ative affect, as with the anticipation and delivery of pain 
and other kinds of aversive stimuli. 

Importantly, meta-analyses that have examined imag-
ing studies of negative affect, pain or cognitive control in 
isolation suggest that each of these domains consistently 
activate aMCC. Therefore, based on such observations, 
there is a growing recognition that aMCC might imple-
ment a domain-general process that is integral to negative 
affect, pain and cognitive control. Collectively, these 
observations refute claims that cognition and emotion are 
strictly segregated into different divisions of the rostral 
cingulate cortex — claims that were heavily based on 
an early meta-analysis of imaging studies. Instead, these 
observations show that aMCC is consistently activated by 
the elicitation of negative affect, pain and cognitive con-
trol. of course, these results do not preclude the possibility 
that this region contributes to other psychological process-
es, such as reward motivated behavior. Furthermore, they 
do not address whether segregation is present at finer lev-
els of analysis — for example, in individual participants 
or neurons.

Similarly, segregation may be present on a finer times-
cale than that resolved by conventional imaging tech-
niques. Nevertheless, what these results do demonstrate is 
that conventional functional imaging studies of negative 
affect, pain and cognitive control all consistently report 
activation in this subdivision of rostral cingulate cortex. 
We refer to the cluster of activation overlap obtained in 
our meta-analysis as aMCC (Fig. A1.2). Nevertheless, 
the relatively dorsal position of the cluster within aMCC 
(approximately corresponding to architectonic areas; 
Fig A1.1b) is consistent with the provisional location of 
the rostral cingulate zone (RCZ). This suggests that it is 
specifically RCZ that is commonly activated by imaging 
studies of negative affect, pain and cognitive control.

Appendix 2. Quantum models of cognition and of 
EEG data processing 

Two of the most surprising properties of quantum systems 
are state superposition and entanglement. Superposition is 
the coexistence of different state values of the same par-
ticle at the same time. Superposed states are reduced to a 

single one by the act of measurement or by other kinds of 
interaction with the macro-environment, which are called 
decoherence. Entanglement is a strong state correlation 
between spatially separated particles. 

Example A2.1. In quantum mechanics a quantum state 
A described by wave function and probability amplitude 

( )A xψ . According to Born rule probability of macro state 
A is defined as ( ) 2

A xψ . For two quantum states A and B 
probability amplitude is defined as 

( ) ( ) ( ) ( ) ( ) ( )2 2 2
2 cosA B A B A Bx x x x x xψ ψ ψ ψ ψ ψ θ+ = + + ,

 (1)

where θ  is the quantum phase difference at (A; B).
Let us consider two slit experiment. Suppose the ex-

periment is carried out with only one slit opened, say Slit 
1. The particles target the detecting screen and the exper-
imental outcome is represented by a curve ( )1P x  in a 
way that ( )1P x  and ( )xd  represents the probability of a 
particle landing in the range (x, x + δx). If this slit cover 
and open the other, we will obtain a curve ( )1P x  similar 
to ( )1P x . This is of course exactly what we expect when 
performing such experiment at a macroscopic level. Final-
ly, admit that both slits are opened. We would then observe 
that the particles would sometimes come through Slit 1 
and sometimes through Slit 2, varying between the two 
possibilities in a random way. This will produce two piles 
behind each slit which constitute the sum of the results that 
would be observed with one or the other slit opened. Con-
sequently, we should have ( ) ( ) ( )12 1 2P x P x P x= + . Instead, 
according to quantum mechanics, as mentioned above, 

( ) ( ) ( ) ( ) ( ) ( ) ( )12 1 2 1 2 1 22 cosP x P x P x P x P x P x P xq= + + ¹ + . 
We obtain what it is called a typical quantum in-

terference pattern where a new term is given by 
( ) ( )1 22 cosP x P x q . Mental events cause neural events 

analogously to the manner in which probability fields of 
quantum mechanics are causatively responsible for physi-
cal events. Probabilistic brain feature to do conscious pre-
dictions does not relate rules of classical probability but 
instead quantum probabilistic rules. 

Experiment [47]. Forty healthy children with ages be-
tween 6 and 11 years (mean age 8 ± 1.7) were randomly 
recruited in a commercial area, after voluntary acceptance 
to participate in the experiment and written signature of 
parent’s agreement. They were then randomly allocat-
ed into two subgroups-each composed of 10 subjects of 
each sex-identified as groups A and B. The first group 
was shown a picture displayed on a tablet screen (Figure 
A2.1), and then asked if they felt more prompt to attack 
the represented element or to withdraw from it. 
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Figure A2.1 Presented picture in experiment.

The same picture shown to group B however, before 
submitting them to the precedent task, asked them to first 
identify the evoked feelings through the question “does 
this picture scare you or make you angry?”. 

In this manner, in such group B objectively marked 
more integration of emotion and cognition respect to 
group A. With this experiment, it was intention to demon-
strate a quantum interference effect. Therefore, in Group 
A introduced a dichotomous variable A, taking the possi-
ble two values, +1 or −1. The probabilities ( )1P A=+  
and ( )1P A=-  were then estimated. To Group B intro-
duced a new variable B, with possible values B = +1 or B 
= −1, before submitting them to the task already proposed 
to Group A. In this case the following probabilities were 
estimated 

P B P B P A B

P A B P A B

(

(

= + = - = + = +

= + = - = - = +

1 , 1 , 1 1 ,

1 1 , 1 1

) (

) (

) (

)

)

and ( )1 1P A B=- =- . If, during the perception 
and cognition effort of the subjects submitted to the tasks, 
quantum mechanics did not apply, classical Bayes’s theo-
rem should hold and we should obtain,

+ = - = + = -

P A P B P A B(

P B P A B(

= + = = + = + = +1 Group A 1 1 1)(

1 1 1 Group B) (

) (

)(

) (

)

)

and a similarly expression for ( )1P A=- . If instead 

the superposition principle and quantum interference were 
to be manifested in this experiment - thus confirming a 

role for quantum mechanics during the perception and the 
cognition of children, should have 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 1 1 1 1 1

                     2 1 1 1 1 1 cos

P A P B P A B P B P A B

P B P A B P A B q

=+ = =+ =+ =+ + =- =+ =-

+ =+ =+ =+ =- =+

 (2)

Implying the presence of the quantum interference term

( ) ( ) ( )2 1 1 1 1 1 cosP B P A B P A B q=+ =+ =+ =- =+ .

The following results are obtained:

Using the formula previously outlined, a value 
cos 0.29011, 1.865146q q+ +=- = . for ( )1P A=+  obtained.

Thus, children’s perceptive-cognitive performance is 
subject to quantum interference. This conclusion, already 
achieved with adult subjects, strengthens the role of quan-
tum cognition in the study of human cognitive operations, 
eventually leading to the development of a more complete 
grounded theory of the mind which can help better under-
stand not only human personality, but also mental disor-
ders. 

Example A2.2. Let us now explicitly construct a quan-
tum mechanical model in complex Hilbert space for the 
pair of concepts Fruit and Vegetable and their disjunction 
“Fruit or Vegetable”, and show that quantum interference 
models the experimental data gathered [48]. In Fig. A2.2 
the data for “Fruits or Vegetables” are graphically repre-
sented. 

Figure A2.2 The probabilities of a person choosing the 
exemplar k as an example of `Fruits or Vegetables' [2]

Figure A2.2 shows the probabilities ( ) or kA Bρ  of a 
person choosing the exemplar k as an example of `Fruits 
or Vegetables' are fitted into the two-dimensional quantum 

wave function ( ) ( )( )1 , ,
2 A Bx y x yψ ψ+ , which is the 

normalized superposition of the wave functions (a); and A 
three-dimensional representation of the interference land-
scape of the concept `Fruits or Vegetables' as shown in 
Fig. A2.2 a (b).

This is just a normalized sum of the Gaussians, 
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since it is the probability distribution corresponding to 

( ) ( )( )1 , ,
2 A Bx y x yψ ψ+ , which is the normalized su-

perposition of the wave functions. The numbers are placed 
at the locations of the different exemplars with respect to 
the probability distribution 

+

1 1
2 2
ψ ψ φ

ψ ψ ψ ψ

A B

A B A B

(

(

x y x y x y

x y x y x y x y

, , cos ,

, , , ,

)

) + = +

(

(

)

) 2 2 2

( )

( ) ( )

where ( ),x yφ  is the quantum phase difference at (x; 
y). The values of ( ),x yφ  are given for the locations of 
the different exemplars in [2]. 

The interference pattern shown in Fig. A2.2 is very 
similar to well-known interference patterns of light pass-
ing through an elastic material under stress. In considered 
case it is the interference pattern corresponding to “Fruits 
or Vegetables” The interference pattern is clearly visible. 
The model shows how “interference of concepts” explains 
the effects of under extension and overextension when 
two concepts combine to the disjunction of these two con-
cepts. 

This result supports hypothesis that human thought has 
a superposed two-layered structure, one layer consisting 
of classical logical thought and a superposed layer con-
sisting of quantum conceptual thought. Possible connec-
tions with recent findings of a grid-structure for the brain 
are analyzed, and influences on the mind / brain relation, 
and consequences on applied disciplines, such as artificial 
intelligence and quantum computing [49].

Example A2.3. The presence of typically quantum 
effects, namely superposition and interference, in what 
happens when human concepts are combined, and provide 
a quantum model in complex Hilbert space that represents 
faithfully experimental data measuring the situation of 
combining concepts. Left panel on the Fig. A2.3 portrays 
major characteristic substrate (e.g., receptors, organelles, 
etc.) involved in Ca2+ -mediated response regulation of 
arbitrary glutamatergic neurons, including, but not limited 
to, substrate critical for synaptic plasticity, cellular ener-
getics, immune protection, homeostasis, gene expression, 
biosynthesis, molecular trafficking, cytoskeletal organiza-
tion, and cell fate.

Similar mechanisms affect both pre- and post-synaptic 
neurons, but, for descriptive purposes, post-synaptic cell 
activity is emphasized. Ca2+ entry into the post-synaptic 
neuron through voltage-gated receptor (VGC), ligand-gat-
ed receptor (LGC), and transient potential receptor (TRP) 
channels and stimulated inositol 1,4,5-trisphosphate (IP3) 
production by activated G-protein coupled receptors 

(GCR) help initiate cytosolic CICRs from integral IP3  
receptors (IP3 R) located along the endoplasmic reticulum 
(ER) membrane. CICRs may cause traveling waves of 
varying velocities and patterns which emulate search rou-
tines capable of eliciting/suppressing appropriate response 
regulation from different cellular compartments.  Lower 
right panel illustrates CICR saltatory and continuous 
waves. Saltatory Ca2+ waves and the information they 
carry conduct at velocities (V) proportional to the classi-
cal Ca2+   diffusion coefficient (D).

Whereas, faster continuous Ca2+ waves and the infor-
mation they transmit move at velocities proportional to 
the square-root of the classical Ca2+ diffusion coefficient. 
Coefficient D of continuous waves for either intercluster 
or intracluster diffusion is assumed to be up to orders 
of magnitude greater than that for saltatory waves. The 
quadratic disparity in the velocities of saltatory and con-
tinuous waves corresponds to the root-rate increase of in-
formation processing by Grover’s quantum algorithm over 
classical algorithms. 

Figure A2.3. Calcium-induced calcium reactions (CICRs) 
emulate Grover quantum search algorithm [49]

Upper right panel in Fig. A2.3 shows schematic of 
Grover’s quantum algorithm. The algorithm takes as 
input n qubits, upon which it performs Hadamard trans-
formations ( nH ⊗ ) and Grover’s operation (GO) to find 
a target m of M solutions stored in database N. Regard-
less of whether  one or more consultations of the Oracle 
are needed, Grover’s quantum algorithm finds the target 
solution within ( )O N  algorithmic steps or operations 
O. Additional abbreviations: arachidonic acid (AA), Ca2+ 
binding molecule (CBM), Ca2+ uniporter (Uni), diacylgy-
cerol (DG), Golgi apparatus (Golgi), L-glutamate (L-Glu), 
nucleus (Nucl), mitochondria (Mito), nitric oxide (NO), 
nitric oxide synthase (NOS), phospholipase A2  (PLA2 ), 
phospholipase C (PLC), plasma-membrane Ca2+ ATPase 
(PMCA), ryanodine receptor (RyR), sarcoplasmic-endo-

DOI: https://doi.org/10.30564/aia.v2i1.1323



28

Artificial Intelligence Advances | Volume 02 | Issue 01 | April 2020

Distributed under creative commons license 4.0

plasmic-reticulum Ca2+ ATPase (SERCA), Na+ / Ca2+ 
exchanger (Exch), synaptic vesicle (SV).
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