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Redundant robotic arm models as a control object discussed. Background 
of computational intelligence IT on soft computing optimizer of knowledge 
base in smart robotic manipulators introduced. Soft computing optimizer is 
the sophisticated computational intelligence toolkit of deep machine learn-
ing SW platform with optimal fuzzy neural network structure. The methods 
for development and design technology of control systems based on soft 
computing introduced in this Part 1 allow one to implement the principle 
of design an optimal intelligent control systems with a maximum reliability 
and controllability level of a complex control object under conditions of 
uncertainty in the source data, and in the presence of stochastic noises of 
various physical and statistical characters. The knowledge bases formed 
with the application of soft computing optimizer produce robust control 
laws for the schedule of time dependent coefficient gains of conventional 
PID controllers for a wide range of external perturbations and are maximal-
ly insensitive to random variations of the structure of control object. The 
robustness is achieved by application a vector fitness function for genetic 
algorithm, whose one component describes the physical principle of min-
imum production of generalized entropy both in the control object and the 
control system, and the other components describe conventional control 
objective functionals such as minimum control error, etc. The application 
of soft computing technologies (Part I) for the development a robust in-
telligent control system that solving the problem of precision positioning 
redundant (3DOF and 7 DOF) manipulators considered. Application of 
quantum soft computing in robust intelligent control of smart manipulators 
in Part II described. 
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1. Introduction

The approach based on Soft Computing Optimiz-
er (SCO) for design intelligent control systems 
(ICS) allows one to design an optimal ICS with a 

maximum reliability and controllability level for the set 
of dynamic systems under the presence of uncertainty in 

the source data; to reduce the number of sensors both in 
the control channel and in the Measurement System (MS) 
without loss of precision control quality and accuracy. 
The robust ICS based on this approach requires minimum 
source data on both the behavior of the Control Object 
(CO) and the external perturbations. SCO is the SW tool-
kit of deep machine learning platform with optimal struc-
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ture of fuzzy neural network (FNN).
Let us consider the design features of the ICS IT struc-

ture and the SCO of knowledge base (SCOptKBTM). 
Analysis of the simulation results made it possible to 
establish that the application of the FNN-based technique 
does not guarantee the required accuracy achievement of 
the Teaching Signal (TS) approximation. As a result, the 
level of sensitivity of CO increases, and the reliability of 
ICS decreases. SCO based on soft computing techniques 
increases the level of ICS reliability. Consider an SCO 
structure containing the optimal FNN configuration. The 
main features of SCO, the design of reliable Knowledge 
Bases (KB) of Fuzzy Controllers (FC) are described in the 
Appendix. The methodology of fuzzy and joint stochastic 
modeling of control system based on SCO is discussed 
to assess the stability and limitations of ICS. The effec-
tiveness of SCO-based control processes using specific 
typical examples (standards) of COs such as a robotic 
manipulator is demonstrated under conditions of incom-
plete information about the CO structure and unpredicted 
control situations.

1.1. Background of physical laws ICS design

Figures 1 and 2 demonstrate typical criteria for control 
quality, their interrelations with different types of com-
putations and simulation types, as well as the hierarchy 
of levels of control quality depending on the required 
level of intelligence of the Automatic Control System 
(ACS).

Figure 1. The interrelation between the types and hierar-
chical levels of control quality criteria

Figure 2. The interrelation between the control quality 
criteria, types of intelligent computing, and simulation in 

designing robust KBs of the FC

The key point of this design IT is the use of the method 
of eliciting objective knowledge about the control process 
irrespective of the subjective experience of experts and 
the design of objective KBs of a FCs which is principal 
component of a robust ICS.

Figure 3 presents the main components and their inter-
relations in the information design technology based on 
new types of computing (soft and quantum computational 
intelligence).

Figure 3. The process of development and creation of 
information technology for design an integrated ICS

A robust KB of the FC is the result of application con-
sidered technology. We can change the property of the 
system without changing the intrinsic passive property 
using the generalized canonical transformation. Indeed, if 
a given system fails to satisfy the stabilizable conditions 
by the feedback: positive definiteness of the Hamiltonian 
function and zero-state detectability, then still we may be 
able to transform the system into an appropriate Hamil-
tonian system which can be stabilized by the intelligent 
feedback.

DOI: https://doi.org/10.30564/aia.v2i1.1339
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Figure 4 shows the role of thermodynamic trade-off in 
robust control design.

Figure 4. Physical law of intelligent control as back-
ground of ICS design technology

Remark. This approach was firstly presented in [1]. It 
was introduced the new physical measure of control qual-
ity to complex non-linear controlled objects described as 
non-linear dissipative models. This physical measure of 
control quality is based on the physical law of minimum 
entropy production rate in ICS and in dynamic behavior 
of complex object. The problem of the minimum entropy 
is equivalent with the associated problem of the maxi-
mum released mechanical work as the optimal solutions 
of corresponding Hamilton-Jacobi-Bellman equations. It 
has shown that the variational fixed-end problem of the 
maximum work W  is equivalent to the variational fixed-
end problem of the minimum entropy production. In this 
case both optimal solutions are equivalent for the dynamic 
control of complex systems and the principle of minimum 
of entropy production guarantee the maximal released me-
chanical work with intelligent operations. This new phys-
ical measure of control quality applied as fitness function 
of Genetic Algorithm (GA) in optimal control system de-
sign. The introduction of physical criteria (the minimum 
entropy) can guarantee the stability and robustness of 
control. This method differs from aforesaid design method 
in that a new intelligent global feedback in control system 
introduced. The interrelation between the stability of CO 
(the Lyapunov function) and controllability is used. The 
basic peculiarity of the given method is the necessity of 
model investigation for CO and the computing of entropy 
production rate through the parameters of the developed 
model. The integration of joint systems of equations (the 
equations of mechanical model motion and the equations 
of entropy production rate) enable to use the result as the 
fitness function in GA as a new type of CI. Acceleration 
method of integration for these equations is described 
in [2].

A continuous-time system in the feedback intercon-
nection with the resetting controller is considering in [3]. 
Every time the emulated energy of the controller reaches 
its maximum, the states of the controller reset in such a 
way that the controller's emulated energy becomes zero. 
Alternatively, the controller states can be made reset every 
time the emulated energy is equal to the actual energy of 
the plant, enforcing the second law of thermodynamics 
that ensures that the energy flows from the more energetic 
system (the plant) to the less energetic system (the con-
troller). The proof of asymptotic stability of the closed-
loop system in this case requires the non-trivial extension 
of the hybrid invariance principle, which in turn is a very 
recent extension of the classical Barbashin-Krasovskii 
invariant set theorem. The subtlety here is that the reset-
ting set is not a closed set and as such a new transversality 
condition involving higher-order Lie derivatives is need-
ed. A system theoretic foundation for thermodynamics is 
developed in [4].

Main goal of robust intelligent control is support of 
optimal trade-off between stability, controllability and 
robustness with thermodynamic relation as thermody-
namically stabilizing compensator (see Figure 4). The 
hybrid energy dissipating controller provides effectively 
one-way energy transfer between the CO and the con-
troller [4].

The hybrid controller with resetting set is a thermody-
namically stabilizing compensator. Analogous thermody-
namically stabilizing compensators can be constructed for 
lossless dynamical systems. Detail description of interre-
lations between energy-based and thermodynamic-based 
controller design is given in [4, 5].

On Figure 4 joint in analytic form different measures 
of control quality such as stability, controllability, and 
robustness supporting the required level of reliability and 
accuracy. Consequently, the interrelation between the Lya-
punov stability and robustness is the main physical law 
for designing ACS. This law provides the background for 
an applied technique of robust ICS’s (with different levels 
of intelligence designing KB’s) based on the application 
based of soft computing technologies.

2. The structure of ICS design IT

The general hierarchical structure and stages of execution 
of information technology embedded in the process of 
design of integrated fuzzy ICS for autonomous and inter-
connected COs with different physical nature (so called 
port-controlled Hamiltonian systems) is shown in Fig-
ure 5.
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Figure 5. General hierarchical structure of information 
design technology of robust KBs for integrated fuzzy ICS

This technology uses computational intelligence tool-
kit for design of KBs in the FC of the lower executive 
level. The main role in the structure of this technology 
is played by the development of robust KBs based on 
corresponding optimizers (see the block “Information 
design technology” labeled by dashed lines). Note some 
structural and functional specific features of design stag-
es in Figure 5.

At the first stage the technology of design of optimiz-
er KBs with soft computing SCOptKB™ forms robust 
KBs for fixed learning control situation. At the second 
stage quantum optimizer QCOptKB™ used to realize the 
process of design of the generalized robust KB of hybrid 
fuzzy PID controllers operating in contingency control 
situations.

Thus, the process of design of robust KBs consists 
of two interconnected stages based on soft and quantum 
computing, respectively. Functionally, at the first design 
stage (see Figure 5) individual KBs for two (or more) FCs 
for particular control situations (learning situations) are 
formed. Optimizer of KBs are used with the technology 
of soft computing and fuzzy stochastic simulation. The 
optimizer of KB SCOptKB™ was developed in [6, 7] as 
the new toolkit of computational intelligence based on 
the technology of soft computing (first design stage), in-
cluding the GAs and FNNs for realization of optimization 
and learning procedures (universal robust approximation) 
of production rules in KBs, respectively. The toolkit was 
used for extraction of objective knowledge from the dy-
namic behavior of weakly structured models of complex 
COs and design of robust KBs in FC with deep knowl-
edge representation (see Figure 6).

Figure 6. Structure of computational intelligence toolkit 
of design IT

It should be underlined that the toolkit of Knowledge 
Base Optimizer (KBO) realizes in the stochastic fuzzy 
simulation global intelligent feedback (new type of feed-
back [8]), which makes it possible to objectively extract 
and compress valuable information from the dynamic 
behavior of the CO and applied controller type. For guar-
anteed achieving the required robustness level and control 
quality in the form of fitness functions of GA information 
and physical criteria are introduced (information- ther-
modynamic criterion of optimal distribution of physically 
achievable levels of stability, controllability, and robust-
ness in ICSs [6, 8]). The optimization of control processes 
with required quality and robustness levels is achieved for 
fixed search space and type of fitness functions of the GA. 
The developed new toolkit of computational intelligence 
is the generalization of methodology and methods in [5, 9-11].

The application of the self-organization principle based 
on quantum computing is the algorithmic essence of the 
second stage for increasing the robustness of the KB. 
The block diagram of design of robust KBs based on the 
principle of self-organization of ICSs (using quantum ef-
fects) and the structure of information flows in the design 
technology are shown in Figure 7; in this figure the main 
objectives and content of stages of design technology 
(Figure 5) are explained.

The structure and software support of quantum KBO 
QCOptKB™ are considered below in Part II. Let us eluci-
date some specific features and technical details of realiza-
tion of technologies of intelligent computing in processes 
of design of robust KBs shown in Figures 5 and 6.

Studies performed in [6, 12] demonstrated the existence 
of a rather broad domain of preservation of robustness of 
individual KBs designed at the first stage based on op-
timizer KBs. The introduction of the technology of soft 
computing (whose kernel is comprised of GAs and FNNs) 
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extended the domains of efficient application of FCs due 
to the addition of new functions in the form of learning 
and adaptation. Multiple results of simulation and practi-
cal application showed [6, 13, 14] that for random events and 
control situations with known perturbation probability dis-
tribution density functions optimizer KBs with soft com-
puting can be used to design robust KBs in FCs, which 
do not lose the robustness property in many contingency 
control situations.

Figure 7. Block diagram of design of robust KBs and 
structure of information flows in technology of design of 
robust KBs based on the principle of self-organization of 

ICS

The SCO is a new, efficient software tool for KBs de-
sign of robust ICSs based on soft computing with the use 
of new optimization criteria (in the form of new fitness 
functions of Gas; see in details Appendix). As these crite-
ria, we take the thermodynamic and information-entropy 
criteria represented in Table 1.

Table 1. The types and the role of the fitness function of 
the GA in the SCO

The structure of the SCO for design robust ICSs is pre-

sented in Figure 8.

Figure 8. Structure of SCO of knowledge base 
SCOptKBTM

The SCO consists of interrelated GA1, GA2, GA3, 
which optimize particular components of KB.

The input of the SCO is TS, which can be obtained ei-
ther at the stage of stochastic simulation of the behavior of 
the controlled plant (with the use of its mathematical mod-
el) or experimentally, i.e., directly from the measurement 
of the parameters of the physical model of the controlled 
plant.

Figure 9 also presents the successive implementation of 
the stages of designing the SCO.

Figure 9. The algorithm of interaction of operations in the 
SCO

Let us specify the steps of the optimization algorithm.
Step 1. Choice of the model of fuzzy inference. The user 

specifies the particular type of model of fuzzy inference 
(Sugeno, Mamdani, etc.) and the number of input and out-
put variables.

Step 2. Creation of linguistic variables. With the ap-
plication of GA1, an optimal number of membership 
functions (MF) is determined for each input linguistic 
variable, and an optimal form for the representation of its 
MFs (triangular, Gaussian, etc.) is chosen.

Step 3. Design of the rule base. At this stage, a special 
algorithm for selection of the most robust rules is used in 
accordance with the following two criteria:

1) “total” criterion: choose only the rules that satisfy 

DOI: https://doi.org/10.30564/aia.v2i1.1339



36

Artificial Intelligence Advances | Volume 02 | Issue 01 | April 2020

Distributed under creative commons license 4.0

the following condition: _
l
total fsR TL≥ , where TL (thresh-

old level) is a given (manually or chosen automatically) 

level of rule activation, and _
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where kt  are time instants, 1,...,k N= , and N is equal 
to the number of points in the control signal; ( )l

jk kxµ , 

1,...,k n=  are membership functions of input variables, l 
is the index of the rule in the KB; and symbol “П” means 
the operation of fuzzy conjunction (in particular, it may be 
interpreted as a product);

2) “maximum” criterion: choose only the rules that sat-

isfy the condition max ( )l
fst

R t TL≥ .

Step 4. Optimization of base rules. With the help of 
GA2, the right sides of rules of the KB defined at Step 3 
are optimized. At this stage, a solution that is close to the 
global optimum is found (minimum TS approximation 
error). With the application of the next step, this solution 
can be improved locally.

Step 5. Adjustment of the base of rules. With the help 
of GA3, the left and right sides of the rules of the KB are 
optimized; i.e., optimal parameters of the MFs of the in-
put/output variables are chosen (from the viewpoint of 
a given fitness function of the GA). In this optimization 
process, three different fitness functions chosen by the 
user (steps 5.1 and 5.2 in Figure 9) are used. In addition, 
there is also the opportunity to adjust the KB with the help 
of conventional error-back-propagation method (step 5.3 
in Figure 9).

Verification (testing) of the designed knowledge base. 
Constructed at stages 4, 5.1, 5.2, and 5.3 on Figure 9 KBs 
of the ICS are tested from the viewpoint of robustness and 
control quality. For further use, the best functionally KB 
is chosen, which is tested in the functional mode in online.

Examples of KBs simulation on the basis of efficient 
application of the SCO below on redundant robotic ma-
nipulators considered.

2.1. Software implementation of the soft comput-
ing optimizer

The SCO was implemented as a software system [9, 15-

17]. As a programming language, C++ (Microsoft Visual 
Studio.net) was chosen. The algorithmic part devoted to 
the implementation of the main stages of optimization al-
gorithms was implemented as a platform-independent tool 
(see, Appendix). The graphical interface presented in Fig-
ure 10 was developed for operating systems of the Win32 

family and was tested on personal computers with differ-
ent versions of the Windows operating system. The main 
menu of the optimizer was divided into several sections 
(Figure 10) devoted to execution of the main functions 
and visualization of the results of algorithm operation.

Figure 10. The main menu of the SCO

In the left section of the main menu, a group of buttons 
is located. These buttons run different optimizing compo-
nents such as following:

• creation of linguistic variables (Create variables) with 
the help of GA1;

• algorithm of generation of the predicate part of fuzzy 
rules (Create rule base);

• GA2 for optimization of the consequence part of fuzzy 
rules (Optimize rules);

• GA3, which represent the algorithm of readjustment 
of the parameters of linguistic variables for a more accu-
rate approximation of TS by the obtained rules (Refine 
KB). The error-back-propagation algorithm is also includ-
ed (Back propagation), which guarantees a given accuracy 
of the approximation of TS of the designed KB.

In the central section of the main menu of the optimiz-
er, the basic information about the designed fuzzy system 
is located, such as the type, address of the main file of the 
KB, the number of input and output variables, as well as 
generic information about the TS. Here, can also find the 
editor of linguistic variables and the editor of rules.

Figure 11 presents the editor of linguistic variables. 
The membership functions of fuzzy variables can be edit-
ed both manually, by dragging the corresponding values, 
and by manual input of parameters.

Figure 11. The editor of linguistic variables

DOI: https://doi.org/10.30564/aia.v2i1.1339
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Figure 12 presents the editor of the base of fuzzy rules. 
The fuzzy rules are structurally represented in the form of 
FNN. The number of neurons of the first layer corresponds 
to the number of input signals, while the number of neu-
rons of the second layer corresponds to the total number 
of MFs involved in the linguistic variables describing the 
corresponding input signals.

Figure 12. The editor of the base of fuzzy rules

The number of neurons of the third layer is given by 
the set of fuzzy rules involved in a given KB. To choose a 
particular rule, it is necessary to choose the corresponding 
neuron of the third layer. The chosen rule can be further 
changed and appended.

In the bottom part of the main menu of the optimizer, 
the window for the output of system messages is locat-
ed, in which the parameters of algorithms and all actions 
made by the user are copied. The constantly updated re-
sult of fuzzy inference is output together with the approx-
imating TS. Any actions aimed at a change of parameters 
of the designed KB results in updating the approximation 
results. Thus, the user can visually control the effect of 
modification of parameters of the KB on the result of the 
approximation.

In the design of this system, it was initially planned to 
use it together with Matlab, which allows one to flexibly 
compute the values of the fitness functions of GA. Note 
that, together with the TS, it is possible to apply the re-
sults of numerical integration of models of the controlled 
plant executed in the Simulink environment controlled 
by FC with the synthesized SCO. An approach that al-
lows one to compute the fitness function in Matlab with 
the subsequent transfer of the results to the GA of the 
optimizer was developed [18]. For this purpose, the cor-
responding library of units of the Simulink environment 
was designed. This library supports the loading of the KB 
and fuzzy inference (in the simulation mode), as well as 
the communication with the optimizer (in the optimiza-
tion mode). The unit of fuzzy inference for Simulink was 
written in C++, in the form of the corresponding s -func-

tion of Simulink. To simulate fuzzy inference (without 
using Simulink models), the corresponding *.mex file was 
prepared, which allows one to obtain the results of fuzzy 
inference with the help of the command line and executed 
scripts of Matlab. The program is compatible with Matlab 
6.1 and subsequent versions.

Since the main chain in the technology for designing 
ICSs is the stage of designing the corresponding KB, the 
design of robust KBs under the types of unpredicted con-
trol situations specified above allows one to establish in 
a general the accordance between the conditions of func-
tioning of the controlled plant and the robustness level 
required for the ICS. Consider the results of simulation of 
robust structures of ICSs with efficient application of the 
SCO.

Remark. We are described a methodology for design-
ing robust KBs and the corresponding software tools in 
the form of SCO based on soft computing, which allows 
one to solve the problem posed within the framework of 
processes of learning and adaptation. In what follows, we 
consider particular examples of application of the SCO 
in the problems of testing and evaluating the levels of 
structural robustness of the designed ICS based on the 
joint technique of stochastic and fuzzy simulation. As 
simulation objects, we chose benchmarks that allow us to 
demonstrate clearly the efficiency and advantage of the 
developed tools for designing the SCO.

The employed models of the controlled plant possess 
both local and global dynamic instabilities, high sensitiv-
ity to variation of the initial conditions, parameters of the 
CO structure, and random parametric, internal, and exter-
nal perturbations. We present the results of simulation and 
practical recommendations for using them in the problems 
of designing robust ICS. The methodology of stochastic 
simulation is described in short below.

2.2. A system of stochastic fuzzy simulation of ro-
bust intelligent control systems

Fuzzy simulation of robust KBs with the SCO is based on 
the process of extraction of valuable information by sim-
ulation and investigation of individual (statistically rep-
resented) informative trajectories describing the behavior 
of the controlled plant and a conventional PID controller 
under the effect of stochastic processes. Within the scope 
of correlation theory, stochastic processes, which are 
different in their statistical nature (i.e., having different 
density functions of probability distribution), can be in-
distinguishable in their correlation properties. The density 
function of probability distribution is the complete statis-
tical characteristics of stochastic processes. Therefore, the 
output process of the forming filter simulating the external 
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environment must be represented by the informatively 
significant selective trajectory of the stochastic process 
that allows one to investigate individual parameters of 
dynamic fuzzy systems. Selective trajectories should meet 
these requirements if their density function of the proba-
bility distribution is known. Stochastic processes with a 
required density function of probability distribution are 
simulated by the method of nonlinear forming filters.

In this section, we use the methodology of designing 
the structures of ICSs functioning in the external environ-
ment under the presence of stochastic processes having 
the same autocorrelation function and different distribu-
tion functions of the probability density. The method of 
nonlinear forming filters for describing stochastic pro-
cesses with a required density function for the probability 
distribution based on the Fokker-Planck-Kolmogorov 
equations is described in [17]. This approach allows us to 
develop a generalized methodology for investigating the 
robustness of ICSs based on stochastic fuzzy simulation.

Figure 13 presents the generalized structure of the sys-
tem of stochastic fuzzy simulation, which was applied for 
evaluating the robustness and limiting capabilities of the 
structures of ICSs with specifying the main factors that 
affect the sensitivity and reliability of control.

Figure 13. The block diagram of stochastic fuzzy simula-
tion with unpredicted control situations

The efficiency of application of the SCO is demonstrat-
ed by particular typical examples of models of controlled 
plants, the so-called benchmarks of redundant robotic ma-
nipulators. In particular, the investigated models of phys-
ical controlled plants and their functioning environment 
are characterized by the following specific features typical 
of real dynamic controlled plants:

• they have local and global dynamic instability with 
respect to the generalized coordinates;

• they have essentially nonlinear cross constraints (sto-
chastic nonlinearities) in the generalized dynamic coordi-
nates, which mutually affect (antagonistically) the dynam-

ic, stability, and controllability of the controlled plant;
• they operate under unpredicted control situations.
As unpredicted control situations, we consider four 

control models under the conditions of uncertainty of the 
source information: (1) with statistical information about 
the external and parametric random time dependent per-
turbations (selective trajectories of stochastic processes 
with density functions of probability distribution depend-
ing on time); (2) with uncertainty of information about the 
variation of parameters of the structure of the controlled 
plant; (3) under the presence of random delay time in the 
loops of control and measurement systems; and (4) when 
the control (reference signal) goals are changed.

The developed model of the ICS and controlled plant 
was simulated in the Matlab/Simulink system presented in 
Figure 14.

Figure 14. A Matlab/Simulink Model of the control sys-
tem

As typical random noise, three types of stochastic pro-
cesses with the corresponding density functions of proba-
bility distribution were simulated.

Figure 15 presents the form of the density functions of 
probability distribution and the simulation results of the 
output stochastic processes from the corresponding form-
ing filters.

Figure 15. The form of the density function of the prob-
ability distribution and the results of simulation of output 
stochastic processes from the corresponding forming fil-

ters: (1) Gaussian; (2) Rayleigh; (3) uniformly distributed

DOI: https://doi.org/10.30564/aia.v2i1.1339
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Varying the structure of the forming filters, the parame-
ters in the models of the controlled plant, the delay time in 
the channel for measuring the control error, and the form 
of the reference signal (control goal), we can simulate 
unpredicted control situations and evaluate the sensitivity 
and the robustness level of the designed ICS.

In this section, we present the results of simulating the 
robust control laws for intelligent fuzzy PID controllers by 
complex essentially nonlinear dynamic controlled plants 
as robotic redundant manipulators To demonstrate the 
capabilities of simulation of the processes of intelligent 
control of a dynamic controlled plant and the conditions 
of functioning, the results of simulation of the following 
three typical controlled plants (benchmarks) are consid-
ered: (1) a nonlinear oscillator with essential dissipation 
and local dynamic instability; (2) an inverted pendulum 
mounted on a moving cart (so-called “cart-pole” system) 
and with global dynamic instability; and (3) an essentially 
nonlinear oscillator with local and global dynamic insta-
bility in cross constraints of the generalized coordinates of 
the controlled plant.

These oscillators are of independent interest for prob-
lems in robotics and mechanics (e.g., a stroboscopic 
manipulator robot with complex behavior dynamics and 
considerable dissipation) and allow one to compare our 
results with the results obtained by methods based on 
FNN[19].

Remark 6. In view of the large amount of the simula-
tion results, we consider the first version of an oscillator 
containing all the qualitative specific features of the two 
types of oscillators listed above.

3. Control System of 7DOF Manipulator

Redundant manipulators have a greater number of De-
grees of Freedom (DOF) than is necessary for the task 
solution more than the dimension of the workspace. Re-
dundancy DOF allows the structure of the manipulator to 
adapt under conditions of insufficient information about 
an external changing environment, as well as in conditions 
of changing parameters of the manipulator (for example, 
an obsolescence or unit failure). Redundancy DOF also al-
low to specify the behavior of the robot manipulator with 
a minimum consumption of useful resource. The control 
tasks for redundant robot manipulator (positioning of the 
end effector, trajectory describing, solving the inverse 
dynamics problem, etc.), with increasing CO complex-
ity, increasing performance requirements in unexpected 
situations, are being solved applying computational in-
telligence technologies GA[20, 21], neural and fuzzy neural 
networks[22, 23], fuzzy logic[24, 25]. The application of soft 
computing technologies [26] to build a robust ICS for solv-

ing the problem of precision positioning redundant (3DOF 
and 7 DOF) manipulators considered.

The control system is a combination of one or more 
COs and a control system. In general, a control system 
consists of a control link, an CO, and a Measuring System 
(MS) in a feedback circuit. To provide the given dynamic 
indicators in control systems, any types of controllers are 
used. Widespread is Proportional Differential Integral 
(PID) controller. The integral component of the controller 
allows eliminating the static error in the system, and the 
differential component allows improving the dynamic per-
formance, and forcing the overshoot process.

3.1. Control systems with constant controller pa-
rameters

In the general case, it is necessary to find the coeffi-

cients 7,1,,, =iKKK IiDiPi  of the PID controller.

Initial knowledge of the control system and of CO[27, 28] 
are necessary for determining the coefficients by ana-
lytical methods, correct determination of PID controller 

coefficients IiDiPi KKK ,,  is possible with the help of an 
expert.

The inclusion of elements of intelligent computing in 
the control system may allow us to describe the require-
ments for the control system in terms of quality criteria.

For example, we can define control parameters using 
GA. It is necessary to correctly determine the fitness func-
tion of the GA, for example as follows:

( ) ( )01 →∩== TIPTSfitness ,

where PTS (Position Task Solution) is the solution to 
the positioning problem by the manipulator, and TI  is the 
ICS performance.

Based on the fitness function, the choice of coefficients 

7,1,,, =iKKK IiDiPi  is determined on the basis of pro-

viding a guaranteed solution to the positioning problem 
with maximum performance.

An intelligent GA superstructure without destroying the 
lower executive level allows to operate with qualitative 
criteria of the system.

The  b lock  d iagram of  the  ICS based  on  GA 
is  shown in  Figure  16,  where  refQ  i s  the  mas-
ter reference signal, Q′  is the measured variable, 

[ ]777111 ;...; IDPIDP KKKKKKK =  is the coef-

ficient matrix of the PID controller, ( )ts  is the limitation 
of the control action, ( )td  is the delay in the MS, ( )tm is 
the external influence.
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The selection of the PID controller coefficients in the 
control system based on GA is made once for one or a 
number of cases (regular control situations) and remain 
unchanged during operation. As a result, control system 
based on GA gets a good result with the task of accurately 
positioning the manipulator in standard situations. How-
ever, control system does not provide guaranteed control 
in unexpected control situations, which will be demon-
strated below.

CO
Ε U Q

GA

PID
regulator

K

MS
Q'

Qref

s(t) m(t)

d(t)

Figure 16. The block diagram of the control system based 
on GA

The use of the control system based on GA is limited 
by the requirement for a description of the constant envi-
ronmental conditions and known structures of the control 
unit and CO.

Expanding the scope of the control system is possible 
by increasing the intelligence of the control system: using 
dynamic tuning of the PID controller coefficients, which 
is possible with the elements of soft computing technolo-
gy.

3.2. Designing an intelligent control system based 
on Soft Computing Optimizer

FC is the main element of the ICS based on soft comput-
ing technologies[28], FC manages the gain of the PID con-
troller due to the integrated KB, which includes data on 
the form and parameters of MFs of input and output fuzzy 
variables, and fuzzy production rules.

KBs are created using the intelligent tools the KBO 
based on soft computing [29] in the following sequence:

1) creating TS: determining a typical control situation 
(for example, a standard situation), generating a table of 
PID controller coefficients and control errors using a GA;

2) organization of a fuzzy inference model: determin-
ing of the type of fuzzy model, interpreting fuzzy opera-
tions, the number of input and output variables;

3) creating linguistic variables for input values;
4) creating a rule base;
5) setting up the rule base;
6) optimization of the left and right parts of the rules of 

the KB.
ICS based on KBO on soft calculations may contain 

one or more FC depending on the complexity of the sys-

tem and CO. In the case of a simple CO, it is possible to 
implement one FC, respectively, with a single KB (Fig-
ure 17). However, with the increasing complexity of the 
CO, the time of creating the KB increases, the require-
ments for the computing resources of the processor on 
which the KB is created and the amount of memory of the 
system in which the KB is located increase.

KB  

CO
Ε U Q

FC
GA

PID
regulator

K
TS

Figure 17. ICS based on KBO on soft computing with 
one FC

When the complexity of implementing a single KB is 
high, several KBs are created that are located in different 
FCs (Figure 18). 

KB1  

CO
Ε U Q

FC1
GA1

TS1
K1

KB2  

FC2
GA2

TS2

KBi  

FCi
GAi

TSi

K2

Ki

q2

q1

qi

PID
regulator

...

Figure 18. ICS based on KBO on soft computing with 
shared control

Separation of management somewhat reduces the qual-
ity of the system. However, the creation of several FCs is 
often the only way to organize intellectual management of 
complex CO.

Let us consider in more detail the process of creating a 
KB for ICS based on KBO on soft computing for a robot 
manipulator with 7 DOF.

Due to the complexity of the CO under consideration, 
the implementation of a single KB is impossible, there-
fore, we will initially organize a divided link management 
(one FC controls one link, as shown in Figure 19).
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Link 1 

Intelligent substructure based on KBO on soft computing

      PID regulator
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∑
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∫
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Y3

Z3X2

Y2
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Figure 19. ICS 7DOF manipulator based on KBO on soft 
computing

In Figure 19: refQ is the reference signal, Q′ is the 
measured variable, [ ]721 ... εεε=E  is the control error, 
K is the matrix of proportional, differential and integral 

coefficients of the PID controller K K K iPi Di Ii, , , 1,7= , 
 where i is the number of the corresponding link of the 
robot manipulator, ( )ts is the limitation of the control 
action, [ ]721 ... uuuU =  is the control action, ( )td  is 

delay in the Measuring System (MS), TS ii , 1,7=  isTS 

of the corresponding FC, ( )tm  is external environmental 
impact, [ ]721 ... qqqQ =  is adjustable value [30, 31].

The modeling of 7DOF manipulator control systems 
was carried out to study the quality of the considered con-
trol systems in the environment of MatLab/Simulink.

3.3. The model of Control Object

A formalized model of the 7DOF manipulator was built 
under the assumption that the links of the robot of the ma-
nipulator can rotate in the range of (-70 +70) degrees. The 
degree of freedom configuration corresponds to:

1 link) vertical axis of rotation 1Zα ;
2 link) transverse 2Yα ;
3 link) vertical 3Zα ;
4 link) transverse 4Yα ;
5 link) vertical 5Zα ;
6 link) transverse 6Yα ;
7 link) transverse 7Yα .
The CO model and formulas for determining the coor-

dinates of the links of the manipulator were available in 
earlier works[32].

Creating a real CO model allowed accelerating the 

identification of the CO model, obtaining acceptable con-
trol parameters for different types of control systems and 
with a different level of intelligence.

To demonstrate the advantages and disadvantages of 
the considered types of control systems as applied to 
7DOF manipulator, a series of experiments for MatLab/
Simulink models was performed in this work.

Consider the test procedure order.

3.4. Test Procedure

A series of experiments is necessary to identify the advantag-
es of various types of control systems of the 7DOF manipu-
lator in both standard and unexpected control situations.

To test the robustness of control system models, a 
series of experiments is carried out, consisting of two 
stages: 1) work in standard control situations; 2) work in 
unexpected management situations.

As standard control situations, thirteen experiments 
are performed in accordance with the group of test 
points of the working space (Figure 20). The configu-
ration is taken as the initial position of the manipulator: 

[ ] [ ]deg00000007654321 == qqqqqqqQ .

0
2

4
6

8

-10
-5

0

5
10
-5

0

5

Figure 20. Test workspace

Unexpected situations are divided into external and in-
ternal. External unexpected situations:

1) forced change in the position of the links (Figure 21):
- the first link to a value of -30 degrees at the 25th iter-

ation and to a value of 30 degrees at the 75th iteration;
- the second link to a value of -30 degrees at the 50th 

iteration and to a value of 30 degrees at the 100th iteration;
- the third link to a value of -30 degrees at the 50th iter-

ation and to a value of 30 degrees at the 100th iteration;
- the fourth link to a value of -30 degrees at the 50th it-

eration and to a value of 30 degrees at the 100th iteration;
- the fifth link to a value of -30 degrees at the 50th iter-

ation and to a value of 30 degrees at the 100th iteration;
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- the sixth link to a value of -30 degrees at the 50th it-
eration and to a value of 30 degrees at the 100th iteration;

- the seventh link to a value of -30 degrees at the 50th 
iteration and to a value of 30 degrees at the 100th iteration;

Figure 21. Forced change of links position

2) the initial conditions are changed 

Q q q q q q q q= =[ 1 2 3 4 5 6 7; ; ; ; ; ; ]
[− − − − − − −30; 30; 30; 30; 30; 30; 30 degrees] ;

3) at the same time a forced change in the positions of 
the links and a change in the initial conditions are carried 
out.

Each of the three external unexpected situations is test-
ed at thirteen points of the test space; thus, 39 experiments 
are conducted for external contingency management situ-
ations.

Internal unexpected situations:
1) reduction of restrictions of control actions;
2) an increase in the limitations of control actions;
3) introduction of noise into the control channels (Fig-

ure 22);
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Figure 22. Control actions: initial (a); after making noise 
(b)

4) the introduction of errors in the MS (±1,5 degrees).
Each internal unexpected situation is tested at thirteen 

points of test space; thus, 52 experiments are conducted 
for internal unexpected control situations.

3.5. Definition of quality criteria

We introduce a system of quality criteria that takes into 
account methods of the theory of automatic control[28] to 
evaluate and compare the results of tests of control sys-
tems with constant PID regulator coefficients and ICS 
based on KBO on soft calculations.

These methods have been adapted for a specific CO 
7DOF manipulator in the following form:

1. Position Task Solution in known control situations 
PTSKCS.

The positioning problem is considered to be solved if, 
upon completion of a given number of iterations Imax = 
300, the condition is satisfied:





PTS if q q q q q q

PTS else

= − + − + + − ≤

=

1, ... 2deg

0,
1 1 2 2 7 7ref ref ref ,

where refrefref qqq 721 ,...,,  are the desired positions 
of the links, 721 ,...,, qqq  are the current positions of 
links

N

PTS
PTS

N

i
∑
=≡ 1tionimplementa

,

where N is the number of experiments.
2. Position Task Solution in the external above consid-

ered control situations PTSACCS1.
3. Position Task Solution in the internal above consid-
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ered control situations PTSACCS2.
4. Performance IT

The number of iterations from the beginning of the im-
pact during which each of the links is positioned with an 
allowable error deg12 <∆ :

I IT = ( q q q q q q1 1 2 2 7 7ref ref ref− < ∩ − < ∩ ∩ − <1deg 1deg .... 1deg) ( ) ( ) ,

IT implementation 1≡ −
NI

∑
i

N

=1

max

IT .

5. Relative overshoot valueσ
The ratio of the maximum deviation of the current po-

sition of the link from the steady-state value to the steady-
state value:









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 −−−
=

ref

ref

ref

ref

ref

ref

q
qq

q
qq

q
qq

7

77

2

22

1
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i
∑
=−≡
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σ

6. Relative error in link positioning after completion of 
a given number of iterations ε
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( ) ( ) ( )
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i
∑
=−≡
ε

ε

7. One iteration time t
Execution time of one iteration I:

const
const

tt
t

tt <−≡ ,1tionimplementa .

8. Implementation complexity P
Evaluation of changes in control coefficients:

P implementation 1≡ −
N dt
1

max( )
i

N

∫
=1

 
 
 

dK

K

2

dt
.

9. Full Control Behavior FCB

FCB w P PTS w P PTS w P PTS w P I≡ ⋅ + ⋅ + ⋅ + ⋅ +1 2 1 3 2 4[
+ ⋅ + ⋅ + ⋅ + ⋅

KCS ACCS ACCS T

w P w P w P t w P5 6 7 8

]
[σ ε]

[
[ ]

]
[ ]
[ ] [ ]

,

where  w = [0,1 0,2 0,2 0,2 0,05 0,1 0,1 0,05] are 
weights.

3.6. PID Constant Control Systems

The control task is reduced to finding the coefficients of 

the PID controller 7,1,,, =iKKK IiDiPi , which ensures 

the desired nature of the movement of the manipulator. 
In this section, we consider two types of control systems 
with constant coefficients: a control system on a PID con-
troller and based on GA.

A comparison of the operation of 7DOF manipulator 
ACS based on the PID controller and based on GA in ac-
cordance with the introduced system of quality criteria is 
given in Table 2, and in Figure 23.

Table 2. Comparison of the operation of control systems 
with constant coefficient

Quality Criteria based on PID based on GA 

1 PTSKCS. 0,000 0,615

2 PTSACCS1. 0,000 0,256

3 PTSACCS2. 0,058 0,308

4 IT 0,000 0,008

5 σ 0,892 0,956

6 ε 0,379 0,657

7 t 0,998 0,998

8 P 1,000 1,000

9 FCB 0,244 0,439

Figure 23. Comparison of the results of MatLab/Simulink 
control systems models based on the PID controller and 

with the use of GA

From the results of comparing control systems on PID 
controller and using the GA, we conclude:

1) applying the control system based on PID controller, 
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the positioning task was not solved in normal situations 
and external unexpected control situations, insignificant 
positive results (3/52 experiments) were obtained for in-
ternal unexpected control situations;

2) some improvement is achieved by using a control 
system based on GA: the positioning problem is solved 
in standard control situations in most experiments, but in 
unexpected control situations (external and internal), the 
solution is achieved in less than a third of the experiments;

3) both systems with constant PID controller coeffi-
cients have low speed;

4) applying the control system based on the GA, the 
relative values of overshoot and positioning errors are sig-
nificantly improved compared to the control system on the 
PID controller;

5) applying the control system based on the GA, the 
Full Control Behavior in comparison with the control sys-
tem on the PID controller improves.

In Figure 24 demonstrates the operation of the manip-
ulator when using control systems on the PID controller 
and using the GA in the conditions of the third external 
unexpected control situation (the initial position has been 
changed and the links are forced to move at different 
times). In this experiment, the control system based on 
GA solves the control problem, unlike to the control sys-
tem on the PID controller.

(a)

(b)

Figure 24. The movement of the manipulator in an exter-
nal unexpected situation: ACS based on PID controller (a); 

GA control systems (b)

Despite the fact that the control system on the GA signifi-
cantly improves the assessment of quality criteria compared 
to the ACS on the PID controller, the overall quality of con-
trol provided by the control system on the GA is rather low.

In the process of control, the PID controller coeffi-
cients for the considered structures do not change. This 
simplifies the control system design, but at the same time 
deprives the control system of the possibility of rebuilding 
and adaptation.

Next, we consider a structure with dynamic adaptation 
of the PID controller coefficients, implemented on the ba-
sis of soft computing technologies.

3.7. Quality of Control System based on Soft 
Computing Technologies

Testing of the obtained KB1 - KB7, respectively, FC1 
- FC7 is carried out as part of the ICS based on soft com-
puting.

The results of ICS based on soft computing tests and 
control systems with constant coefficients (based on the PID 
controller and using GA) in accordance with the introduced 
quality criteria are shown in Table 3 and in Figure 25.
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Table 3. Results comparison of the of control systems 
with constant coefficients and ICS based on KBO on soft 

computing

Quality Crite-
ria

ICS based on soft comput-
ing based on GA based on PID

1 PTSKCS. 0,923 0,615 0,000
2 PTSACCS1. 0,744 0,256 0,000
3 PTSACCS2. 0,923 0,308 0,058
4 IT 0,092 0,008 0,000
5 σ 0,969 0,956 0,892
6 ε 0,911 0,657 0,379
7 t 0,973 0,998 0,998
8 P 0,946 1,000 1,000
9 FCB 0,728 0,439 0,244

Figure 25. Comparison of the work of MatLab/Simulink 
ICS models based on KBO on soft computing and control 

systems with constant coefficients

From the results of the comparison of control systems 
(ICS based on soft computing, based on the PID control-
ler and using GA) we conclude that when using the ICS 
based on soft computing:

1) the quality criterion position task solution in known 
control situations has increased compared to control sys-
tems with constant coefficients (based on the PID and using 
GA), the solution is positive in 12 out of 13 experiments;

2) the position task solution in the unexpected consid-
ered control situations has increased significantly compared 
to control systems with constant coefficients: 2,9 times for 
external unexpected situations and 3 times for internal unex-
pected situations (in comparison with the ICS based on GA);

3) the performance has increased significantly: more 
than 10 times in comparison with the ICS based on GA; 
however, as before, the performance is rather low;

4) the quality criterions relative overshoot value and 
relative error in link positioning improved compared to 
control systems with constant coefficients; but criterions 
one iteration time and implementation complexity have 
deteriorated somewhat;

5) the full control behavior is improved 1,7 times com-
pared with the control system using GA and 3 times com-
pared with the PID controller based control system.

In Figure 26 demonstrates the operation of the manip-
ulator when using a control system based on GA and ICS 
based on KBO on soft computing in the conditions of the 

first external unexpected control situation (the links are 
forced to move at different points in time).

(a)

(b)

Figure 26. The movement of the manipulator in an external 
unexpected situation: the result of the control system based 
on the GA (a); ICS based on KBO on soft computing (b)
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In Figure 27 shows the operation of the manipulator 
when using a control system based on GA and ICS based 
on KBO on soft computing in the conditions of the fourth 
internal unexpected control situation (introducing errors 
into the MS).

(a)

(b)

Figure 27. The movement of the manipulator in an inter-
nal unexpected situation: the result of the control system 
based on the GA (a); ICS based on KBO on soft comput-

ing (b)

In Figure 28 shows a comparison of phase portraits 
when using a control system based on GA and ICS on 
KBO on soft computing for the considered control situa-
tion.

Figure 28. Changing the position of the links of the 
manipulator in the conditions of an internal unexpected 

situation: control systems based on GA and ICS based on 
KBO on soft computing.

The ICS by the 7DOF manipulator based on KBO 
on soft computing significantly improves the quality of 
control compared to control systems with constant coef-
ficients (based on the PID controller and using the GA), 
however, the performance indicator remains at a fairly 
low level.

The ICS based on KBO on soft computing was orga-
nized with a separation of control: each link of the manip-
ulator corresponds to one independent FC due to the fact 
that the CO is complex. Decomposition of control leads to 
a mismatch of work and some decrease in the quality of 
management.

It is possible to organize coordination control without 
significantly increasing the complexity of the system by 
introducing additional generalizing superstructure, the im-
plementation of which is possible using quantum comput-
ing technologies, which will be discussed in the next part 
of the article.

Next, we consider a simpler example of an CO: this 
is a 3DOF robot manipulator, often used both in industry 
and in training.

4. 3DOF Manipulator control systems

The robot control systems for the 3DOF manipulator will 
be considered both at the simulation level and at the phys-
ical level. To demonstrate the quality of control systems, a 
test bench of 3DOF robot manipulator was developed.

4.1. Description of the 3DOF Manipulator Test 
Bench

In Figure 29 shows the test bench used to test control sys-
tems.
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Figure 29. The manipulator test bench

As the MS (accelerometer on Figure 14), the board 
uses three boards with accelerometer installed on them 
with 3DOF ADXL335. The Renesas microcontroller is 
the core of the system (control board on Figure 14). In-
formation about the current positions of the links and the 
characteristics of the quality of control is displayed on the 
LCD and serial interface. Both automatic and manual con-
trol modes are supported (the ability to move each of the 
3 links and the manipulator's grip device using the manual 
control buttons). In robotics, as a rule, a mathematical 
model of the manipulator is built, simulation of the CO, 
identification of the parameters of the mathematical mod-
el, and then comparison of the simulation results on the 
mathematical model of the CO and a test bench robot ma-
nipulator are performed[27, 28]. In contrast to the traditional 
approach, in this case, the behavior of the links of the 
robot test bench was formalized by the correspondence 
tables “width of the servo drive control pulse ~ angle of 
movement”, which allowed us to describe the behavior of 
the test bench in the MatLab/Simulink environment. The 
manipulator test bench was created without involving the 
mathematical model.

The creation of a formalized manipulator model al-
lowed accelerating the identification of the CO model and 
obtaining acceptable control parameters.

4.2. Management Tasks

We examine the direct circuit of the control loop by 
the 3DOF manipulator to explain the operation of the PID 
controller.

In Figure 30: [ ]321 εεε=E  is a control error, 
K K K iPi Di Ii, , , 1,3=  is the proportional, differential and 
integral coefficients of the PID controller, i is the num-
ber of the corresponding link of the robot manipulator, 

[ ]321 uuuU =  is the control action, [ ]321 qqqQ =  is 

an adjustable value[30].
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Figure 30. Direct circuit of control system with PID con-
troller

The control task is reduced to finding the coefficients 
of the PID controller K K K iPi Di Ii, , , 1,3= , which ensures 
the desired movement.

4.3. Test Procedure

A series of experiments is carried out for each of the con-
sidered types of control systems: based on GA, ICS based 
on KBO on soft computing with one FC and ICS based on 
soft computing with separated control.

A series of experiments is carried out in standard and 
unexpectedcontrol situations and is evaluated according to 
the quality criteria introduced above. As standard control 
situations, ten experiments are performed in accordance 
with a group of workspace test points (Figure 31).

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

1
2

3

4

5

6

7

89
10

Figure 31. Test points

Configuration Q q q q= =[ 1 2 3; ; 60; 0; 0 degrees] [ ]  taken 
as the initial position of the manipulator.

Three cases act as unexpected control situations:
1) the position of the second link is changed to a value 

q2 = 45degrees  at the 11th iteration;
2) initial conditions are changed
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 Q q q q= = −[ 1 2 3; ; 60; 45; 43 degrees] [ ] ;
3) the initial conditions are changed
Q q q q= = −[ 1 2 3; ; 60; 45; 43 degrees] [ ] : and the position 

of the second link is changed to the value q2 = 45degrees  
at the 11th iteration.

Three unexpected situations are tested at ten points in 
the test space. Thus, 30 experiments are conducted for un-
expected control situations.

Consider the features of the design of ICS based on 
KBO on soft computing for 3DOF robot manipulator.

4.4. ICS based on SCOptKBTM

FC with a built-in KB that controls the gain of the PID 
controller is the main elements of the ICS based on soft 
computing technologies. Implementation of the ICS based 
on KBO on soft computing for a 3DOF robot manipulator 
is possible both with one FC and with separated control.

Let us consider the process of creating KB for ICS 
based on KBO on soft computing.

1. Creating TS. Define a typical control situation. As 
typical control situations, we will consider standard con-
trol situations.

Three of the standard experiments were used to create 
TS1, TS2 and TS3, for which control situations in which 
the parameters of the PID controller were determined us-
ing GA were reproduced using MatLab/Simulink models.

The considered TS1-TS3 are tables where columns 1-9 
are input values [errP1, errD1, errI1, errP2, errD2, errI2, 
errP3, errD3, errI3], and columns 10-18 are output values 
[KP1, KD1, KI1, KP2, KD2, KI2, KP3, KD3, KI3].

Input values are vectors of input variables of proportion-
al, differential and integral errors of the first, second and 
third links of the manipulator. The output values are the 
vectors of the output of certain GA variables of proportion-
al, differential and integral coefficients of the PID controller 
of the first, second and third links of the manipulator.

The final TS used to obtain the KB consists of sequen-
tially connected TS1, TS2 and TS3.

2. Definition of a fuzzy inference model.
The following parameters must be defined:
1) type of fuzzy model: Sugeno 0 (zero order);
2) interpretation of fuzzy operations: fuzzy conjunction 

as a product;
3) the number of input and output variables: 9 and 9.
3. Creating linguistic variables for input values.
The optimal number and form of MFs are determined 

using the GA from the KBO software.
At the first stage of creating the KB, we set the task of 

creating five MFs for each of the nine input variables, i.e. 
the vector [n1 n2 n3 n4 n5 n6 n7 n8 n9] = [5 5 5 5 5 5 5 5 
5 5], which would lead to the creation of n1 × n2 × n3 × 

n4 × n5 × n6 × n7 × n8 × n9 = 1953125 fuzzy rules. At the 
second stage, as a result of the GA operation, the vector [n1 
n2 n3 n4 n5 n6 n7 n8 n9] took the value [4 4 4 4 3 4 4 3 3], 
and the maximum number of fuzzy rules was 110592.

4. Creating a rule base.
As a result of the work, the algorithm for selecting 

rules (passing the specified activation threshold) selected 
33 of the most robust rules out of 110592.

5. Setting up the rule base and optimization of the left 
and right parts of the rules of the KB.

The traditional method of error back propagating is 
used at this stage.

In the considered example, the maximum number of 
fuzzy rules for 3-4 MFs was 110592 rules. We calculate the 
maximum number of fuzzy rules for 3,4,5,6 and 7 MFs for 
each input variable. Then the dependence of the maximum 
number of fuzzy rules on the number of degrees of freedom 
of the manipulator has the form shown in Figure 32.

Figure 32. The dependence of the maximum number of 
fuzzy rules on the number of degrees of freedom of the 

manipulator

The introduction of additional links, the expansion of 
the functions of existing units, or the addition of other 
devices requiring coordination control will increase the 
maximum number of fuzzy rules by more than one and a 
half orders of magnitude. As a result, the complexity and 
time of creating KB will increase, the requirements for the 
computing resources of the processor and the memory ca-
pacity of the system in which the KB is located will also 
increase.

If it is difficult to implement a single KB, we will di-
vide the KB into several, and use several FCs. 

Consider the separation of control, in which one FC 
controls one link of the manipulator.

It is necessary to create 3 KBs for 3 FC respectively. 
The number of input and output variables for each of the 
KBs will decrease 3 times, and the maximum number of 
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fuzzy rules will decrease.
Let us consider the process of creating KB
1. Creating TS.
We created 3 TSs for 3 KBs. Each of the TS, consists 

of two TSs based on two different experiments.
TS1, TS 2 and TS 3 for creating 3 independent KSs con-

tain a vector of input variables in the left columns, and vec-
tors of output variables of certain GAs in the right columns. 
Input variables are proportional, differential and integral 
errors ([errP1, errD1, errI1], [errP2, errD2, errI2] and [errP3, 
errD3, errI3] for the first, second and third links of the ma-
nipulator. Output variables are proportional, differential and 
integral coefficients of the PID controller [KP1, KD1, KI1], 
[KP2, KD2, KI2] and [KP3, KD3, KI3] for the first, second 
and third links of the manipulator.

2. Definition of a fuzzy inference model.
The following parameters must be defined for each of 

KB:
1) type of fuzzy model: Sugeno 0;
2) interpretation of fuzzy operations: fuzzy conjunction 

as a product;
3) the number of input and output variables: 3 and 3.
3. Creating linguistic variables for input values.
The optimal number and form of MFs are determined 

using the GA1 from the KBO software.
The number of functions during the creation of KB1, 

KB 2 and KB 3 and optimization of GA1 was [3 3 5], [5 
5 9] and [7 7 8], the number of fuzzy rules corresponds to 
45, 225 and 392.

4. Creating a rule base.
18 out of 45 rules were selected for KB1, 26 out of 225 

rules were selected for KB2, 48 out of 392 rules were se-
lected for KB3.

The maximum number of fuzzy rules when creating sin-
gle KB with one FC was 110592, of which 33 most robust 
ones were selected. The maximum number of rules in the 
case of separated control is 392 for KB3, which significant-
ly reduces the time for selecting the most robust rules.

However, the total number of selected rules 18 + 26 + 
48 = 92 is more than 2 times higher than the number of 
selected rules when using one FC.

Consequently, the placement of the final KBs when us-
ing the ICS based on soft computing with separate control 
will require a larger amount of memory of the final device 
in which the control system is located.

5. Setting up the rule base and optimization of the left 
and right parts of the rules of the KB.

The traditional method of error back propagating is 
used at this stage.

4.5. Modeling and test bench: control quality

In Figure 33 and Figure 34 show a comparison of control 

quality criteria for a control system based on GA, ICS based 
on KBO on soft computing with one FC and ICS based on 
soft computing with separated control for MatLab/Simulink 
models and the robot manipulator test bench.
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Figure 33. Comparison of quality criteria for a control 
system based on GA, ICS based on KBO on soft comput-
ing with one FC and ICS based on soft computing with 

separated control for MatLab/Simulink models
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Figure 34. Comparison of quality criteria for a control 
system based on GA, ICS based on KBO on soft comput-
ing with one FC and ICS based on soft computing with 
separated control for the robot manipulator test bench

It can be seen from the comparison results that the use 
of the control system based on GA solves the problem 
of accurate positioning in half of the standard situations. 
The control system based on GA does not provide guar-
anteed control in unexpected control situations (as shown 
in Figure 35). The full control behavior is rather low. In 
Figure 35 shows the movement of the manipulator in an 
external unexpected situation.

Figure 35. The operation of the control system based on 
GA: in a standard control situation (a); in an unexpected 

control situation (b)
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The coefficients of the PID controller in the control 
system based on GA do not change. This facilitates the de-
sign of the control system, but deprives the control system 
of the possibility of rebuilding and adaptation.

In Figure 36 shows the work of the ICS based on KBO 
on soft computing with one FC and separated control in 
an unexpected control situation, previously proposed for a 
control system based on GA (Figure 35).

From Figure 35 and Figure 36, we conclude that both 
of ICS based on the KBO using soft computing technolo-
gies, in contrast to the control system based on GA, solve 
the problem of accurate positioning. ICS using a single 
KB provides a solution for fewer iterations than the struc-
ture of ICS with separated control.

Figure 36. The operation of the ICS based on KBO on 
soft computing with one FC in an unexpected control 

situation (a); ICS based on soft computing with separated 
control (b)

The use of ICS based on KBO on soft computing with 
one FC allows:

1) to obtain maximum of quality criteria position task 
solution in standard and unexpected control situations;

2) to improve all quality criteria, except for the one it-
eration time and the implementation complexity, because 
dynamic adjustment of coefficients requires additional 
calculations;

ICS based on KBO on soft computing with one FC 
allows you to collect in a single KB information on the 
mutual behavior of 3 links of the robot manipulator at the 
same time, however, the high complexity of the imple-
mented KB requires significant computational resources 
to create and placement.

Dividing of the control link into 3 independent FCs (one 
KB controls one link) allows, due to a certain decrease in 
the quality of management, to significantly simplify the 
processes of creating, optimizing and placing the KB.

It can be seen from the comparison results that when 
using the ICS based on KBO on soft computing with 
divided control with 3 FCs, all quality indicators are 
somewhat deteriorated, which occurs as a result of the 
mismatch of the work of the separated independent KBs.

4.6. Control actions

Consider the control actions generated by the considered 
types of control systems. In Figure 37 shows the control 
actions generated by the control system based on GA, ICS 
based on KBO on soft computing with one FC and ICS on 
soft computing with separated control. In Figure 37 GA 
is the signal generated by the control system based on the 
GA, FC is the signal generated by the ICS based on KBO 
on soft computing with one FC, FC Decomposition is the 
signal formed by the ICS on soft computing with separat-
ed control.

Figure 37. Control signals generated by the control sys-
tem based on GA, ICS based on KBO on soft computing 
with one FC and ICS on soft computing with separated 

control

From Figure 37 it can be seen that the control signals 
generated by the control system based on the GA for the 
first and third links have a large amplitude compared to 
similar control signals generated by the ICS based on 
KBS on soft computing. For the second link in the con-
trol signal, formed by the control system based on GA, 
the reaction to external influence is not sufficiently re-
flected, as a result of which the task of precise position-
ing is not solved. The control signals generated by ICS 
based on KBO on soft computing with separate control, 
compared with ICS on KBO on soft computing with one 
FC, with a comparable amplitude, have greater over-
shoot.

Thus, the minimum consumption of useful resource in 
the formation of control signals is ensured when using the 
ICS based on KBO on soft computing with one FC.
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5. Conclusion

To control robots with manipulators of varying complexi-
ty, the following were considered:

1) control systems with constant coefficients of the PID 
controller;

2) control systems with adjustable PID controller coef-
ficients depending on the situation.

It has been shown that:
1. Control systems with constant coefficients based on 

GA are attractive because of the simplicity of implementa-
tion, however, due to the constancy of control parameters, 
the solution of the problem of accurate positioning is pos-
sible only for regular situations.

2. The unified KB of the ICS based on KBO on soft 
computing with one FC contains the most complete in-
formation about the behavior of all links, which allows 
the ICS to work both in standard and unexpected control 
situations. However, the creation of a single KB is a com-
plex and long temporal process that requires significant 
computing resources. So, the implementation of a single 
KB for the complex CO 7DOF robot manipulator is not 
possible.

3. The decomposition of the control in the structure of 
the ICS based on KBS on soft computing with separate 
control, due to a slight decrease in the quality of control 
due to the mismatch of the behavior of the links as a result 
of the independence of the creation and functioning of the 
KBs, can significantly simplify the processes of creating 
and placing the KB.

4. Computational intelligence toolkit SCOptKBTM real-
ized deep machine learning with optimal structure of FNN 
and reduce redundant information in production logical 
rules of robust KB.

In the next Part II, to eliminate the mismatch of the 
work of the separated independent KBs, the method of 
organizing coordination control using quantum computing 
technologies to create robust ICS 3DOF and 7DOF ma-
nipulators will be considered [33].

Appendix: Soft Computing Optimizer toolkit

ICS based on new types of computation (soft and quan-
tum computing) have the following advantages:

• maintain basic advantages of conventional, classical, 
control systems such as controllability and stability;

• have optimal (from a given criteria of control quality) 
KB;

• guarantee the achievement of the given control quali-
ty on the base of designed KB;

• have the property of robustness. It means that ISC 
allows to maintain the given control quality in the case of 

unexpected control situations.

A1. Peculiarities of the information technolo-
gy for intelligent control system design based 
on Soft Computing Optimizer toolkit

For design of robust KBs of FC we developed the new 
program toolkit called Soft Computing Optimizer based on 
soft computing. SCO allows to design smart control sys-
tems with needed level of robustness.

Discuss the peculiarities of SCO and developed infor-
mation technology.

We use Genetic Algorithms (GA) to find an optimal 
control signal and construct teaching control signal 
(TS). By using different GA fitness functions describ-
ing information-thermodynamic and control criteria and 
mathematical (or physical) model of CO we extract ob-
jective knowledge about control laws independent from 
human-expert. Processing of obtained TS is based on 
SCO with new types of computing. It allows us to design 
KB FC with a needed level of intelligence that supplies 
the needed level of robustness. Main components of SCO 
are the different GA structures with different constrains 
and fitness functions. Mutual actions of these components 
supply extraction, processing and design of KB, that is the 
main problem of Artificial Intelligence.

As summary list main factors of the information tech-
nology for ICS design: if we want to add to the known 
criteria stability and controllability a new one, we must 
use new types of computing.

New criterion of control quality robustness is intro-
duced:

• Combined principle of control (global negative back 
relation principle + global intelligent back relation princi-
ple) allows us don’t destroy the lowest control level (PID) 
and use the high level of control with the corresponding 
level of intelligence.

Introduction of global intelligent back relation princi-
ple allows realizing three steps of knowledge processing: 
extract information from dynamic behavior CO with PID 
control; use GA to construct teaching control signal; use a 
set of GA to design KB and optimize it.

By SCO we can design the given level of intelligence 
of control system and, hence, the given level of robust-
ness.

A2. Main steps of the information technology 
for intelligent control system design based on 
Soft Computing Optimizer toolkit

Main steps of the information technology for ICS design 
based on SCO toolkit are shown on Figure A1.
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Remark. Step 4 on Figure A1 is not considered in this 
Appendix. It is realized by SCO on quantum computing.

A2.1 Extraction, processing and design of objec-
tive knowledge based on stochastic simulation 
and soft computing

Describe main steps of developed KB FC design technol-
ogy. At first consider briefly steps 1 - 3 (Figure A1), and 
then consider one example of KB FC design for the cho-
sen dynamic CO.

The KB design process can be realized by the follow-
ing steps.

Step 0. In this step one or a few typical teaching situa-
tions are defined. Here the following factors are described: 
parameters of the mathematical (or physical) model of 
CO; initial conditions; reference signal (a goal of control); 
external stochastic noise; presence/absence of time delay 
in the channel of CO state measurement and so on.

Figure A1. Main steps of the information technology for 
ICS design

Step1. Stochastic simulation system for teaching con-
trol signal design

For robust KBs design we will use stochastic simula-
tion system in order to find robust teaching control signal.

Stochastic simulation is based on information ex-
traction process by investigation of individual trajectories 
of dynamic object behavior under influence of stochastic 
noises acting on the object.

Stochastic noises simulation is considered as a random 
noises simulation with needed probability density func-
tion. Random noises simulation is realized by the method 
of forming filter on the base of Fokker-Planсk-Kolmogor-
ov equations[17] (see Appendix 2 to this Chapter 1).

Stochastic simulation system uses CO model with 
simulated stochastic noises and GA with a chosen fitness 
function. By using GA, we obtain a set of optimal control 
values, which minimize the selected physical character-

istics of the stochastic model of CO. One of the charac-
teristics can be control error, or the minimum entropy 
production rate of the control system and of the CO. In 
some complicated cases, the fitness function may include 
a weighted sum of different motion characteristics of the 
CO like accelerations, velocities, spectral characteristics. 
Thus, the resulted motion under control will tend to re-
duce all of them simultaneously. At this stage of simula-
tion, we conduct simulation with the following aims:

• investigation free motion of CO in order to determine 
type of dynamic behavior, stable or locally/globally unsta-
ble motion,

• investigation an influence of different types of sto-
chastic excitations on dynamic behavior and control laws,

• investigation an influence of type of traditional con-
trollers (PID, PD, P) on type of control laws in a fuzzy 
control,

• investigation an influence of different GA fitness 
functions on type of control laws,

• comparison control quality of traditional PID control 
with constant gains and GA-PID control with variable 
gains obtained by GA,

• choice the best GA solution and designing a teaching 
control signal (TS) for the next steps of technology.

The general structure of stochastic simulation system 
is shown on Figure A2. On the figure the main factors that 
influent on the control accuracy are shown. They are: a 
presence of stochastic noises (as external and internal), 
a presence of time delay in the channel of CO state mea-
surement, a presence of stochastic noises in the channel of 
CO state measurement. Moreover, we must consider also 
such factors as incompleteness of CO model, incorrect-
ness of model parameters and so on.

Figure A2. The general structure of stochastic simulation 
system

At the stage of GA based TS creation, we find a 

solut ion { }( ), ( ), ( )p d iK t K t K t  c lose to a  global 

optimum. The output of GA is TS (or training pat-
terns) representing a table of ‘in-out’ patterns as fol-
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l o w s :  ( ){ } ( ){ }, , 1,..., ,i iE t K t i n=  w h e r e 

( ) ( ) ( ) ( ){ }, ,i i i i iE t e t e t e t dt= ∫ is vector, contain-

ing control error, its derivative and integral parts corre-

spondingly, and ( ) ( ) ( ){ }( ) , ,i P i D i I iK t K t K t K t=  

are PID gains at time moments it .
SC Optimizer has tools to create TS using genetic opti-

mization and Matlab model of control system (or physical 
model). This step is realized by the button “create signal”. 
On Figure A3 the main menu SCO and GA parameters 
window is shown.

Figure A3. Main menu SCO and GA parameters window

Figure A4. Windows of TS creation

By button “next” we go to the next windows shown on 
Figure A4. In the left window (Figure A4) signal creation 
parameters should be entered:

• Simulation time: time of simulation used to create TS.
• Controller sample time: sample time of control sys-

tem.
• Model sample time: sample time of simulation.
• Search range: control signal search range.
• Bits per parameter: number of bits in GA chromo-

some per each control signal parameter. Greater values 
increase precision and optimization time.

Dimensions of TS: number of components in input and 
output parts of TS.

In the right window (Figure A4) the path to Mat-
lab-model, initiation commands and fitness function are 
given. In the end of the given session, designed TS is 
saved in the «name».pat format as shown in Figure A5.

Figure A5. Window of saving TS

A3. Robust Knowledge Base Design based on 
SC Optimizer

Designed TS will be approximated by a fuzzy model cho-
sen by a user.

Remark. TS also may be obtained experimentally from 
measurements of dynamic parameters of physical objects.

A3.1. Short general description

SCO uses the chain of GAs ( 1 2 3, ,GA GA GA ) and ap-
proximates measured or simulated data (TS) about the 
modeled system with desired accuracy. 1GA  solves op-
timization problem connected with the optimal choice of 
number of MFs and their shapes. 2GA  searches optimal 
KB with given level of rules activation. Introduction of 
activation level of rules (LA) allows us to sort fuzzy rules 
in accordance with value information and design robust 
KB. 3GA  refines KB by using two criteria (see below). 
Figure A6 shows the flow chart of SCO operations on 
macro level and combines several stages.

Stage 1: Fuzzy Inference System (FIS) Selection. The 
user makes the selection of fuzzy inference model with 
the featuring of the initial parameters.

Stage 2: Create linguistic values. GA optimizes linguis-
tic variable parameters, using the initial parameters, and 
TS, obtained from the in-out patterns, or from dynamic 
response of CO (real or simulated in Matlab).

Figure A6. Flow chart of SC Optimizer
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Stage 3: Rule base creation. At first, we use the rule 
rating algorithm (LBRW) for selection of the certain 
number of rules. The “Level of activation” (LA) criteria 
is a parameter given by a user. At this stage the total fir-

ing strength of each rule ( ( )i i
total

t
R R t=∑ , where t is 

a time, i is a rule index) is calculated. Then the “Sum of 
firing strength” and “Max of firing strength” criterias are 
used for design KB[17]. Output of this stage is the rule base 
designed according to the chosen criteria and activation 
level.

Stage 4: Rule base optimization. GA2 optimizes the rule 
base (Stage 3), using the fuzzy model (Stage 1), optimal 
linguistic variable parameters (Stage 2), and TS. If you 
are still not satisfied with model quality you can use Error 
Back Propagation algorithm.

Stage 5: Refine KB. On this stage, the structure of 
KB is already specified and close to global optimum. In 
order to reach the optimal structure, two criteria can be 
used. First criterion is based on the minimum error, and 
in this case KB refining is similar to classical derivative 
based optimization procedures (like error back propa-
gation algorithm for FNN tuning). Second criterion is 
based on the maximum of mutual information entropy 
[17]. The result of the Stage 4 is a specification of fuzzy 
inference structure, optimal for solution of a current 
problem. In order to have robust solution, Stage IV can 
be bypassed, and the robust structure obtained with GAs 
of stages 2 - 3 can be used.

A4. Description of steps in SC Optimizer toolkit

Designed TS is used on the next step of technology (step 2 
on the Figure A1). At first, we must create a new sco-project.

A4.1 New Project creation SCO allows to create a 
new model or load previously created model from 
file. 

If you choose to create a new model the system will 
prompt you about model parameters, including inference 
model, number of input and output variables, number 
of fuzzy sets for each variable and so on. New model 
creation window is called by buttons «File», «New» in 
main menu. The window is shown on Figure A7 (а). Then 
following the button “next” we go to the window for TS 
input shown on Figure A7 (b).

(а)

(b)

Figure A7. New model creation windows

After TS is inputted, it must be adopted for SCO data 
processing format. For that purpose there is the win-
dow (Figure A7 (b)) where you must push the button 
«Change».

Created model is saved into file «name.sco», for 
example, «Pcart_TS1.sco». After the model was created 
or loaded you will be presented with main program menu, 
allowing you to view model parameters, start different 
optimization algorithms or edit model manually.

After new model is created go to the next step create 
variables.

A4.2. Membership functions creation and its opti-
mization

First step is 1GA  which solves optimization problem 
connected with the optimal choice of number of MFs and 
their shapes. This process is called by button «Create vari-
ables» and then you go forward according to menu.

When working with 1GA  algorithm you can run signal 
filtering algorithm which will remove redundant signal 
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lines. This can improve quality of fuzzy sets created by 
GA1 algorithm. If you wish to use this mode select Filter 
Signal checkbox on the first page of the dialog and enter 
desired filter threshold level (see Figure A8).

Next window will be the window with GA parame-
ters. Fill it and press NEXT>> to switch to the next page. 
Select variables, which should be optimized, by holding 
CONTROL key and clicking items in the list. If you are 
running this algorithm for the first time it is recommended 
to leave all variables selected. Use this feature in order to 
improve quality of some variables later.

Figure A8. Create MFs window

SCO supplies two ways of MFs determining: creating 
variables with uniform distribution algorithm and cre-
ating variables with GA1 that finds best (from the fitness 
function view) combination of fuzzy sets for each input 
variable. Also, GA1 finds optimal form (type) of MFs and 
optimal value of intersection between neighbor fuzzy sets

On Figure A9 one example of designed MFs is shown. 
As shown in this figure, for «Input_3» values description 
GA1 finds seven fuzzy sets (membership functions).

 

Figure A9. Example of designed MFs

A5. Rule database creation

After you have created variables and MFs you can 
create rule database. You can do this by pressing Create 

rule database command button or with Action/Create rule 
database menu. After pressing «Create rule database» the 
following window is shown (Figure A10).

Figure A10. Create rules window

SCO support two types of rules database (RD): com-
plete database and LBRW database (LBRW from “Let the 
Best Rule Win”). Complete database consists of all possi-
ble combinations of fuzzy sets describing input variables. 
The number of rules in complete RD equals the product 
of numbers of fuzzy sets for each input variables. If in the 
model there are more than three input variables then the 
complete RD has a large number of rules. Usually such 
kind of RD contains redundant information, and control 
with this RD is not effective.

LBRW algorithm chooses only valuable (robust) 
rules. Decreasing number of rules gives greater veloc-
ity of RD optimization without loss of accuracy. When 
creating LBRW database you can specify exact number 
of rules or minimal level of firing strength (threshold 
level). In the latter case created database will include all 
rules with firing strength greater than or equal to one you 
specify. 

On Figure A11 an example of designed rules database 
is shown. As you can see, complete database contains 486 
rules, but designed LBRW database consists only of 26 
rules.

Next window will be the window with GA parame-
ters. Fill it and press NEXT>> to switch to the next page. 
Select variables, which should be optimized, by holding 
CONTROL key and clicking items in the list. If you are 
running this algorithm for the first time it is recommended 
to leave all variables selected. Use this feature in order to 
improve quality of some variables later.
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Figure A11. Example of designed rules database

On Figure A11 in the line named «Selected rule» a cho-
sen rule (red bolt line on the FNN structure; order number 
of the chosen rule = 1) is shown in symbolic form:

« If Input_1 = Input_1_1 & Input_2 = Input_2_1 & In-
put_3 = Input_3_2 Then Output_1 = 0.292859, Output_2 
= 0.511746, Output_3 = 1.03733»

In the low part of the window (Figure A11) the result 
of TS approximation is shown. Green line represents a TS, 
blue line represents approximation of TS by chosen fuzzy 
system with designed rule database with 26 rules.

A6. Rule database optimization

After rule database is created, proceed to their optimi-
zation by GA2. Press «Optimize rules» and the window 
shown on Figure A12 is opened.

There are three possibilities:
• RD optimization with complete TS,
• RD optimization with optimized TS,
• RD optimization by Matlab simulation.

Figure A12. Rule database optimization window

Choose one way, press NEXT>> and the following 

windows are opened (see Figure A13).

Figure A13. Choice of GA parameters and selecting vari-
ables

You should select output variables for which database 
should be optimized. By default, optimization is selected 
for all variables and you shouldn’t change it when starting 
algorithm for the first time.

During optimization a progress window will appear (see 
Figure A14). It displays variables currently optimized, 
number of current generation and achieved level of evalu-
ation function.

Figure A14. Progress window of optimization process

You can press Abort Stage button if you want to stop 
optimization for the current stage. The state of the vari-
ables will be set to the best state found before abort button 
was pressed and the optimization will switch to the next 
variable. Press Abort All to stop optimization process and 
return to SCO.

So, as result of GA2 optimization we obtain optimal 
values of right parts of fuzzy rules.

Remark. GA2 optimization is based on TS. If TS is not 
optimal (from the control quality criterion) GA2 optimiza-
tion may be not optimal too. For that case in SCO toolkit 
there is an effective way - RD optimization by Matlab 
simulation.
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A7. Rule database optimization with Matlab 
simulation

For RD optimization by Matlab simulation choose op-
tion «Matlab simulation» in window on Figure A12 (see 
above) and press NEXT>>. After two windows as shown 
on Figure A13 (see above) is fulfilled, by pressing again 
NEXT>> we get into the window shown on Figure A15.

Figure A15. Window for connection to Matlab/Simulink 
model

In this window the path to Matlab model, initiation 
commands and fitness function are given.

A8. Fine tuning of the model

When rule database is optimized you can further improve 
model quality by returning to MFs optimization. This is 
accomplished by the last optimization step model refine-
ment (known as GA3 algorithm). You can start model 
refinement by clicking Refine KB command button or se-
lecting Action/Refine KB menu item.

After you activate the command wizard dialog will 
appear. It will first prompt you which fitness function you 
would like to use. Three choices are available:

• Maximization of mutual information entropy: Tells 
SCO to minimize mutual information entropy between 
MF fuzzy sets. This is the same function used in GA1 
algorithm, but unlike GA1, GA3 won’t change number of 
MF’s per variable, only MF parameters will be changed.

• Minimization of output error: Minimize output error.
• Matlab simulation: Use Matlab/Simulink to calculate 

fitness function. 
Select one of the variants and press NEXT>>. Enter ge-

netic algorithm parameters on the second page and press 
NEXT>> to switch to the next page.

Now you should select input variables, which should be 
optimized. By default, optimization is selected for all vari-
ables. You can change selection by holding CTRL and click-
ing left mouse button on the list items. You also have an op-
tion to optimize all variables at the same time (if you check 

“optimize all the variables at the same time” check box). If 
you leave this checkbox unchecked program will optimize 
variables one after another. If you check Add elements of the 
fitness vector box then elements of the resulting fitness vector 
will be added together. Otherwise vector fitness function will 
be used. Press NEXT>> to start optimization.

While GA3 algorithm operates the progress dialog will 
be shown. It will display number of current generation and 
achieved level of evaluation function. You can press Abort 
Stage button if you want to stop optimization for the current 
stage. The state of the variables will be set to the best state 
found before abort button was pressed and the optimization 
will switch to the next variable. Press Abort All to stop op-
timization process and return to SCO.

If you are still not satisfied with model quality you can 
run rule database optimization (GA2) again or use Error 
Back Propagation algorithm. Error Back Propagation al-
gorithm implements classical gradient optimization meth-
od, which provides an effective way to further improve 
model output after genetic optimization. You can start 
Back Propagation algorithm by clicking Back Propagation 
command button or selecting Action/Back Propagation 
menu item.
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