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1. Introduction

A PID controller applied as the instrument in many 
industrial control applications last 70 years. PID 
controllers realize a control loop feedback mech-

anism to control object or plant process variables [1]. They 
perform an accurate and optimal control in many cases. 
But PID controllers do not guarantee an optimal and ro-
bust control in the case of complex, essentially non-linear 
and ill-defined structures of controlled objects and in the 
presence of different stochastic noises. 

To improve robustness and control quality capabilities 
of traditional PID control systems design we have pro-
posed a new approach based on soft and quantum comput-
ing toolkit [2].

In our approach a robustness of PID controllers de-

pends on a presence of time dependent PID coefficient’s 
gains, which computed applying Knowledge Bases and 
a fuzzy inference mechanism.  Moreover, in unpredicted 
situations the robustness of PID controllers depends on a 
presence of a mechanism of Knowledge Bases self-orga-
nization [3]. This mechanism is described as a logical al-
gorithmic process of a value information extraction from 
hidden layers (possibilities) in classical control laws using 
quantum decision-making logic [3,4]. The quantum opera-
tors, such as superposition, entanglement and interference, 
give rise to the quantum logic used in quantum comput-
ing. 

In this article a quantum approach to the design of 
robust conventional PID controllers is demonstrated. We 
use a simplified method of a quantum fuzzy inference 
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algorithm, where instead of Knowledge Bases we use dis-
turbed values of K-gains of classical PID controllers. We 
propose a new mechanism of a quantum PID controller 
(QPID) design based on a quantum decision-making logic 
by using two K-gains of classical PID. While in this case 
membership functions are singletons further instead of 
naming “quantum fuzzy inference” we will call our meth-
od as a “quantum inference” that the particular case of 
quantum fuzzy inference in [3,4].

Quantum supremacy on Benchmark’s simulation re-
sults of QPID based robust control for a cart-pole system 
in unpredicted control situations demonstrated and ana-
lyzed.

2. General structure and main ideas of QPID 
controller design

On Fig. 1, the general structure of control system with 
quantum PID controller in the presence of external sto-
chastic noise, sensor’s time delay and noise in sensor sys-
tem is shown. 

Figure 1. General structure of QPID based on two K-gains 
of conventional PID and quantum inference.

Consider main ideas of Quantum Inference (QI) [3] 
based on two PID coefficient gains schedule. We have the 
following computing steps. 

First of all, for two teaching conditions (learning situa-
tions) we will design two K-gains, 1K  and 2K , by using 
genetic algorithm (GA) (so called PID tuning based on 

GA): 1 1 1 2 2 2
1 2 and P D I P D IK k k k K k k k   = =    . 

Remark. See an example of fitness function for GA 
tuning in the section with simulation results.

By using an artificial stochastic noise disturb obtained 
K-gains as follows 

1,2
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and , ,P D IG G G  are increasing / decreasing coeffi-
cients that can be chosen manually. In two learning situa-
tions, simulate a control object motion with new disturbed 
K-gains and design two probability distributions of K- 
signals for design of states 0  and  1  in QFI. (See an 
example of these states preparation in the section with 
simulation results.)

Realize QFI process based on two K(t)-gains by fol-
lowing steps.

Step 1: Coding. The preparation of all normalized 
states 0  and 1 for current values of disturbed control 
signals 1K  and 2K  including:

- a calculation of probability amplitudes 0 1,α α  of 
states 0  and 1  from histograms; 

- a calculation of normalized value of state 1  by us-
ing 1α .

Step 2: Choose quantum correlation type for prepara-
tion of entangled state. Consider the following quantum 
correlation (spatial): 

1,2 1,2 1,2 1,2 1,2 1,2
1 2 1 2 1 2;   ; ;new new new

P D P P D I D D I P I Ie e k k k gain e e k k k gain Ie Ie k k k gain→ ⋅ → ⋅ → ⋅ 

where , ,e e Ie  – are control error, derivative and inte-
gral of control error correspondingly and ( , )P D Igain  – are 
QI scaling factors that can be obtained by GA. 

So, a quantum state 
1 1 2 2

1 2 3 4 5 6 1 2 ( ) ( ) ( ) ( )P D P Da a a a a a e e k t k t k t k t=  is con-

sidered as the entangled state.
Remark. The type of an entangled state is chosen from 

the list of entangled states types. This list is constructed 
manually (empirically) and checked by simulation.

Step 3: Superposition and Entanglement. According to 
the chosen quantum correlation type construct superpo-
sition of entangled states. (see an example in the section 
with simulation results)

Step 4: Interference and measurement. Choose a quan-
tum state

1 1 2 2
1 2 3 4 5 6 1 2( ) ( ) ( ) ( ) ( ) ( )P D P Da a a a a a e t e t k t k t k t k t=  

with the maximum amplitude of probability 

1 1 2 21 2 P D P D
e e k k k k

A P P P P P P= ⋅ ⋅ ⋅ ⋅ ⋅ .  Choose 

subvector 1 1 2 2( ) ( ) ( ) ( )P D P Dk t k t k t k t .

Step 5: Decoding.
Calculate normalized output as a norm of subvector of 

the chosen quantum state as follows:

2
3 32 2

3

1 1( ) ... ... ( ) ,   6
2 2

n
new
P n n in n

i
k t a a a a a n

− −
=

= = =∑
 (2)
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Step 6: Denormalization.
Calculate final (denormalized) output result as follows:

( ) , ( ) , ( ) .output new output new output new
P P p D D D I I Ik k t gain k k t gain k k t gain= ⋅ = ⋅ = ⋅                              

(3)

Step 7: Find robust QI scaling gains 
{ , , }P D Igain gain gain  based on GA and a chosen fit-

ness function. (See a fitness function example in the sec-
tion with simulation results).

Let us consider the Benchmark of control object and 
investigate robustness and self-organization properties of 
proposed QPID controller based on developed QI algo-
rithm. 

3. Quantum PID based smart control design: 
example of Benchmark simulation results

Consider a QPID controller design for a typical bench-
mark of globally unstable dynamic system (a so called 
«cart-pole» system). The geometrical model of the «cart-
pole» dynamic system is shown on Fig. 2.

Figure 2. Geometrical model of cart-pole system

Control problem: acting by a control force on the cart, 
keep the Pole motion vertical and stable (pendulum angle 

0θ = ) in spite of different environment conditions. 
Our control goal is to balance the pole with limited cart’s 
position and velocity, with limited control force and in the 
presence of stochastic noises and sensor’s delay time.
These conditions and constraints in the search of optimal 
solutions are intractable task for conventional control sys-
tem theory.

The inverted pendulum (called also a pole) problem 
control is described by second-order differential equations 
system for computing control force that to be used for 
moving the cart:

2
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where z and θ  are generalized coordinate; g is the 
acceleration due to gravity (usually 29.8 / secm ), cm  is 
the mass of the cart, m is the mass of inverted pendulum 
(called also as a pole), l is the half-length of the pendu-
lum, k and 1a  are friction coefficients in z and θ  corre-
spondingly, 2a  is a spring force that bounded the cart mo-
tion, ( )tξ  is external stochastic noise and u is the applied 
control force in Newton’s.

According to the control system structure (shown in 
Fig.1) we have at the low level one PID controller which 
controls a cart motion so that the Pole doesn’t fail down. 

For the pole stabilization ( 0θ = ) we introduce a refer-
ence signal for z as following: 

refz  is a projection on axis z of the center of gravity of 
the pole. It must be equal 0 for stabilization the pole mo-
tion. 

We can represent refz  as sin ,where  is some scaling parameter.refz w l wθ= − ⋅ ⋅  where w 
is some scaling parameter. If 0; 0.refzθ → →  

We also introduce constraints on the center of grav-

ity projection: 1refz ≤  and on applied control force: 

5 ( )u N≤   . We also consider a presence of a time delay 
in a measurement system. 

Thus, one PID controller through cart motion (first 
DOF) controls a position of the inverted pendulum (second 
DOF), i.e. one PID controller control 2DOF control object 
through energy transfer phenomena from one DOF to an-
other applying non-linear interrelations in Eqs (1) and (2). 

3.1 Teaching conditions for PID tuning

In Table 1 model parameters for the chosen control ob-
ject are described.

Table 1. Cart-Pole System: Model Parameters

mc 
[kg]

m 
[kg] l [m] Damping in 

ɵ, k
Damping in z, 

a2

Spring force coefficient 
in dz, a1

1.0 0.1 0.5 0.4 0.1 5.0

We also take the following Cart-Pole initial conditions: 
the pole angle θ  = [10  ; 0.1] in degrees; cart position z = [0; 0] 
in m. 

Constraints: a cart position: -1.0 < z < 1.0 [m]; control 
force: -5.0 < u < 5.0 [N].

Sensor’s delay time = 0.001 sec.
We will use two stochastic external noises (shown on 

Fig. 3) for two teaching conditions with different prob-
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ability distribution density functions: Gaussian noise 
(symmetric probability distribution density function) and 
Rayleign noise (with nonsymmetrical probability distribu-
tion density function).

Figure 3. External stochastic noises in teaching control 
situations.

According to the step’s description of QI algorithm 
above at first stage let us find for two teaching conditions 
two K-gains 1K  and 2K  by using GA. We have worked 
with a mathematical model of the cart-pole system repre-
sented in Matlab / Simulink. 

3.2 PID tuning based on GA. Design time depen-
dent K-gains for QPID

Teaching conditions 1 with Gaussian noise (named as 
TS1). 

In order to apply GA, we must define a fitness function 
and a search space for GA. Search space for PID gains K 
= [100 100 100] is defined from preliminary simulations 
with PID control. We define the following Fitness Func-

tion (y) for GA tuning: 
2 2

t t
y θ θ= − −∑ ∑ 

. In Matlab 

toolkit, this fitness function is represented as following: 

(simoutX(:,1). ^ 2) / Norm (simoutX(:,2). ^ 2) / Normy sum sum= − −  

where simoutX(:,1) is a vector of angle (ɵ) values; 
simoutX(:,2) is a vector of angular velocity values and 
Norm is a length of these vectors.

As result of GA tuning, we obtained the following val-
ue 1K   = [82.7   13.6   9.4]. We will call PID with 1K  as 
PID1. 

Now according to (1) we disturb K1 gains as shown in 
Matlab model represented on Fig. 4 (a). (see right block). 

QI process in QPID block in Matlab model on Fig. 4 (b) 
demonstrated. 

Figure 4 (a). The Matlab structure of QPID based control 
system.

Figure 4 (b). QI process in QPID block in Matlab model.

By the Matlab simulation we define manually (it is 
easy to do) increasing noise coefficients , ,P D IG G G  so 
that K1(t) and K2(t) give robust control (the Pole doesn’t 
fail down). 

If the Pole fails down, we take smaller , ,P D IG G G  
and check again robustness. Finally, we choose bigger 

, ,P D IG G G  that give K1(t) and K2(t) with robust control 
(The Pole doesn’t fail down). 

Finally, we have the following time dependent K1(t) for 
our QPID. 

1. TS1 control situation

DOI: https://doi.org/10.30564/aia.v2i1.1401
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where ( ) aussian noise with maximal ampli
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Figure 5. Teaching conditions 1: Pole motion with con-
stant and disturbed K-gains of PID1

Now let us see on the motion of our control object 
under constant and variable (time dependent) K1-gains as 
shown on Fig. 5. We see that the pole motion is stable in 
both cases.

On Fig. 6 the disturbed K-gains of PID1 (called as con-
trol laws) are shown.

Figure 6. Teaching conditions 1: Control laws.

Teaching conditions 2 with Rayleigh noise (named as 
TS2). As result of GA tuning, we obtained 2K  = [92.2   
14.9   7.84]. We will call PID with 2K  as PID2. Analogi-
cally we obtain the following time depending K2(t).

where ( ) gaussian noise with maximal ampl

K t k gain t t2 ( ) ( ) 14.9 10 ( ) ,= + ⋅ = + ⋅

ξ
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Simulation results on Fig. 6 show the pole motion. 
Remark. On Fig. 7 and all others below, we will denote 

pole angle θ  as x.

Figure 7. Teaching conditions 2: Pole motion with con-
stant and disturbed K-gains of PID2

In this case also simulation results show that the pole 
motion is stable in both cases. 

On Fig. 8 the disturbed K-gains of PID2 (called as con-
trol laws) are shown.

Figure 8. Teaching conditions 2: Control laws.

Conclusion:  The simulation results (Figs. 5-8) show 
that the pole motion is stable in both cases (with constant 
K1 and K2 and with time-depending K1 and K2) . It means 
that we can use disturbed K-values for further calculations 
in QPID. 

QPID controller based on a new type of computing
We developed special tools for Quantum Fuzzy 

and Quantum PID inference based on QC optimizer 
(QCOptKBTM) [4,6].

QCOptKBTM toolkit allows to control as a physical 
system and a mathematical model of a control object as 
shown on Fig. 9.

Figure 9. QPID controller connected with a control ob-
ject.

We will work with mathematical model of control ob-

DOI: https://doi.org/10.30564/aia.v2i1.1401
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ject represented in Matlab / Simulink. Control loop with 
QPID is shown on Fig. 10.

Figure 10. Matlab / Simulink model of control object with 
control loop based on QPID.

Calculations corresponding to QI based on two K-gains 
are realized in the block QPID by applying QC Optimizer 
toolkit.

3.3 QPID in terms of QC optimizer tool

On Figs 11a and 11b, internal structure of QPID in terms 
of our toolkit is shown. 

Figure 11a. QPID structure in terms of QC Optimizer 
tools

Figure 11b. QPID structure. Internal layer in terms of QC 
Optimizer tool.

On Fig. 11b internal structure of QPID block is shown. 
In this block the following items are described:

- names of input variables 1,2
( , )P D Ik , where indexes 1, 2 

denotes PID1 and PID2 (or 1K  and 2K ); 
- names of output variables ( , )P D Ik ;
- histograms for each input variable representing prob-

ability distribution of the given input;
- QI scaling coefficients for calculation output values 

(that is founded by GA for teaching conditions and then 
used for all control situations);

- knob «correlation parameters» is used for the choice 
of quantum correlation type description. 

For example, let us use the following quantum correla-
tions (spatial): 

1,2 1,2 1,2 1,2 1,2 1,2
1 2 1 2 1 2;   ; .new new new

P D P D I D I P Ie e k k k e e k k k Ie Ie k k k→ → →

By using GA and chosen quantum correlation we ob-
tained the following QI scaling coefficients: Q_A_params 
= 2.4200    0.3320    0.1000.

Remark. A fitness function is the same as in PID tun-
ing. Only search space is different. In the case of GA for 
QI scaling gains search space is as the formula bar dis-
plays the contents.

Now investigate robustness properties of designed 
QPID based on QI with the given correlations in different 
control situations.

3.4 Investigation of self-organization capability of 
Quantum PID Control based on two PID controllers 

We will consider the following controllers:
o PID1 controller with constant gains 1K   = [82.7   

13.6   9.4];
o PID2 controller with constant gains 2K  = [92.2   14.9   

7.84];
o QPID controller based on QI with 1K  and 2K .
Consider now behavior of control object in teaching 

and modeled unpredicted control situations and investi-
gate robustness property of designed controllers.

Investigation of different types of quantum correla-
tions: Spatial correlations.

TS1: Comparison of QPID, PID1 and PID2 control per-
formances. 

Figures 12-14 demonstrate simulation results in the 
first teaching control situation.

Figure 12. The Pole motion (left) and cart motion (right) 
comparison.

DOI: https://doi.org/10.30564/aia.v2i1.1401
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Figure 13. The integral control errors.

Figure 14. The control force and control laws

Conclusion: all considered controllers are successful to 
balance the Pole in TS1 situation.

TS2: Comparison of QPID, PID1 and PID2 control per-
formance.

On Figs 15 – 17, a behavior of the Cart-Pole system in 
the teaching conditions TS2 is shown.

Figure 15. The Pole motion (left) and cart motion (right) 
comparison in TS2 situation

Figure 16. The Integral control errors.

Figure 17. The control force and control laws in TS2 
situation

Conclusion: all considered controllers are successful to 
balance the Pole in TS2 situation.

3.5 Investigation of self-organization capability of 
chosen QFI

In the Table 2 modeled unpredicted control situations 
(Class 1) are shown. 

Table 2. Class 1 of modeled unpredicted control situations

New 1 control situa-
tion
(in legend S1)
External noise: Rayleigh 
(TS2 teaching noise);
New sensor’s time delay 
= 0.005 sec; 
Internal sensor noise: 
Gaussian noise with 
amplitude = 0.015;
TS model parameters

New 2 control situa-
tion 
(in legend S1a)
E x t e r n a l  n o i s e : 
Rayleigh (TS2 teaching 
noise);
New sensor’s time de-
lay = 0.005 sec; 
Internal sensor noise: 
Gaussian noise with 
amplitude = 0.015;
New model parameter 
a2 = 8

New 3 control situa-
tion 
(in legend S1b)
E x t e r n a l  n o i s e : 
Rayleigh (TS2 teach-
ing noise);
Sensor’s time delay = 
0.001 sec; 
Internal sensor noise: 
Gaussian noise with 
amplitude = 0.01;
New model parame-
ter a2 = 6

Let us investigate a robustness of the proposed QPID 
model in a new control environment (Table 2).

New 1 control situation. Figures 18 – 20 show the sim-
ulation results in unpredicted control situation Remark. In 
a plot presentation below “New1” is denoted as S1. See 
the Table 2.

Figure 18. The Pole motion (left) and the cart motion 
(right) comparison in New 1 situation.

DOI: https://doi.org/10.30564/aia.v2i1.1401
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Figure 19. The Integral control error in New 1 situation.

Figure 20. The control force and control laws in New 1 
situation.

The presentation of control laws and control forces in a 
point where the Pole falls down.

Figure 21. The control force and control laws in New 1 
situation

Conclusion: QPID and PID1 controllers are successful 
to balance the Pole in New 1 situation. PID2 controller is 
unsuccessful to balance the Pole in New 1 situation.

New 2 control situation. Figures 22 – 25 show the sim-
ulation results of the cart-pole motion in New2 unpredict-
ed situation.

Figure 22. The Pole motion (left) and cart motion (right) 
comparison in New 2 situation.

Figure 23. Integral control error in New 2 situation.

Figure 24. The control force and control laws in New 2 
situation

The representation of control laws and control forces in 
a point where the Pole falls down.

Figure 25. The control force and control laws in New 2 
situation

Conclusion: QPID controller is successful to balance 
the Pole in New 2 situation. PID1 and PID2 controllers are 
unsuccessful to balance the Pole in New 2 situation.

New 3 control situation. Figures 26 – 28 show the sim-
ulation results of the cart-pole motion in New3 unpredict-
ed situation.

Figure 26. The Pole motion (left) and cart motion (right) 
comparison in New 3 situation.

DOI: https://doi.org/10.30564/aia.v2i1.1401
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Figure 27. The integral control error in New 3 situation

Figure 28. Control forces and control laws in New 3 situ-
ation

Conclusion: QPID controller is successful to balance 
the Pole in New 3 situation. PID1 and PID2 controllers are 
unsuccessful to balance the Pole in New 3 situation.

Final conclusions:
- QPID controller is robust in all situations of class1;
- PID1 controller is robust in New 1 situation only;
- PID2 controller is not robust in class 1 situations;
- QPID based on new type of calculations increases ro-

bustness of designed PID controllers.

3.6 Investigation of different types of quantum 
correlations: Temporal correlations

Investigate now a robustness of temporal quantum cor-
relations and compare with the spatial type of QI for the 
given control object. Let us consider QI with the follow-
ing temporal quantum correlations as follows:

( ) ( ) ( ) ( )
( ) ( )

1,2 1,2 1,2 1,2
1 2 1 2

1,2 1,2
1 2

( ) ;   ( ) ;   

( ) .

new new
P P P P D D D D

new
I I I I

e e k t k t t k t gain e e k t k t t k t gain

Ie Ie k t k t t k t gain

− ∆ → ⋅ − ∆ → ⋅

− ∆ → ⋅

 

On Fig. 29, a cart-pole dynamic motion in TS1 situa-
tion is shown for different values of time correlation pa-
rameter t∆ = 0.25 sec and 0.05 sec.

Figure 29. The Pole motion (left) and cart motion (right) 
comparison in TS1 situation – Temporal quantum correla-

tions.

Check now a robustness of temporal correlations.
On Figs. 30 -31 the cart-pole dynamic motion in New 1 

control situation (in legend S1) is shown for different val-
ues of time correlation parameter t∆ = 0.25 sec and 0.05 
sec. You can see that the Pole falls down.

Figure 27. Pole motion (left) and cart motion (right) 
comparison in New 1 situation: Temporal quantum cor-

relations. Pole falls down

3.7 Comparison QPID control performance un-
der spatial and temporal correlations

Consider dynamic motion and control laws comparison 
(around the point, where the Pole falls down). 

Figures 30 and 31 show results of the comparison. 

Figure 30. Pole motion (left) and cart motion (right) com-
parison.

Conclusion: QPID with temporal correlations is not 
robust in New 1 situation. So, choose the QI based on spa-
tial quantum correlation as a best candidate the for robust 
QPID realization.

Consider now a new class of modeled unpredicted 
control situations (Class 2) shown in Table 3. For the new 
control situations (New 6 and New 7) the external uniform 
noise is used (Fig. 31).

DOI: https://doi.org/10.30564/aia.v2i1.1401
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Figure 31. External Uniform noise applied in New 6 and 
New 7 control situations.

Table 3. Class 2 of modeled unpredicted control situations

New 4 control situation
(in legend S2)
External noise: Gaussian (TS1 
teaching noise);
 New sensor’s time delay = 0.004 
sec; 
Internal sensor noise: Gaussian 
noise with amplitude = 0.015;
TS model parameters

New 5 control situation
(in legend S2a)
External noise: Gaussian (TS1 
teaching noise);
 New sensor’s time delay = 0.004 
sec; 
Internal sensor noise: Gaussian 
noise with amplitude = 0.015;
New model parameter a2 = 8

New 6 control situation
(in legend S3)
New external noise:  Uniform 
(Fig.13.32);
 New sensor’s time delay = 0.005 
sec; 
Internal sensor noise: Gaussian 
noise with amplitude = 0.015;
TS model parameters

New 7 control situation
(in legend S3b)
New external noise:  Uniform 
(Fig.13.32);
 New sensor’s time delay = 0.005 
sec; 
Internal sensor noise: Gaussian 
noise with amplitude = 0.015;
New model parameter a2 = 8

New 4 control situation. 
Figures 32 – 34 show the simulation results of the cart-

pole motion in the New4 unpredicted situation.

Figure 32. Pole motion (left) and cart motion (right) com-
parison in New 4 situation.

Figure 33. The Integral control error in New 4 situation.

Figure 34. Control force and control laws in New 4 situa-
tion.

Conclusion: all controllers are successful to balance the 
Pole in New 4 situation. 

New 5 control situation. 
Figures 35 – 37 show the simulation results of the cart-

pole motion in the New5 unpredicted situation.

Figure 35. The Pole motion (left) and cart motion (right) 
comparison in New 5 situation.

Figure 36. Integral control error in New 5 situation.

Figure 37. Control force and control laws in New 5 situation.

Conclusion: QPID controller and PID2 controllers are 
successful to balance the Pole in New 5 situation. PID1 
controller is unsuccessful to balance the Pole in New 5 
situation.
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New 6 control situation. 
Figures 38 – 40 show the simulation results of the cart-

pole motion in the New6 unpredicted situation where a 
new type of external noise is - Uniform (Fig.31);

Figure 40. The Pole motion (left) and cart motion (right) 
comparison in New 6 situation.

Conclusion: All considered controllers are successful to 
balance the Pole in New 6 situation. 

New 7 control situation 
The cart-pole motion in the New6 unpredicted situation 

is shown on Fig.41. 

Figure 41. Pole motion (left) and cart motion (right) com-
parison in New 7 situation.

Conclusion: QPID and PID1 controllers are successful 
to balance the Pole in New 7 situation. PID2 controller is 
unsuccessful to balance the Pole in New 7 situation.

Some important remarks 
As shown on Fig. 42 and Fig. 43 below, control laws of 

QPID in teaching conditions and in new control situations 
are similar. 

Figure 42. Control laws and control forces in teaching 
conditions (TS1 and TS2) and in New 1 situation

Figure 43. Control laws and control forces in New 2, New 
5, New 7 situations

Thus, we have used constant values 1K  and 2K  of 
classical PID in order to obtain variable K-gains of QPID. 
Constant 1K  and 2K  of classical PID are not changed 
when control situation is changed, variable QPID K-gains 
also is not changed when control situation is changed. If 
so, let us take average values from obtained QPID K-gains. 
By this way we can receive new PID that we will call as 
PID-average. 

If we take max QPIDt
K K=  , then we obtain new con-

troller named as PID-max.
Let us testing robustness of new obtained controllers 

in chosen control situation (New 2 or in legend S1a). On 
Fig. 44 comparison of cart-pole motion under three types 
of control:

Figure 44. Pole motion under three types of control

- QPID with variable (time dependent) K-gains ob-
tained by on-line QFI process;

- PID-average with constant gains K= [108.8507   
15.3634    4.5209];

- PID-max with constant gains K= [119.2325   16.3510    
5.1046]. 

Simulation results show that PID-average and PID-max 
controllers with constant gains are incapable to balance a 
Pole in the chosen control situation.

We have seen that constant K-gains obtained from 
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quantum inference cannot control pendulum motion in the 
new situation. But variable K-gains can do it. Thus, we 
have principally new computing process.

4. Conclusions

Main ideas, algorithm and simulation results of QPID 
controller are described. 

o By applying the typical benchmark of a globally 
unstable control object (as a “cart-pole” system) a com-
parison of two types of PID control have been considered: 
1) PID with constant coefficients gains; and 2) QPID with 
time dependent coefficients gains computed on the base of 
a proposed quantum inference algorithm.

o Simulation results allow us to make the following 
conclusion: control systems with constant coefficients 
gains are attractive for many conventional control situa-
tions. However due to the constancy of control parame-
ters, standard PID controllers do not guarantee a robust 
control in unpredicted control situations.

o For practical applications, when we have deal only 
with PID controllers, we may increase a robustness of 
control system by using the quantum inference model.

o For achievement the robustness of QPID controller 
only two sets of PID constant K-gains are needed.

o Simulation results show good robustness properties 
of QPID based on quantum inference block.

Further investigations of different QPID models are 
considered as useful and important [7].
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