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The task of an intelligent control system design applying soft and quan-
tum computational intelligence technologies discussed. An example of a 
control object as a mobile robot with redundant robotic manipulator and 
stereovision introduced. Design of robust knowledge bases is performed 
using a developed computational intelligence - quantum/soft computing 
toolkit (QC/SCOptKBTM). The knowledge base self-organization process 
of fuzzy homogeneous regulators through the application of end-to-end 
IT of quantum computing described. The coordination control between 
the mobile robot and redundant manipulator with stereovision based on 
soft computing described. The general design methodology of a gener-
alizing control unit based on the physical laws of quantum computing 
(quantum information-thermodynamic trade-off of control quality dis-
tribution and knowledge base self-organization goal) is considered. The 
modernization of the pattern recognition system based on stereo vision 
technology presented. The effectiveness of the proposed methodology is 
demonstrated in comparison with the structures of control systems based 
on soft computing for unforeseen control situations with sensor system. 
The main objective of this article is to demonstrate the advantages of the 
approach based on quantum/soft computing.
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1. Introduction

The application of robotic systems in various prob-
lem-oriented domains gives a significant positive 
effect; moreover, not only industrial intelligent ro-

bots, but also robots for service use with various degrees of 
social responsibility (medical robots, rescue robots etc.) are 
spreading [1-3]. The effectiveness of such robot’s application 
directly depends on the quality of control systems [3], which 
are the most labor-intensive part of the robotic complex. 

The prototype presented below is used in the education pro-
cess, the software component of each block of the control 
system is modernized through the application of soft and 
quantum computing IT. A significant increase in robustness 
[4] when using these types of computing allows us to say 
that the creation of an effective robust and adaptive control 
system for robotic devices requires an additional software 
and algorithmic support platform in the form of sophisti-
cated toolkit based on soft and quantum computing (Quan-
tum computational intelligence toolkit) [4]. Specialists in 
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the design and development of various robots rely on an 
intelligent platform for the application of computational in-
telligence technologies. This approach allows unifying the 
process of intellectualization of the created hybrid industrial 
service and special purpose robots [1-3].

In the article we are focused the attention on the fact 
that the application of quantum computing in the design 
process of intelligent control systems (ICS) significantly 
increases the reliability of hybrid intelligent controllers 
by introducing knowledge self-organization capability. 
The basic principles of creating robust knowledge bases 
(KB) are described. The paper describes an experiment, 
the results of which make it clear that the effectiveness 
of a fuzzy controller is significantly reduced in case 
of emergency situations. We propose an approach that 
allows to solve a similar problem by introducing a quan-
tum generalization of strategies in fuzzy inference in on-
line from a set of pre-defined fuzzy controllers (FC) by 
new Quantum Fuzzy Inference (QFI). We consider a 
new structure of intelligent control system (ICS) with a 
quantum KB self-organization based on QFI. We espe-
cially focus on robustness of control because it is the 
background for support the reliability of advanced con-
trol accuracy in uncertainty environments. The main goal 
of this work is to provide a brief description of soft com-
puting tools for designing independent FC, then we will 
provide the QFI methodology of quantum KB self-orga-
nization in unforeseen situations. Quantum supremacy of 
classical intelligent control system design in unexpected 
control situations demonstrated.

1.1 State of Art of Robotic Systems Development

The basis of the intelligent robot control system is to 
achieve a synergistic effect from the interaction of various 
on-board robot systems (a movement system, a mobile 
manipulator control system, an image processing system 
etc.). This approach was identified and supported by re-
search and development in Japan in the mid-90s of the 
last century [1-3]. It should be noted that now this particular 
approach is fundamental in robotics.

In particular case, in [1-3] is described how the mobile 
robot for service use works in buildings with different 
scenes of rooms and moves in unstructured environments 
in presence of many human being operators and unexpect-
ed obstacles applied cognitive graphic of path planning 
and soft computing for control of different technological 
operations (open door, getting on an elevator, room con-
trol operations and so on). It was suggested to construct a 
simulation system for mobile service robot behavior based 
on cognitive graphics with virtual and complimentary re-
ality. This system is used for possible world’s simulation 
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in the robot artificial life. This allows us to evaluate the 
control algorithms in online robot behavior and to reduce 
difficulties connected with such troubles as robot colli-
sions with obstacles and robot hardware damages. In this 
Item we describe a new approach to intelligent control 
system design using soft computing technology. A new 
form of direct human - robot communications (including 
emotion, instinct and intuition) and an autonomous lo-
comotion control system were developed (see Figure 1). 
Authors considered direct human-robot communications 
based on natural language (NL) and construct the simula-
tion system of spatial scenes and robot behavior in virtual 
reality (VR).

Figure 1. Structure of Artificial Intelligence (AI) control 
system with distributed knowledge representation (on 

control signal levels). a - Intelligent control “in large” b 
- Intelligent control “in small” c - Control on executive 

level

It was explained also the managing system which 
controls cooperatively three sub-systems of the service 
robot, as the locomotion system, the handling system for 
a mobile manipulator and the image processing system 
as human vision system. Also, three sub-systems which 
organize the service robot system for its autonomous nav-
igation and these soft computing are described in [3,5]. The 
locomotion control system is composed of four functions, 
i.e. locomotion control, planning for works, learning and 
recognition. These four functions are related to each other. 
By using the handling system for a mobile manipulator 
and the image processing system as human vision system, 
the robot can realize some technology operations, for ex-
ample, opening a door and getting on an elevator. These 
three sub-systems are based on fuzzy control, fuzzy neural 
networks (FNN) and genetic algorithm (GA). Experimen-
tal results on the developed robot show that the proposed 
methods are very useful for autonomous locomotion con-
trol of the robot. 
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Example. Intelligent control and soft computing for 
avoidance of obstacles and execution of technology op-
erations - robot is power-wheeled steering type which is 
achieved by two driving wheels and a caster with passive 
suspension for stable locomotion. Thirteen ultrasonic (US) 
sensors, nine infrared (IR) sensors, a five degree-of-free-
dom (DOF) manipulator with a three-finger hand and a 
CCD camera are equipped on the robot for conducting 
tasks and works in buildings including human being, 
opening door and getting on an elevator. In process of 
robot’s locomotion from point to point mobile robot must 
avoid obstacles in room, and achieve starting position for 
successful opening room door (as technology operation 
from one point to another point) and go out the room to 
elevator in presence of obstacles in a corridor. Movement 
process is planned by the managing system which was de-
scribed in [5].

It must be said that the management of poorly formal-
ized and poorly structured control objects (CO) with a 
variable and complex structure, variable parameters and 
uncertain operating conditions, in a group or an autono-
mous object requires the use of end-to-end (in the general 
case - quantum) information technologies. Studying the 
problems of implementing control systems for such new 
and extremely complex CO as NICA, LHC, data process-
ing of telescopes, autopilots, objects of intelligent robotics 
indicates a significant dependence of the robustness of the 
system on the embedded computing basis of the most ICS 
[6]. It is necessary to revise the science platform that is em-
bedded in end-to-end information technology (IT) for the 
design of ICS.

Traditional modern automatic control systems fun-
damentally do not take into account the occurrence of 
contingency management situations and do not include 
the human being cognitive factor in the control loop, 
which does not guarantee the timely achievement of the 
management goal - obtaining the maximum intensity of 
functioning and stable repetition of the required operating 
modes with minimal cost of useful resources, such as: 
time settings, power consumption and more other. In the 
conditions of uncertainty or inaccuracy (imperfect) of the 
initial information, unforeseen situations or information 
risk, the traditional (using the principle of global negative 
feedback) and widely used in industry PID-controller of-
ten does not cope with the management task. At the same 
time, the solution to the problem of global robustness of 
the PID-controller is still unknown, despite the relevance 
of this problem.

Remark. Systems based on biological systems and 
mimicking their working conditions and behavior are 
found to be more adaptive and systematically. Their 

responses are faster and more accurate as compared to 
the conventional systems. The major drawbacks found 
while dealing with the static controllers like PI, PID 
etc. are that they are less efficient for dealing with the 
complexities and non-linear disturbances. Also, they are 
non-adaptive and less robust. However, the computation-
al model based on the mammalian decision system could 
deal with these complexities and non-linearity more ide-
ally and robustly. In online process control systems, all 
the conditions are uncertain. Also, some complex pro-
cesses are very dynamic and conditionals are not known 
with accurate precisions. Thus, in these systems, the 
design of the controller is very crucial. Also, solving this 
non-linearity through conventional computational model 
proves to be very slow. Also, in online scenarios the dis-
turbance sources are unknown and thus any prior model 
cannot be predicted. Adaptive models are required for 
dealing such scenarios. Thus, various AI techniques like 
neuro-fuzzy techniques, Genetic Algorithms, PSO are 
proved. A model based on limbic-system of mammalian 
brain emotions has been proposed by Caro Lucas in 2004 

[7]. He has demonstrated that emotion-based decisions 
are quick and more satisfying all the constraints. He has 
proposed the model based on dynamic limbic system 
of brain of mammalian. A BELBIC model presents the 
mimics of the limbic systems components - amygdala, 
orbito-frontal cortex, thalamus, sensory cortex. It has 
been implemented for various SISO, MIMO, and other 
non-linear systems. Various results have demonstrated 
its very fast control action, better disturbance handling 
capacity, and robustness (see Appendix 1).

This is also due to the fact that the classical methods 
of control theory have synthesis and design methods for 
well-formalized, well-defined and well-described CO 
that operate in previously known conditions and situ-
ations. However, unforeseen circumstances and their 
individual characteristics determine the secrecy and 
underdetermination of the parameters of physical and 
mathematical models, and should be taken into account 
in the KB of intelligent FC. Quantum end-to-end IT al-
lows designing hierarchical ICS’s, which make possible 
to redistribute the degree of decision-making responsi-
bility between ICS’s depending on a dynamically chang-
ing situation [6,8].

This article also provides a brief description of the de-
veloped system of pattern recognition, which is based on 
stereovision technology. The use of stereovision allows 
obtaining data of the depth of the image, the distance to 
objects, provides an opportunity to build a 3Dpicture of 
the surrounding world. This article discusses the archi-
tecture of convolutional neural networks and its applica-
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tion in intelligent robotics. Advantages of convolutional 
networks are used for recognition with a high degree of 
invariance to transformations, distortions and scaling. 
The convolutional neural network is a widespread and 
effective tool for deep machine learning, with the help of 
which computer vision problems are successfully solved. 
The process of classifying images of a convolutional 
neural network is close to a similar process occurring in 
the cortex of the human brain. This paper presents a brief 
description of the modernization of the pattern recognition 
system based on stereo vision technology.

1.2 IT for the Design of Robust Intelligent Con-
trol Systems

The use of FC in conjunction with the PID-controller led 
to the creation of hybrid fuzzy ICS with various levels of 
intelligence depending on the completeness and correct-
ness of the designed KB. The use of soft computing tech-
nology (based on GA and FNN) has expanded the field of 
effective application of FC by adding new functions in the 
form of learning and adaptation.

The developed technology and intelligent tools Soft 
Computing Optimizer (SCO &IICS) SCOptKBTM made 
it possible to design robust KB based on the solution of 
one of the algorithmically difficult problems of the theory 
of artificial intelligence - the extraction, processing and 
formation of objective knowledge without expert esti-
mates. Three GA’s are used in this SCO, which allow us 
to design the optimal FC structure (type and number of 
Membership function (MF), their parameters, number of 
fuzzy inference rules), which approximates the training 
(learning) signal with the required error. In this case, the 
optimal FNN structure is automatically designed and a 
universal approximator model is formed in the form of FC 
with a finite number of production rules in KB [8].

The technology uses new types of computational intel-
ligence (see Figure 2). The design process for robust KB 
consists of two interconnected stages based on soft and 
quantum computing. Design is carried out on the basis of 
Computational Intelligence Toolkits - SCO & QCO (QC/
SCOptKBTM).

At the first stage of the design process individual KB’s 
are formed for two (or more) FC’s, which operating in 
specific learning control situations. At this stage an evolu-
tionary multi-criteria GA with soft computing technology 
and fuzzy stochastic modeling is used. The mathematical 
model of the system and the CO (functioning in conditions 
of training with reinforcement), according to the measured 
output signals of sensors and control actions, can act as an 
information source of the design process.

Figure 2. Structure of information design technology of 
IFICS

From the point of view of hierarchical multi-agent 
management, the developed IT allows managing both au-
tonomous objects and hierarchically structurally connect-
ed teams of autonomous robots (Multiple KB design in 
Figure 2). On Figure 2 is presented the information design 
technology of robust integrated fuzzy intelligent control 
systems (IFICS). Main problem in this technology is the 
design of robust KB of FC that can include the self-orga-
nization of knowledge in unpredicted control situations. 
The background of this design processes is KB optimizer 
based on quantum/soft computing [9]. Concrete industrial 
Benchmarks (as “cart - pole” system, robotic unicycle, 
robotic motorcycle, mobile robot for service use, semi-ac-
tive car suspension system etc. [5,10-13]) are tested success-
fully with the developed design technology. 

2. Unconventional Computational Intelli-
gence Toolkit: Soft and Quantum Computing 
Technologies

Soft computing and quantum computing are new types 
of unconventional computational intelligence toolkit 
(details see in http://www.qcoptimizer.com). Technology 
of soft computing is based on GA, FNN and fuzzy logic 
inference. Quantum computational intelligence is used 
quantum genetic search algorithm, quantum neural net-
work and QFI. These algorithms are including three main 
operators. In GA selection, crossover and mutation opera-
tors are used; in quantum search algorithm superposition, 
entanglement and interference are applied.

On Figure 3 is presented the structure of robust intel-
ligent control system in unpredicted control situations. 
This structure is the particular case of general structure of 
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IFICS (see Figure 2).

Figure 3. Structure of robust intelligent control system in 
unpredicted control situations

Remark. An application of developed toolkit in design 
of “Hu-Machine technology” based on Kansei Engineer-
ing is demonstrated for emotion generating enterprise 
(purpose of enterprise). We are considered the humanized 
technology of intelligent robotic systems design based 
on Kansei Engineering and Quantum/Soft Computing [14]. 
As well known the subject of humanized technology or 
human-related systems has been actively researched. With 
the increasing concern regarding human factors in system 
development Kansei Engineering and Soft Computing 
are the most representative research fields on this subject. 
Soft computing toolkit is developed for emotion, instinct, 
and intuition recognition and expression generation. In 
particular, with GA (as effective random search of solu-
tion) an intuition process is modeled. FNN is used for de-
scription of instinct process that modeled approximation 
of optimal solution in unpredicted control situation. Fuzzy 
logic control is used for design of emotion according to 
corresponding look-up table. Quantum computing toolkit 
is used for increasing of robustness in intelligent control 
systems based on superposition and correlations of affec-
tive operations. Detail description of quantum computing 
toolkit and QFI are described in [8]. Results of simulations 
[4,8] are shown that from two unstable fuzzy controllers it 
is possible to design in online a new robust fuzzy control-
ler. It is a pure quantum effect and do not have a classical 
analogy [15]. These results of quantum game simulation 
show that the winner is quantum fuzzy controller (QFC) 
designed from two imperfect KB controller with mini-
mum of generalized entropy production. Therefore, QFI 
supports optimal thermodynamic trade-off between sta-
bility, controllability and robustness in self-organization 
process (from viewpoint of physical background of global 
robustness in ICSs). Also, important the new result for 

advanced control system that all other controllers (FC1, 
FC2) are failed but QFC is designed in online a new FC 
with increasing robustness. This approach was applied to 
other complex robotic systems [11-13]. 

2.1 Structure and Main Functions of SCO

As above mentioned in ICS design soft computing tech-
nology is a combination of the following approaches: 
fuzzy systems theory, GA and FNN. FC is the central 
element of ICS and generates time-dependent control sig-
nals (control laws) with gain kp, kd, ki (coefficient gain’s 
schedule) of the PID-controller.ICS structure with FC and 
SCO blocks in soft computing simultaneously includes 
the following management qualities: controllability, pre-
cision accuracy and stability (lower control level - ACS), 
learning and adaptation (upper intelligent control level - 
FC with robust KB in learning control situation). Fuzzy 
controller is the universal approximator with bounded set 
of production logic inference rules (look-up table). In the 
case of approximating a certain control signal, the input 
components can be a control error, the error integral and 
its derivative, and the output component can be the re-
quired value of the control action or adjustable parameters 
of the control system, for example, the coefficient gains of 
the PID controller. The result of the approximation of the 
learning signal is the designed KB for FC, including the 
optimal finite set of production rules and optimally formed 
parameters of the membership function of the input and 
output variables of FC.

The developed technology supports a software cli-
ent-server architecture with remote configuration and 
transfer of KB, which allows the CO to receive KB from 
the SCO unit or from other CO’s remotely, this makes 
it possible to remotely control structurally new objects, 
such as swarm of robots, multi-agent systems, complex 
distributed automated production, physical installations 
such as Mega-Science. In addition, this technology makes 
it possible to accumulate (and later to acquire new knowl-
edge), update and adapt KB for a specific CO and control 
situation (including emergency) in online. The result of 
the toolkit application at the first stage of the ICS design 
process is the required type of universal approximator in 
the form of FC with optimal KB structure (see Figure 2).

2.2 Structure and Main Functions of QFI

The purpose of applying quantum computing and creating 
a self-organizing quantum controller is to combine the 
intelligent controllers of various sensors obtained in the 
first stage into a self-organizing connected multi-agent 
network based on a quantum controller and cognitive-in-
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formation interaction between KBs. Quantum computing 
technologies for creating self-organizing KB intelligent 
regulators are considered in [16,17]. In [16] a new type of 
quantum search algorithm on the generalized space KB 
of FC was described (KB designed on the basis of soft 
computing technologies). The QFI model implements the 
self-organization of KB, based on the physical laws of the 
theory of quantum computing [18,19] and the application of 
four operators: superposition, quantum correlation, in-
terference, and measurement. The first three are unitary, 
reversible quantum operators, and the fourth (measurement 
operator) is classical (irreversible).

The QFI design process includes the design of a quan-
tum algorithmic gate - the matrix form of three quantum 
operators: superposition, entanglement and interference, 
which are part of the structure of quantum search algo-
rithms, and a source of quantum information that is a hid-
den variable in classical states. The main unit of such ICS 
is the quantum genetic search algorithm (QGSA). QFI 
operators can be implemented both on a quantum and on 
a classical processor, which in the second case allows you 
to integrate them into various control systems and built-in 
intelligent controllers, taking into account the limitations 
of the computing resource of the elements of an exper-
imental laboratory bench or on-board system. The very 
process of creating such an algorithmic gate requires the 
attraction of large computational resources, in connection 
with which a methodology has been developed for pro-
cessing big data and conducting quantum computing on a 
supercomputer (for example, “Govorun” LIT JINR).

The QFI algorithm (see Figure 4) for determining new 
control parameters (a special case of implementing quan-
tum computing on a classical processor) consists of such 
stages as normalization, formation of a quantum bit, after 
which the optimal structure of the quantum algorithmic 
gate is selected, and the state with maximum amplitude is 
selected probability, and decoding the signal to obtain new 
control parameters.

Figure 4. QFI algorithm

Studies conducted in conjunction with ST Microelec-
tronics & Yamaha Motor Co and testing at various CO have 

confirmed the existence of a synergistic effect of self-orga-
nization during the formation of robust KB from designed 
non-robust imperfect KB using quantum computing. More-
over, an additional information resource for control is based 
on the extraction of quantum information hidden in classi-
cal states embedded in a quantum algorithmic gate. Such 
ICS design methods allowed achieving global robustness in 
online, while using the computing resources of the embed-
ded conventional processor of the on-board system.

The use of new quantum computing paradigm and deep 
machine learning in the group of interaction robots pro-
vides the following advantages:

(1) the potential acceleration of computing through the 
use of quantum evolutionary operators, which will make it 
possible to fully use the powerful, but slow GA to get the 
possibility of training the system in online;

(2) the introduction of quantum superposition and 
quantum-classical correlation operators into the classical 
algorithm entails the appearance of unique properties of 
the data processing process, which affects the result of the 
work of a group of robots;

(3) low dependence on environmental disturbances;
(4) independence from static electricity or movement 

of the CO or digital video camera;
(5) registration of changes and redistribution of tasks 

during changes in a group of autonomous agents.

2.3 Control Performance Measure: Thermody-
namic Trade-off and Interrelations between Sta-
bility, Controllability and Robustness

According to Figure 5, one of the main tasks of designing 
ICS consists in providing that the developed (chosen) 
structure possesses the required level of control quality 
and robustness (supports the required indices of reliability 
and accuracy of control under the conditions of informa-
tion uncertainty). 

Figure 5. Performance and interrelations between of con-
trol quality criteria
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Note that one of the most important and hard-to-solve 
problems of designing ICS’s is the design of robust KB 
that allow the ICS to operate under the conditions of in-
formation uncertainty and risk. The core of technique for 
designing robust KB of FC’s is generated by new types of 
computing and simulation processes.

Remark. We are witnessing a rapidly growing interest 
in the field of advanced computational intelligence, a “soft 
computing” technique. Soft computing integrates fuzzy 
logic, neural networks, evolutionary computation, and 
chaos. Soft computing is the most important technology 
available for designing ICSs and cognitive control. The 
difficulties of fuzzy logic involve acquiring knowledge 
from experts and finding knowledge for unknown tasks. 
This is related to design problems in constructing fuzzy 
rules. FNN’s and GA’s are attracting attention for their po-
tential in raising the efficiency of knowledge finding and 
acquisition. Combining the technologies of fuzzy logic, 
FNN’s and GA’s, i.e., soft computing techniques will have 
a tremendous impact on the fields of intelligent systems 
and control design. 

To explain the apparent success of soft computing, 
we must determine the basic capabilities of different soft 
computing frameworks. Recently, the application of ICS 
structures based on new types of computations (such as 
soft, quantum computing) has drawn the ever-increasing 
attention of researchers. Numerous investigations con-
ducted have shown that soft computing possess the fol-
lowing points of favor: soft computing retain the main ad-
vantages of conventional automatic control systems (such 
as stability, controllability, observable ability, etc.); soft 
computing have an optimal (from the point of view of a 
given control objective performance) KB; soft computing 
guarantee the attainability of the required control quality 
based on the designed KB

One of the main problems of modern control theory is 
to develop and design automatic control systems that meet 
the three main requirements: stability, controllability, and 
robustness. The listed quality criteria ensure the required 
accuracy of control and reliability of operation of the con-
trolled object under the conditions of incomplete infor-
mation about the external perturbations and under noise 
in the measurement and control channels, uncertainty in 
either the structure or parameters of the control object, or 
under limited possibility of a formalized description of the 
control goal. Therefore, in practice of advanced control 
systems main sources of unpredicted control situations are 
as following:

(1) Control object
① Type of unstable dynamic behavior
(a) Local unstable

(b) Global unstable
(c) Partial unstable on generalized coordinate and 

non-linear braces
② Time-dependent random structure or parametric ex-

citations
③  Type of model description
(a) Mathematical model
(b) Physical model
(c) Partial mathematical and fuzzy physical model
(2) External random excitations
① Different probability density functions
② Time-dependent probability functions
(3) Measurement system
① Sensor noise
② Time delay 
③ Random time delay with sensor noise
(4) Different types of reference signals
(5) Different types of traditional controllers
This problem is solved in three stages as following:
(1) the characteristics of stability of the controlled plant 

are determined for fixed conditions of its operation in the 
external environment;

(2) a control law is formed that provides the stability of 
operation of the controlled plant for a given accuracy of 
control (according to a given criteria of the optimal con-
trol);

(3) the sensitivity and robustness of the dynamic be-
havior of the controlled plant are tested for various classes 
of random perturbations and noise.

These design stages are considered by modern control 
theory as relatively independent. The main problem of 
designing automatic control systems is to determine an 
optimal interaction between these three quality indices of 
control performance. For robust structures of automatic 
control systems, a physical control principle can be prov-
en that allows one to establish in an analytic form the 
correspondence between the required level of stability, 
controllability, and robustness of the control. This allows 
one to determine the required intelligence level of the 
automatic control system depending on the complexity of 
the particular control problem.

Let us briefly consider main physical principles of an 
energy-based control processes that allow one to establish 
the interrelation between the qualitative dynamic char-
acteristics of the controlled plant and the actuator of the 
automatic control system: stability, controllability, and 
robustness of control. For this purpose, we are employing 
the informational and thermodynamic approaches that 
join by a homogeneous condition the criteria of dynamic 
stability (the Lyapunov’s function), controllability, and 
robustness.
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Example: Thermodynamics trade-off between stability, 
controllability, and robustness. Consider a dynamic con-
trolled plant given by the equation

dq
dt

= ϕ ξ =(q S t t u t u f q q t, , , , ,    , ,( ) ( )) ( d ) ,� (1)

where q is the vector of generalized coordinates de-
scribing the dynamics of the controlled plant; S is the gen-
eralized entropy of dynamic system; u is the control force 
(the output of the actuator of the automatic control sys-
tem); qd(t) is reference signal, ξ(t) is random disturbance 
and t is the time. The necessary and sufficient conditions 
of asymptotic stability of dynamic system with ξ(t)≡0 are 
determined by the physical constraints (for example, as 
for Port-controlled Hamiltonian Systems (PCHS) [20]) on 
the form of the Lyapunov function, which possesses two 
important properties represented by the following condi-
tions:  

(I) This is a strictly positive function of generalized co-
ordinates, i.e., V>0;

(II) The complete derivative in time of the Lyapunov’s 
function is a non-positive function, 

dV
dt

≤ 0 .

In general case Lagrangian dynamic system (1) is not 
lossless with corresponding outputs. By conditions (I) and 
(II), as the generalized Lyapunov function, we take the 
function

V q S= +
1 1
2 2∑

i=

n

1
i
2 2 ,� (2)

where S=Sp-Sc is the production of entropy in the open 
system “control object + controller”; S q q tp = Ψ( , , )  
is the entropy production in the controlled plant; and 
S e tc = ϒ( , )  is the entropy production in the controller 
(actuator of the automatic control system). It is possible 
to introduce the entropy characteristics in Eqs. (1) and (2) 
because of the scalar property of entropy as a function of 
time, S(t). 

Remark. It is worth noting that the presence of entropy 
production in (1) as a parameter (reflects the dynamics of 
the behavior of the CO) and results in a new class of sub-
stantially nonlinear dynamic automatic control systems. 
The choice of the minimum entropy production both in 
the control object and in the fuzzy PID controller as a 
fitness function in the GA allows one to obtain feasible 
robust control laws for the gains in the hybrid fuzzy PID 
controller. The entropy production of a dynamic system is 

characterized uniquely by the parameters of the nonlinear 
dynamic automatic control system, which results in deter-
mination of an optimal selective trajectory from the set of 
possible trajectories in optimization problems. Thus, the 
first condition is fulfilled automatically. 

Assume that the second condition 
dV
dt

≤ 0  holds. In 

this case, the complete derivative of the Lyapunov func-
tion has the form 

dV
dt

= + = ϕ + − −∑ ∑
i i

q q SS q q S t u S S S Si i i i cob c cob c

  ( , , , ) ( )( ) .

Thus, taking into account (1) and the notation intro-
duced above, we have

Stability


dV
dt

= ϕ Ψ − ϒ + Ψ − ϒ Ψ − ϒ ≤∑


i
q q t ui i

Controllability

( , , , 0( ) ) (


Robustness

)(   ) .

� (3)

Figure 6 shows the role of developed thermodynamic 
trade-off in robust control design.

Figure 6. Physical law of intelligent control as back-
ground of IFICS design technology

In the case of PCHS [20] we have

Stability

+ Ψ − ϒ Ψ − ϒ ≤



(

dV



dt x

Robustness

= − +

)

∑


(

i

 

x J x t R x S t g x t ui i i i i i i i  

)

(

0

, , , ,) (

Controllability

)
∂H x ti i

∂
(

i

, )T

( )

� (4)

For the definition of the error system, it is obvious that 
stabilization (settling the state at the origin) of the error 
system implies the tracking control of the original system. 
It was proposed a procedure to realize an error system of a 
given PCHS by another PCHS via the generalized canoni-
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cal transformation:

x x t H H x t U x t

y y x t u u x t

= Φ = +

= + = +

(
α β

, , , , ,

(
)

, , ,)
( )

( )
( )

,

which preserves the structure of port-controlled Ham-
iltonian systems with dissipation, that is, the system into 
an appropriate Hamiltonian system in such a way that the 
transformed system 

 ,

x J x t R x t g x t u

y g x t

= − +

=

  

(

( , , , ,    

)

)

T ∂H x t

(

(
∂x

,

)

)T

∂H x t(
∂x

, )T

( )

satisfies x t x t x t( ) = ⇔ =0 ( ) d ( )
Relation (4) relates the stability, controllability, and ro-

bustness properties.
Remark. This approach was firstly presented in [21]. It 

was introduced the new physical measure of control qual-
ity (3) to complex non-linear controlled objects described 
as non-linear dissipative models. This physical measure of 
control quality is based on the physical law of minimum 
entropy production rate in ICS and in dynamic behavior 
of complex object. The problem of the minimum entropy 
production rate is equivalent with the associated problem 
of the maximum released mechanical work as the optimal 
solutions of corresponding Hamilton-Jacobi-Bellman 
equations. It has shown that the variational fixed-end 
problem of the maximum work W is equivalent to the 
variational fixed-end problem of the minimum entropy 
production. In this case both optimal solutions are equiv-
alent for the dynamic control of complex systems and the 
principle of minimum of entropy production guarantee 
the maximal released mechanical work with intelligent 
operations. This new physical measure of control quality 
we applied as fitness function of GA in optimal control 
system design.

In [22] have studied something similar, what was called 
as “equipartition of energy”. Such state corresponds to the 
minimum of system entropy. The introduction of physical 
criteria (the minimum entropy production rate) can guar-
antee the stability and robustness of control. This method 
differs from aforesaid design method in that a new intelli-
gent global feedback in control system is introduced. The 
interrelation between the stability of CO (the Lyapunov 
function) and controllability (the entropy production rate) 
is used. The basic peculiarity of the given method is the 
necessity of model investigation for control object and 
the calculation of entropy production rate through the pa-
rameters of the developed model. The integration of joint 

systems of equations (the equations of mechanical model 
motion and the equations of entropy production rate) 
enable to use the result as the fitness function in GA as 
a new type of CI. Acceleration method of integration for 
these equations is described in [23].

Main goal of robust intelligent control is support of 
optimal trade-off between stability, controllability and 
robustness with thermodynamic relation as thermodynam-
ically stabilizing compensator. The resetting set is thus 
defined to be the set of all points in the closed-loop state 
space that correspond to decreasing controller emulated 
energy. By resetting the controller states, the CO energy 
can never increase after the first resetting event. Further-
more, if the closed-loop system total energy is conserved 
between resetting events, then a decrease in plant energy 
is accompanied by a corresponding increase in emulated 
energy.

In concluding this section, we formulate the following 
conclusions:

(1) The introduced physical law of intelligent control (3) 
provides a background of design of robust KB’s of ICS’s 
(with different levels of intelligence) based on soft com-
puting.

(2) The technique of soft computing gives the opportu-
nity to develop a universal approximator in the form of a 
fuzzy automatic control system, which elicits information 
from the data of simulation of the dynamic behavior of the 
CO and the actuator of the automatic control system.

(3) The application of soft computing guarantees the 
purposeful design of the corresponding robustness level 
by an optimal design of the total number of production 
rules and types of membership functions in the knowledge 
base.

The main components and their interrelations in the 
information design technology (IDT) are based on new 
types of (soft and quantum) computing. The key point of 
this IDT is the use of the method of eliciting objective 
knowledge about the control process irrespective of the 
subjective experience of experts and the design of objec-
tive knowledge bases of a FC, which is principal compo-
nent of a robust ICS. The output result of application of 
this IDT is a robust KB of the FC that allows the ICS to 
operate under various types of information uncertainty. 

Self-organized ICS based on soft computing technology 
was described in [21] that can support thermodynamic trade-
off in interrelations between stability, controllability and 
robustness. As particular case Eq. (3) includes the entropic 
principle of robustness [24]. The support of optimal thermo-
dynamic trade-off between stability, controllability and ro-
bustness in self-organization processes with (3), (4) can be 
realized using a new quantum control algorithm of self-or-
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ganization in KB of robust FC based on quantum comput-
ing operations (that absent in soft computing toolkit). 

3. The Role of Robust Intelligent Control Sys-
tems in Advanced Robotics

The process of developing innovative information tech-
nologies for the design of embedded self-organizing ro-
bust intelligent control systems based on quantum end-
to-end artificial intelligence technologies is inextricably 
linked with the development of scientific and technolog-
ical progress in areas such as particle physics, robotic 
systems (sensors, computation processors components), 
new production technologies, creation of innovative smart 
materials, analytics of large experimental data, search 
in unstructured databases. The development of ICS for 
traditional automated control systems with an increased 
level of robustness is of significant theoretical, practical 
and commercial importance. It is imperative that modern 
control systems maintain the required levels of accura-
cy and reliability in unforeseen situations. The practice 
and results of modeling real objects have shown that in 
conditions of uncertainty or inaccuracy in the initial infor-
mation, unforeseen situations, or information risk the tra-
ditional (using the principle of global negative feedback) 
and widely used in industry PID-controller often fails to 
cope with the management task. The application of FC 
in conjunction with the PID-controller led to the creation 
of hybrid fuzzy ICSs with different levels of intelligence 
depending on the completeness and correctness of the de-
signed KB. 

The use of soft computing technology (based on GA 
and FNN) has expanded the field of effective use of FC 
by adding new functions in the form of learning and ad-
aptation (see Figure 5). However, in the general case of 
contingency management situations, it is very difficult to 
design a globally “good” and robust ICS structure. This 
restriction is especially typical for unforeseen control 
situations when the CO operates in rapidly changing con-
ditions (sensor failure or noise in the measuring system, 
the presence of a delay time for control or measurement 
signals, a sharp change in the structure of the CO or its pa-
rameters, etc.). A solution to this kind of problems can be 
found by introducing the principle of self-organization of 
KB into the design process of FC, which is implemented 
and programmatically supported by the developed model 
of QFI using the methodology of quantum soft computing 
and Intelligent System of System Engineering [25]. The 
proposed model of QFI uses private individual KB of FC, 
each of which is obtained by using SCO for the corre-
sponding operating conditions of the CO and fixed control 

situations in an external random environment. The design 
of private individual KB with the application of software 
tools used for specified control situations is carried out 
in accordance with the design technology of the ICS and 
discussed in detail in [26]. The main task solved by QFI is 
the formation of KB with an increased level of robustness 
from a finite set of KB for workstations formed using soft 
computing.

Peculiarities of quantum approach. Recall that the 
square of the amplitude of the probabilities of a state in 
quantum mechanics is equal to the classical probability 
of finding a quantum system in a given state (Bohr’s pos-
tulate, which has several variants of rigorous justification 
[27]). From the point of view of the quantum information 
theory, a pure quantum state is characterized, as is known, 
by the von Neumann entropy value of zero. Therefore, 
the intelligent quantum state in the considered case takes 
place for the minimum informational entropy of the Shan-
non’s quantum state. The desired minimum is achieved, in 
turn, with the maximum probability Pi of the state. Since 
Pi, by definition, is the square of the corresponding proba-
bility amplitude, the principle of the maximum probability 
amplitude in the correlated state can be taken as a criteri-
on for selecting the priority “intelligent” correlation (co-
herent) state in a superposition of possible candidates [28,29]. 
Thus, by calculating the amplitudes of quantum states in 
a superposition of states with mixed types of quantum 
correlation and choosing the maximum among them, a 
quantum oracle model is implemented that contains the 
necessary information about the desired solution. Using 
the standard decoding procedure (the internal product of 
vectors in a Hilbert space) and selecting the scaling fac-
tors for the output values of the projected gain factors, 
iterative work of algorithm of QFI is carried out. Remote 
connection of the CO to a stationary computing system 
opens up the possibility of remote configuration, forma-
tion and self-organization of KB in online. The presented 
model QFI makes it possible to solve the classical prob-
lems of designing robust KB in ICS structures that have 
no analogues among the family of randomized classical 
algorithms and is characterized by polynomial computa-
tional complexity. The design of ICS on QFI is carried out 
using the developed software toolkit “Quantum Optimiz-
er”. The technology of application of quantum fuzzy logic 
allows combining several KB into a single control system, 
thereby allowing FNN to work in parallel as quantum 
neural network.

Remark. From the point of view of computational com-
plexity theories [31-33], the developed algorithm belongs to 
the class of polynomial algorithms with a limited error 
- the BPP class (bounded-error probabilistic polynomial 
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time), and its quantum generalization - to the BQP class. 
Accordingly, to quantum algorithm theory and quantum 
Kolmogorov’s algorithmic complexity, this algorithm is 
effective. This means that structurally the algorithm has 
polynomial complexity, i.e. the randomized algorithm 
is polynomial rather than exponential (classic search al-
gorithms) depending on input signals; at the same time, 
the limited probability of the accuracy of measuring the 
calculation result is enough to an effective decision mak-
ing. The following actions are implemented in QFI model 
[25,34,35]:

(1) the results of the fuzzy inference of each indepen-
dent FC are processed;

(2) based on the methods of the quantum information 
theory, valuable quantum information is extracted, hidden 
in independent (individual) KB;

(3) in online, a generalized robust output control signal 
is projected on all the sets of KB.

In this case, the output signal of QFI in online is the 
optimal control signal for changing the coefficient gains 
of the PID-controller, which includes the necessary (best) 
quality characteristics of the output control signals of each 
FC, thereby realizing the principle of self-organization. 
Therefore, the area of effective functioning of ICS struc-
ture can be significantly expanded by including such an 
important characteristic of control quality as robustness. 
The robustness of the control signal is the basis for main-
taining the reliability and accuracy of control in condi-
tions of uncertainty of information or a poorly formalized 
description of the operating conditions and / or control 
objectives [36].

In natural systems the sought robustness property is 
coded in the algorithm of reproduction of the self-orga-
nization process. Therefore, such systems can autono-
mously handle an unforeseen event using different (close, 
as regards the idea) approaches: adaptation (learning, 
evolution) in the framework of which the system corrects 
its behavior in order to handle the event variation; predic-
tion manifested in the fact that the system can “predict” 
the change of situation and determine more precisely its 
behavior (this property is a special case of adaptation and 
does not require that the system estimates the situation 
before it occurs); and robustness consisting in the fact that 
the system can operate and achieve the objective if contin-
gency perturbations of a certain type occur.

The robustness property of the KB is achieved by 
application of the quantum design algorithm of self-or-
ganization in the course of intelligent control which is 
schematically shown in Figure 7. Figure 7 show the hi-
erarchical levels of the design process using the quantum 
algorithm, interconnection, and interrelation of the above 

self-organization properties of robust knowledge bases. 
The following levels of those shown in Figure7 were con-
sidered in detail in [21]: level 3 (physical model and objec-
tive of the self-organization control process, and physical 
interpretation of main operators of the quantum algorithm 
of KB self-organization control), and level 2 (dynamics of 
evolution self-organization process).

Figure 7. Hierarchical structure of quantum algorithm of 
design of self-organization of robust KB’s in ICS

On Figure 8 is presented the layouts of robots of the 
“mobile manipulator” type, which were designed by var-
ious research groups (HERB: Home Exploring Robotic 
Butler, STAIR: Stanford Artificial Intelligence Robot and 
many others), which are a platform for creating new IT 
and software products.

Figure 8. Examples of modern mobile robots with manip-
ulators based on the ROS framework

One of the most striking examples of developing IT 
projects is the ROS framework. ROS provides libraries 
and tools to help software developers create robot appli-
cations. It provides hardware abstraction, device drivers, 
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libraries, visualizers, message-passing, package control, 
simultaneous localization and mapping (SLAM) navi-
gation, planning and more. The classic task of a mobile 
manipulator is the task of recognizing an object and ma-
nipulating it. In this work, we will consider the mobile 
intelligent robot shown in Figure 9. 

Figure 9. A prototype of a mobile robot with manipulator 
designed by the laboratory of intelligent control systems 

(INESYS (EFKO Group), Russia)

Achieving a global goal by a mobile robot for service 
use with redundant manipulator implies solving the fol-
lowing tasks: pattern recognition in conditions of chang-
ing lighting and noises, controlling a multi-link arm and 
trolley, autonomous navigation in the room using laser 
rangefinders and stereo vision. The level of robustness of 
the control laid down in the solution of individual tasks 
affects the quality of interaction of individual modules 
and, accordingly, the reliability of the system as a whole. 
The block diagram of the mobile robot control system is 
shown in the Figure 10.

Figure 10. The block diagram of the mobile robot control 
system

The decomposition of the intelligent control units of 
the mobile robot control system is shown in the Figure 11.

Figure 11. Decomposition of the intelligent control units 
of the mobile robot control system

Design of an ICS Using the Soft Computing Optimizer 
In this section we will consider the process of design 

and modeling a control system of a redundant manipulator, 
which was performed in the Matlab/Simulink environment. 
A fundamental feature in the construction of multi-link 
manipulators is modularity, which provides adaptability 
and reconfigurability of the dynamic structure in accor-
dance with the task at hand. For a redundant manipulator 
the control task can be described as follows:1) ensuring the 
specified accuracy of the positioning of the functional de-
vice of the manipulator;2) determination of the spatial con-
figuration of the manipulator links (invariance is ensured 
by the redundancy of the number of degrees of freedom), 
taking into account unforeseen environmental factors. The 
QFI algorithm [19] includes the step of choosing the type 
of quantum correlation for constructing the output control 
signals. We will consider three types of mixed correlations: 
spatial, spatio-temporal, and temporal [37], and in addition, 
correlations of various numbers of FC. The dependence of 
the output signals is determined by the correlation of the 
sets of input coefficients, where each set is an entangled 
state. Figure 12 shows the scheme of adding QFI to ICS. 

Figure 12. The structure of ICS based on soft and quan-
tum computing

Here Qref is a reference signal of the navigation and 
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pattern recognition system, Q' is a measured variable, 
E is a control error, s(t) is a control influence limitation, 
mC(t),mMS(t) are noises in the control and measurement 
system channels, U is a control action, d(t) is delay in MS, 
fCO(t) is external influences on CO, Q is adjustable value. 
The creation of QFI unit is carried out using the computa-
tional intelligence SCO toolkit based on quantum comput-
ing [19,38]. In the selected configuration of the ICS structure 
are implemented seven FC’s, each of which independently 
controls one of the seven links (see Figure 13).

Figure 13. ICS of robot-manipulator with seven degrees 
of freedom based on SCO

Designations in Figure 13: KPi,KDi,KIi, i = 1,7 are pro-
portional, differential and integral coefficients gain of the 
PID-controller, where i is the number of the corresponding 
link of the robot-manipulator, TSi is training signal, GAi is 
genetic algorithm that generates the training signal for the 
formation of the i-th KB. The standard control situation for 
the i-th FC is a typical control situation, in the conditions 
of which the training signal TSi is received. ICS designed 
by SCO may contain information about seven control situa-
tions (regular or unforeseen) for each of the links.

The process of integrating QFI unit into intelligent lev-
el of the control system is shown in Figure 14, where the 
blocks that are designed using soft and quantum comput-
ing technologies are highlighted. Further, ICS with QFI 
will be called SCO based on quantum computing.

Figure 14. Intelligent level of ICS based on SCO with 
quantum and soft computing

Testing the robustness of control system models is car-
ried out in experiments in standard and unforeseen control 
situations. These experiments are described in detail in [37]. 

We will consider control systems with constant coef-
ficients of the PID regulator and ICS based on SCO on 
soft computing. A system of quality criteria that takes into 
account methods for assessing transients of automatic 
control theory was introduced to evaluate and compare 
the results of testing control systems. These methods have 
been adapted for a specific CO (mobile robot-manipula-
tor). The following criteria were highlighted:

(1) solution of the positioning problem in standard con-
trol situations PTSKCS (Position Task Solution in known 
control situations);

(2) solution of the positioning problem in external un-
foreseen control situations PTSACCS1 (Position Task Solu-
tion in the above considered control situations);

(3) solution to the problem of positioning in internal 
contingency management situations PTSACCS2;

(4) IT performance;
(5) relative overshoot value σ;
(6) relative error in link positioning at the end of a giv-

en number of iterations ε;
(7) time of one iteration t;
(8) the complexity of the implementation of control P;
(9) overall assessment of FCB management (Full Con-

trol Behavior).
Table 1 shows a comparison of ICS based on SCO with 

quantum computing using spatial correlations with the op-
eration of ICS based on SCO with soft computing.

Table 1. Comparison of ICS based on QCO with ICS 
based on SCO

Situation
ICS based on 
SCO with soft 

computing

ICS based on SCO with quantum 
computing

Using the correla-
tion of two adjacent 

FC

Using the 
correlation 
of seven FC

1 Regular situations 0,923 1,000 1,000

2 External contingen-
cies 0,744 0,821 0,821

3 Internal contingen-
cies 0,923 0,846 0,923

4 Performance 0,092 0,477 0,459

5 Overshoot 0,969 0,973 0,971

6 Sustainability 0,911 0,962 0,960

7 Single iteration time 0,973 0,961 0,960

8 Implementation 
complexity 0,946 0,957 0,986

9 General control 0,721 0,816 0,826

Using QFI allowed:
(1) solving the problem of positioning in regular situa-

tions;
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(2) improving the results of the positioning task in con-
ditions of external unforeseen situations (under internal 
unforeseen situations the results do not change at best);

(3) increase in the criterion Performance by 5 times;
(4) improving the assessment of general management, 

the best result is achieved by using spatial correlation of 
all seven FC’s.

Figures 15 and 16 show results of simulation.

Figure 15. The movement of manipulator in a standard 
control situation: under control of ICS based on SCO with 

soft computing (left); ICS based on SCO with quantum 
computing (right)

Figure 16. The movement of manipulator in an external 
unforeseen situation: under control of ICS based on SCO 

(left); ICS based on QCO (right)

Quantum supremacy. We can conclude that ICS based 
on QCO (with quantum computing) in the conditions of 
a regular and external unforeseen control situation solves 
the problem of precision accuracy positioning a manipu-
lator with 7DoF much better (more 2500 times) than ICS 
based on SCO (with soft computing). It is also necessary 
to present the results of an experiment with the position-
ing of the manipulator under conditions of strong internal 
disturbing influences [37]. 

Example. Consider an example of the influence of 
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noise in a measurement system (an example of noise in 
a measurement system is shown in the Figure 17) on the 
operation of ICS based on soft and quantum computing. 
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Figure 17. Noise in the measurement system

Figure 18 shows the position of the manipulator during 
operation ICS based on soft computing (left) and quantum 
computing (right).

Figure 18. The position of manipulator in space with ICS 
based on soft computing (left) and quantum computing 

(right)

In unforeseen situations with the presence of strong 
noise in the measurement system ICS based on QCO with 
quantum computing showed an advantage (more 10 times) 
over ICS based on SCO with soft computing.

One of the key tasks of modern robotics is the de-
velopment of technologies for the interaction of robotic 
systems. Modern approaches to solving this problem are 
based on the theory of multi-agent systems [39] and the 

theory of swarm artificial intelligence [40]. A multi-agent 
system is capable of solving complex dynamic tasks for 
performing collaborative work that does not could be per-
formed by each element of the system individually in a 
variety of environments without external control, control 
or coordination. In this case, it’s described a net of weakly 
interconnected robots, working together in order to solve 
problems that go beyond individual capabilities. Different 
nodes of such a system, as a rule, have a different level of 
intellectualization (knowledge, algorithms, computational 
bases) and various information resources in the design. 
Each node should be able to modify its behavior depend-
ing on the circumstances, as well as plan its communi-
cation and cooperation strategies with other nodes. Here 
indicators of the level of cooperation are: the nature of the 
distribution of tasks, the combination of various informa-
tion resources and, of course, the ability to solve a com-
mon problem at a given time. The solution of the multi-
agent interaction problem can be found by introducing 
the principle of quantum self-organization (in the process 
of operation) KB for fuzzy controllers, which is imple-
mented and programmatically supported by the developed 
model of QFI using quantum and soft computing method-
ologies and an engineering system - Intelligent System of 
Systems Engineering (based on the synergistic principle 
of self-organization of knowledge). Multi-agent system 
must solve complex dynamic problems of performing 
the joint work of various devices. Due to the synergistic 
effect, an additional information resource is created in 
which the task may not be performed by each element 
(agent) of the system separately in various environments 
without external control, control or coordination, but the 
exchange of knowledge and information allows us to do 
useful work together to achieve the management goal un-
der the conditions of uncertainty of the initial information 
and restrictions on the consumption of a useful resource 
[41]. A physically synergistic effect is the self-organization 
of knowledge and the creation of additional information 
that allows a multi-agent system to perform the most use-
ful work with a minimum of loss of useful resource and 
the required initial information, without destroying the 
lower executive level of the control system. Together with 
the informational and thermodynamic laws of intelligent 
control (the optimal distribution of qualities of “stability 
- controllability - robustness”) ICS is designed for multi-
agent systems, which guarantees the achievement of the 
control goal under conditions of uncertainty in the initial 
information and a limited useful resource.

The lower level of software and hardware implementa-
tion represents variations of real-time operating systems 
and corresponding software in the form of Open source 
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solutions frameworks - add-ons, which taking into account 
the specific features of the subject area. For example, 
the Tango Controls add-in (widely used in mega-nuclear 
projects of nuclear physics), or Robotics Operation Sys-
tem (ROS) with real time Linux. By default, parameters 
related to the physical features of the implementation of 
the system itself, control parameters in feedback loops, 
are used as a custom level in such systems installed by ex-
perts or customizable by classical methods. Moreover, the 
existing tools of intellectualization have a fairly unified 
standard methodological approach and often do not meet 
modern requirements for the complexity and required 
reliability of the developed systems. One of the main 
problems of the effective use of tools and soft computing 
technologies (neural networks, evolutionary algorithms, 
fuzzy logic) in control problems was the solution of the 
following problems:

(1) an objective definition of the type of MF and its pa-
rameters in the production rules in KB;

(2) determination of the optimal structure of FNN in 
deep machine learning problems (approximation of the 
training signal with the required (given) error and with a 
minimum number of production rules in KB);

(3) the use of multicriteria GA in multicriteria control 
problems in the presence of discrete restrictions on the pa-
rameters of the CO.

The listed problems were solved and tested on the 
basis of SCO software tools using soft computing tech-
nology. The developed intelligent tools made it possible 
to design robust KB based on the solution of one of the 
algorithmically difficult problems of the theory of artifi-
cial intelligence - the extraction, processing and formation 
of objective knowledge without the use of human expert 
evaluations.

4. Object Detection and Tracking, Pattern 
Recognition, Navigation based on Stereo Vi-
sion and Computational Intelligence

The combined use of various sensors and their combi-
nations with stereo vision technology allows for a more 
qualitative and complete construction of the “world 
scene” of the robot, thereby improving its interaction with 
the environment. The stereo vision technology, which to 
some extent repeats the features of the development of 
natural vision, allows the on-board system to receive in-
formation not only about the color and brightness of the 
object, but also about the distance to it, about its geomet-
ric shape, about obstacles to the object, which plays an 
extremely important role in the tasks of a mobile robot. 
The intellectualization of the control system, in particular, 

the use of a neural network approach in the recognition 
system, significantly reduced the negative impact of exter-
nal factors on the quality of recognition (recognition error 
when changing the angle of the object, changing lighting, 
software sensitivity, etc.).

4.1 Convolutional Neural Network Architecture

As the object of recognition was chosen a plastic cork of 
an ordinary plastic bottle. With certain image processing, 
the module also allows tracking the object. In relation to 
the task of controlling a mobile trolley with a manipula-
tor convolutional neural network (CNN) are often used. 
The CNN is a multi-layer sensor network, it represents a 
further development of the multi-layer perceptron, how-
ever, unlike the latter, the convolutional network has a 
much smaller number of weights (the principle of sharing 
weights). Quite often the CNN model is divided into two 
main parts: the part responsible for the selection of fea-
tures, and the part with which classification is performed 
[42]. Figure 19 shows the structure of the CNN.

Features of the structure of the CNN. The selection of 
features of an object occurs using layers of convolution 
and subsampling. Each layer is a set of plates of neurons, 
which are also called feature maps. The convolution net-
work structure includes two types of layers: convolution 
layers and subsampling layers. Convolution and subsam-
pling layers are combined into macro layers (a macro lay-
er is a convolution layer followed by a subsampling layer 
[43]). A set of several architecture-similar macro-layers is 
called a feature separator in a sensory neural network. 
Each neuron of the convolution layer and the subsample 
layer is associated with a receptive field (RF). RF is a 
certain square area that includes neurons capable of trans-
mitting signals to a neuron that has a given RF. Figure 20 
shows a convolutional layer diagram, and also shows the 
process of its interaction with the previous layer.

Figure 19. General structure of the convolutional neural 
network
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Figure 20. Scheme of interaction of the convolutional 
layer with the previous layer

Figure 20 makes it clear that RF of each neuron of the 
convolutional layer is immediately associated with two 
feature maps of the previous layer (as an example parallel 
processing of each image channel in RGB color format 
can be given). A key feature of convolutional layers is that 
bonds formed within the same feature map have the same 
set of weights. These are the so-called bound weights. Us-
ing the associated weights, certain features are selected in 
an arbitrary position on the feature map. The connection 
of the convolutional layer card with several cards of the 
previous layer provides the opportunity to equally inter-
pret differently presented information [42]. Figure 20 shows 
that RF of the neurons intersect (the step is subject to ad-
justment). Reducing the step of applying the RF increas-
es the number of neurons in the map of the next layer. 
Features of an object with the help of RF and associated 
weights are extracted [44]. If KС is the number of neurons 
that make up the RF of the n-th neuron of the convolu-
tional layer, Kernel[k] is the convolution core, b is the dis-
placement of the n-th neuron (b and Kernel [k] retain their 
values for the entire map of the convolutional layer), x[n 
+ k] is the input for the n-th neuron of the convolutional 
layer (k = 0..KC-1), then the convolution operation can be 
displayed by the Eq. (5) [42]:

p b Kernel x= + * 
K

∑
k

c

=

−

0

1

k n k+ � (5)

The weighted sum p is supplied to the input of the acti-
vation function -the response of the neuron is determined 
[42]. The output of the neuron has the following form:

y f p= ( ) � (6)

Each neuron of the convolutional layer is a detector 
of a certain feature that was isolated during training. The 
interaction of convolution with the activation function of 
a neuron allows us to assess the degree of presence of a 

particular trait in the current RF of this neuron. The con-
volution of an input element with general customizable 
parameters is an analogue of passing an image on a map 
through some filter [44].

Figure 21 shows the interaction pattern of the subsam-
pling layer with the previous convolutional layer. 

Figure 21. The scheme of interaction of the subsample 
layer with the previous layer

The main task of the subsampling layer is to reduce the 
scale of the processed display obtained using the previous 
convolutional layer. Each map of a subsample layer is as-
sociated with only one map of the previous convolutional 
layer.

It is important to note that RFs of the neurons of the 
subsample layer do not intersect. Configurable parameters 
are common to all neurons of each plate. The number of 
these parameters is equal to two; it does not depend on the 
number of elements included in the RF of these neurons. 
Since RFs of the neurons do not intersect, the convolution 
p for the n-th neuron of the subsample layer is defined as 
follows:

p b u x= + *  * 
K

∑
k

s

=

−

0

1

n K* s k+
� (7)

In Eq. (7) KS is the total number of neurons included in 
the RP of the n-th neuron of the subsample layer [43].

The second part of the CNN is a feature classifier. The 
classifier, as a rule, is a single-layer or two-layer percep-
tron. The number of neurons in the classifier layer usually 
corresponds to the number of classes to which the input 
image belongs. There are no associated weights in the 
classifier. The weighted sum p for the neuron of the classi-
fier layer can be defined as

p b x w= +  * ,n k n k∑
k

K

=1
,  � (8)

In Eq. (8) bn is the offset, different for each neuron, 
x[k] is the input element, w[n, k] are the custom param-
eters of the n-th neuron (unique to each neuron), K is the 
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input size for the classifier layer [42].
Remark. There are many works [45-50] that are devoted 

to the creation and training of the CNN. In this work the 
recognition system based on stereo vision technology uses 
the classical CNN architecture, which includes convolu-
tion and averaging layers. Network training was done with 
a teacher. In relation to the recognition problem, a teacher 
is the number of a class that is encoded in a vector. This 
vector is equal to the size of the output layer of the neural 
network. This is the desired result corresponding to this 
input pattern. The actual response is obtained as a result 
of the reaction of the neural network with the current pa-
rameters on the input pattern. Error signal - the difference 
between the desired signal and the current response of the 
neural network. It is on the basis of the error signal that 
the tunable parameters of the neural network are corrected 
[43]. A significant minus of this training scheme is the great 
difficulty in creating training samples, however with a few 
number of classes the negative influence of this factor can 
be neglected. In the general case a deep machine learning 
quantum algorithm is used that contains the quantum su-
perposition operator of all input signals with massive data 
processing parallelism [4].

The error function depends on the system settings be-
ing configured. For such a function, one can construct a 
multidimensional error surface in the coordinates of free 
parameters. In this case the real surface of the error is 
averaged over all possible examples, which are present-
ed in the form of input-output pairs. To improve system 
performance over time, the error value should shift to the 
minimum. This minimum can be both local and global [43]. 
The most common and reliable methods for achieving a 
local or global minimum on the error surface are local op-
timization methods [51-53].

Remark. Many local optimization algorithms can be di-
vided into two classes: local optimization algorithms with 
the calculation of partial derivatives of the first order (the 
method of steepest descent, the method of one-dimen-
sional and two-dimensional optimization of the objective 
function in the direction of the anti-gradient, the method 
of conjugate gradients, methods that take into account the 
direction of the anti-gradient at several steps of the algo-
rithm, etc. .) and local optimization algorithms with the 
calculation of partial derivatives of the first and second or-
ders (Newton's method, optimization methods with sparse 
Hessian matrix, quasi-Newton methods, Gauss-Newton 
method, Levenberg-Marquardt method). In this work, we 
use the classical error back propagation algorithm with 
a further generalization to recognition algorithms based 
on quantum deep machine learning using quantum neural 
networks and quantum GA [54,55]. Quantum computing is a 

new computational paradigm that promises applications in 
several fields, including machine learning. In the last de-
cade, deep learning, and in particular CNN, have become 
essential for applications in signal processing and image 
recognition. Quantum deep learning, however remains a 
challenging problem, as it is difficult to implement non 
linearities with quantum unitaries. The quantum CNN 
(QCNN) is a shallow circuit, reproducing completely the 
classical CNN, by allowing non linearities and pooling 
operations. The QCNN is particularly interesting for deep 
networks and could allow new frontiers in image recogni-
tion, by using more or larger convolution kernels, larger 
or deeper inputs (see Appendix 2).

The main and most important stage in the implemen-
tation of the recognition system based on the CNN is the 
stage of formation of the training sample. In a specific case 
the training sample included 10 classes of objects (cork 
from a plastic bottle, ball, human face, ballpoint pen, etc.). 
The total volume of the training sample is 50,000 images 
(5,000 per class). The volume of the test sample is 10,000 
images. A training sample was formed, partly from person-
ally captured images, partly from images downloaded from 
the Internet. All images are pre-processed (32x32, RGB, 
resized, mirrored) and divided according to their classifica-
tion. The design, creation and training of CNN were carried 
out using the Keras library. The structure of the CNN is set 
using this library directly in the program code, which im-
poses questions on the choice of the optimal structure.

At the CNN input, the images are received in matrix 
rather than in vector form (which is necessary to save 
information about the topology). Input image size 32x32 
pixels, format - RGB. The first convolutional layer con-
tains 32 3x3 feature maps (each with its own convolution 
kernel), i.e. each convolutional neuron is connected to a 
square 3x3 image. The next convolutional layer has a sim-
ilar architecture. It is known that convolution layers and 
subsampling layers are responsible for highlighting cer-
tain attributes of various objects (borders, simple colors, 
and curves) in images. Deepening into the network (going 
through the following layers of convolution and subsam-
pling) allows you to define less abstract (most characteris-
tic of any class of objects) features. The following depen-
dence can be traced - an increase in the number of macro 
layers (“Convolution-Subsampling”) makes it possible to 
find more and more complex features of certain objects 
in the image. The next step after convolution is averag-
ing (subsampling). This operation reduces the dimension 
of feature maps obtained from the previous convolution 
layer. This method is based on the fact that neighboring 
pixels are very slightly different from each other (the so-
called “pixel correlation”). The averaging operation sig-
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nificantly reduces the dependence of the recognition result 
on the scale of the input image, and also significantly 
reduces the computational load. A fully connected output 
layer of 10 neurons contains the probability that the object 
in the analyzed image belongs to a certain class. Con-
volutional neural networks are currently one of the best 
application tools for solving recognition and classification 
problems. Figure 22 shows that the system correctly rec-
ognizes objects even when lighting is degraded.

 

Figure 22. The reaction to the lighting shift

4.2 Navigation Module and Building “World 
Scene” for a Robot

The navigation module is also an essential part of the mo-
bile robot control system. Using this module, it seems pos-
sible to significantly increase the efficiency of the robot.

The development of the navigation system was carried 
out using the ROS framework. The control system recre-
ates a three-dimensional map (world scene) of the room 
based on a set of points obtained using a laser rangefinder 
and a stereo camera. The objects and obstacles present are 
marked on the resulting map, which allows robot to mod-
el its behavior, localize position in space, memorize and 
build room maps (SLAM) using the Unified Robot De-
scription Format (URDF). Algorithms for calculating the 
motion path are executed at this moment, which allows 
the control system to avoid collisions with various objects. 
As the robot advances in space, the map is dynamically 
supplemented, control actions on the actuators are recal-
culated taking into account deviations from the optimal 

trajectory calculated by the planning package. In this case 
the movement correction is calculated by PID-controller, 
while the control parameters (gain factors) are set in ac-
cordance with the developed KB. The interaction of the 
intelligent control modules in the ROS system is provided 
by the file system level. In this case it is necessary to cre-
ate a model of a controlled robot and adding this control 
model to the ROS navigation system. This is necessary to 
establish spatial relationships between the robot and the 
objects of the surrounding world. Figure 23 shows a map 
of the room obtained using the sensor system.

Figure 23. The functioning of the navigation module

The interaction of the main blocks of the mobile ro-
bot control system (manipulator control system, motion 
control system, recognition system) allows us to solve 
the problem of detecting an object and interacting with it. 
Figure 24 shows that the recognition system selects and 
classifies the desired object (bottle cap), and the naviga-
tion system paves the route for the found object.

Figure 24. The solution to the task of controlling a mobile 
robot with manipulator

Figure 24 is presented the description of the task of con-
trolling a mobile robot with manipulator from the point of 
view of decomposition of control system. Also, the main 
functional blocks are highlighted, the areas of application 
of intelligent information technologies are shown.
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4.3 Example

The advantages of using SCO toolkit are clearly demon-
strated in an experiment with multi-agent interactions [41]. 
In this experiment the CO were a robot-manipulator, a 
robot-bartender and a robot-inverted pendulum.

The visual channel is the main one for receiving infor-
mation about the surrounding world. Robot receives a lot 
of information about the environment using a computer 
vision system. The recognition module is an important 
part of ICS of a robotic device. The recognition process 
for the case of interaction of robots is presented in more 
detail in Figure 25. 

Figure 25. The recognition system in the task of interac-
tion of robots

A glass is installed on the robot-inverted pendulum, 
which is the object of recognition for the stationary ma-
nipulator. The inverted pendulum determines its position 
relative to the robot-bartender using an infrared camera 
and “beacons”. When the appropriate command is given, 
robot-inverted pendulum changes its location and moves 
to the manipulator. When the inverted pendulum is in the 
visibility range of the stationary manipulator (see Figure 
25), recognition system determines the location of the 
glass and sends a command to the manipulator fill it with 
liquid (see Figure 26).

Figure 26. Robot-bartender pours liquid into a glass 
mounted on a robot-inverted pendulum

As mentioned above, one of the main purposes of the 
effective and practical use of ICS is the possibility of 
guaranteed achievement of the control goal with the high-
est quality control and reducing the consumption of useful 
system resource. The traditional PID-controller is used in 
more than 85% of industrial and non-industrial automatic 
control systems (ACS), including facilities with increased 
social and economic responsibility. Therefore, one of the 
important specific (theoretical and practical) problems in 
the creation of ICS is the development of methods and 
algorithms to increase the reliability and quality of man-
agement of the executive (lower) level of ACS based on 
the traditional PID-controller. One of the difficulties in 
developing of ICS for unforeseen control situations is to 
solve the problem of designing an appropriate KB using 
objective knowledge about the behavior of CO and fuzzy 
PID-controllers. The solution of this problem significantly 
depends on the availability of the development of an al-
gorithmically solvable, physically/mathematically correct 
model and the practical implementation of the process of 
extracting, processing and generating objective knowledge 
without the participation of an expert. The introduction of 
physical and informational restrictions in the formalized 
description of CO’s model significantly affects the quality 
of the generated KB. Exclusion of these restrictions from 
the description of CO’s models leads to a loss of robust-
ness of the designed control laws. Therefore, the main 
goal of developing the basis of information technology for 
the design of ICS for such a wide class of CO’s is the cre-
ation of a process for designing robust KB in unforeseen 
control situations for the executive level, that takes into 
account real physical and information limitations in the 
production rules of KB.

The possibility of effective application of robust KB’s 
design technology for ICS (see. Figure 12) in unforeseen 
control situations is based on the idea of using quantum 
decision-making strategies in the form of QFI. As a re-
sult, the robustness of ICS is formed using QFI in the 
laws of controlling the gain of the PID-controller. The 
simulation results (see above - ICS of redundant manip-
ulator) show that the required control quality in unfore-
seen control situations is not achieved when controlling 
the FC, while when controlling quantum FC, the control 
system has the required control quality. It follows that 
from two non-robust FC’s, using quantum self-orga-
nization of knowledge, it is possible to design in real 
time a robust FC, the KB of which satisfies both quality 
criteria. Therefore, the decomposition of the solution of 
the problem of multicriteria optimization of robust KB 
in the unforeseen control situation to particular solutions 
of optimization subtasks can be physically realized in 
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real time in the form of separate reactions of the corre-
sponding individual KB optimized with various fixed 
criteria of quality and control situation. Aggregation of 
the obtained particular solutions in the form of a new ro-
bust KB is carried out on the basis of QFI. QFI contains 
the mechanism for the formation of quantum correlation 
between the obtained particular solutions. As a result, 
only reactions of a finite number of individual KB’s 
containing extremely achievable control laws in this 
unforeseen situation are used. The control laws of fuzzy 
PID-controller formed by the new robust KB have a sim-
pler physical implementation and as a result contain the 
best characteristics of individual control quality criteria 
for an unforeseen control situation. It is also necessary 
to mention that according to the Thermodynamics trade-
off between stability, controllability, and robustness (see 
paragraph 2.3), the property of robustness (by its phys-
ical nature) is an integral part of the property of self-or-
ganization. The required level of robustness of ICS is 
achieved by fulfilling the principle of minimum produc-
tion of generalized entropy. The principle of minimum 
entropy production in the control system is the physical 
principle of optimal functioning with a minimum of use-
ful work. This principle underlies the development of a 
robust control system (which is very important for such 
complex systems as, for example, a team of robots). The 
approach based on QFI (described in this paper) guaran-
tees the necessary condition for self-organization - the 
minimum of the required initial information in the train-
ing signals. The thermodynamic criterion of the mini-
mum of a new measure of generalized entropy produc-
tion provides a sufficient condition for self-organization 
- the robustness of control processes with a minimum 
consumption of useful resource.

The experiment with multi-agent interaction, in which 
the robot manipulator participated (ICS of this robot is 
described in this chapter), allows us to draw the follow-
ing conclusion - the use of SCO based on quantum com-
puting can significantly increase the robustness of the 
control system. The toolkit allows to configure complex 
control systems with many of control loops; the number 
of input variables and the size of the resulting KB are 
limited only by the hardware characteristics of the com-
puter and CO. The developed interaction options show 
the possibilities of using these systems in a wide range of 
tasks, such as automation of warehouses and production 
facilities, automatic catering establishments, emergency 
response, etc. The main feature of a multi-agent system 
is the synergistic effect arising from the combination of 
several robotic systems, when the result of the functional 
interaction far exceeds the capabilities of each of the ro-

bots separately.

5. Conclusion

Intensification of the production process, increasing com-
plexity and the number of various technical products, 
increasing the processing power of processors indicate the 
necessity for development of design technologies and the 
introduction of intelligent systems in the control loop. In 
turn, it is necessary to have intelligent tools to configure 
similar systems in various subject areas. An increasing 
in the computational basis (types of calculations) of a 
software product leads to an increase in the quality and 
reliability of control, adding the properties of adaptation 
and learning to the feedback loop. However, increasing 
the reliability of the control system leads to an increase in 
tunable parameters and, as a result, to increasing the com-
plexity of tuning such systems. A control system can cope 
with an unpredictable environment autonomously using 
different but closely related approaches: 

(1) Adaptation (learning, evolution) - the system chang-
es its behavior to cope with the change. 

(2) Anticipation (cognition) - the system predicts a 
change to cope with, and adjusts its behavior accordingly. 
This is a special case of adaptation, where the system does 
not require experiencing a situation before responding to 
it. 

(3) Robustness - the system is robust if it continues to 
function in the face of perturbations. This can be achieved 
with modularity, degeneracy, distributed robustness, or 
redundancy. 

(4) Modularity: firstly, the approach to incorporating el-
ements of intelligent computing into classical control sys-
tems implies non-destruction of the lower executive level 
(which ensures minimal interposal in the CO hardware). 
Secondly, when working with complex control objects, it 
is necessary: ① to separate the control blocks to reduce 
complexity, ② to organize coordination control of the 
separated blocks to improve the quality of control, which 
QFI does well described on the example of the ICS based 
on SCO on quantum computing of 7DoF manipulator in 
this article.

Successful self-organizing systems will use combina-
tions of these approaches to maintain their integrity in a 
changing and unexpected environment. Adaptation will 
enable the system to modify itself to “fit” better within 
the environment. Robustness will allow the system to 
withstand changes without losing its function or purpose, 
and thus allowing it to adapt. Anticipation will prepare the 
system for changes before these occur, adapting the sys-
tem without it being perturbed. The main components and 
their interrelations in the information design technology 
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are based on new types of (soft and quantum) computing. 
The key point of this information design technology is the 
use of the method of eliciting objective knowledge about 
the control process irrespective of the subjective experi-
ence of experts and the design of objective KB’s of a FC, 
which is principal component of a robust ICS. The devel-
oped SCO toolkit implements mechanisms for creating, 
configuring, and transmitting control parameters in the 
form of control signals received from KB of FC without 
destroying the low executive level. The use of soft com-
puting and developed ICS design technologies reduces the 
impact of expert judgment in the training and configura-
tion of ICS.

From computer science viewpoint, QA of QFI model 
plays the role of the information algorithmic and SW-plat-
form support for design of self-organization process. 
Quantum computing, which ensures robustness of ICS, 
introduces the property of self-organization, allows CO 
to function effectively in conditions of a lack of a priori 
information. The use of this kind of computing can reduce 
the influence of the hardware (for example, reducing the 
number of sensors) on the effectiveness of the control 
system. Technologies for remote configuration and trans-
mission of KB allow the CO to receive KB from the SCO 
unit or from other CO, which makes it possible to manage 
structurally new objects, such as teams of robots, multi-
agent systems, complex automated production, etc. In 
addition, this technology gives CO ability to update and 
adapt KB for a specific control situation, including contin-
gency.

The experiments described above demonstrate that the 
inclusion of QFI module in ICS based on SCO with soft 
computing made it possible to provide a complete solu-
tion to the positioning problem in standard control situa-
tions and in the conditions of external unforeseen control 
situations. The QFI module significantly improved the 
accuracy index of the positioning of the functional device 
under strong internal disturbances, the performance index 
improved 5 times, and the relative error in the positioning 
of the links decreased. It is important to note that we must 
to organize the separation of control during the design of 
ICS for complex CO’s (precisely such CO’s appear in the 
experiments described above). This is necessary for the 
organization of coordination management without signifi-
cantly increasing the complexity of the control system. 
However, such a management decomposition often leads 
to a mismatch of work and a decrease in the quality of 
management. In the example of multi-agent interaction 
QFI module, using data from stereo vision module, suc-
cessfully generates a generalized robust control signal. 
Moreover, control robustness is achieved even with a 

limited set of sensors and in the presence of internal and 
external disturbing influences.

Appendix 1: Emotional Learning and Its utilization 
in Control Engineering [56]. The Limbic System, as part 
of the mammalian creatures' brain, is mainly in charge 
of the emotional processes. The Limbic System locat-
ed in the cerebral cortex consists mainly of following 
components: Amygdala, Orbitofrontal Cortex, Thal-
amus, Sensory Cortex, Hypothalamus, Hippocampus 
and some other less important areas. In this section, we 
try to describe briefly these main components and their 
tasks. Figure A1.1 illustrates the anatomy of the main 
components of Limbic System. The first sign of affective 
conditioning of the system appears in Amygdala which 
is a small almond-shaped in sub-cortical area. This com-
ponent is placed in a way to communicate with all other 
Sensory Cortices and areas within the Limbic System. 
The Amygdala connections to/from other components 
are illustrated in Figure A1.2. The studies show that a 
stimulus and its emotional consequences are associated 
in the Amygdala area. In this region, highly analyzed 
stimuli in the Sensory Cortices, as well as coarsely cat-
egorized stimuli in the Thalamus are associated with an 
emotional value. 

In a reciprocal connection, the Orbitofrontal Cortex, 
as of another component of the brain system, interacts 
with the Amygdala. The main interrelated function of 
this component is: Working Memory, Preparatory Set and 
Inhibitory Control. The current and recent past events 
are represented in the Working Memory. The Preparatory 
Set is the priming of other structures in anticipation of 
impending action. Inhibitory Control is the selective sup-
pression of areas that may be inappropriate in the current 
situation. More specifically, the Orbitofrontal Cortex takes 
action in omission of the expected reward or punishment 
and control the extinction of the learning in the Amyg-
dala. Another component in this area is Thalamus which 
lies next to the basal ganglia. It is a non-homogeneous 
sub-cortical structure and a way-station between cortical 
structures and sub-cortical. Moreover, various parts of the 
Thalamus also relay the majority of sensory information 
from the peripheral sensory systems to the Sensory Cor-
tices. Particularly, the Thalamic Sensory Inputs going to 
the Amygdala are believed to mediate inherently emotion-
ally charged stimuli as well as coarsely resolved stimuli 
in general. The Thalamus signal going to the Amygdala 
evades the processes involved in the Sensory Cortex and 
other components of the system. Therefore, Amygdala re-
ceives a non-optimal but fast stimulus from the Thalamus 
which among the input stimuli is often known as a charac-
teristic signal.
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Figure A1.1. The major brain structures associated with 
the Limbic System

The next component is the Sensory Cortex close to the 
Thalamus which receives its input from the latter one. In 
fact, Sensory Cortex processes the information from the 
sensory areas. The Sensory Cortex sends highly analyzed 
input to the Amygdala and Orbitofrontal. Generally, the 
mammalians use these areas of their Limbic System for 
higher perceptual processing. Below the Thalamus, lies 
another component named Hypothalamus which is ap-
parently in charge of regulation of the endocrine system, 
the autonomous nervous system and primary behavioral 
surviving states. The lateral region of Hypothalamus is 
connected to various regions of the Amygdala and vice 
versa. The connections are believed to have a major role 
in motivational control of the Structures within the Hy-
pothalamus. Furthermore, one of the most complex and 
twisting components of the Limbic System is Hippocam-
pus which is located in the same area as the Amygdala. 
Its main role is the mapping of the environment based 
on environmental cue. The Hippocampus has other func-
tions such as spatial navigation, laying down of the long-
term memory and formation of the contextual represen-
tations.

Figure A1.2. Connections of the Amygdala with other 
components of the Limbic System

The main issue in using the emotional learning for differ-
ent applications is defining the sensory and emotional sig-
nals in such a way that properly represent the state and ob-
jectives of the system. Some of researchers have developed 
intelligent systems based on BELBIC which in this section 
some of the designed applications are briefly introduced 
and the results of simulation are demonstrated in some 
applications. Rouhani and co-workers used BELBIC in a 
neuro-fuzzy model of microheat exchanger. First, a locally 
linear learning algorithm called Locally Linear Mode Tree 
(LoLiMoT) was applied to build the neuro-fuzzy model. 
Then, the BELBIC based on PID control was adopted for 
the micro-heat exchanger plant. The performance of pre-
sented controller was compared with classic PID controller. 
Figure A1.3 and Figure A1.4 show the closed-loop system 
response using BELBIC and PID controller respectively. 
As shown the performance of the system using BELBIC is 
much better than that of PID controller.

Figure A1.3. Closed-loop system response using BELBIC 
with LoLiMoT identifier

Figure A1.4. Closed-loop system response using PID with 
LoLiMoT identifier
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Jafarzadeh et al. proposed an intelligent autopilot for a 
2-DoF helicopter model based on BELBIC. The majority of 
previous systems were based on the linearization model or 
through several linearization techniques for helicopter that 
made the proposed controls unreliable. The designed model 
used a BELBIC controller and feedback linearization tech-
nique to a nonlinear model of a helicopter. In this method, the 
states of the system have been separated into two parts, and 
each part has been controlled by one of the control inputs. 
The performance of the two mentioned controllers simulated 
the in Simulink. The simulation results of controller system 
by BELBIC controller and feedback linearization controller 
have been demonstrated in the Figure A1.5, and in Figure 
A1.6, the control inputs of the system have been shown.

Figure A1.5. Height (left) and Collective rotor blade 
angle (right) of helicopter (Solid: set point, Dashed: feed-

back linearization, Dotted: BELBIC)

Figure A1.6. First (left) and second (right) control input 
of helicopter (Solid: feedback linearization, Dotted: BEL-

BIC)

It can be seen from these simulations that the tracking 
performance of BELBIC controller for the height is better 
than Feedback linearization controller, but in the sense 
of steady state the performance of both controllers is sat-
isfactory. However, stability guarantee is an important 
drawback for this controller. 

An intelligent control based on BELBIC has been in-
troduced for speed and flux control of an induction motor. 
It was a novel and simple model of induction motor drives 
control which controlled motor speed and flux accurately, 
without needing to use any conventional controllers and 
independent of motor parameters. In order to evaluate 
this emotional controller, digital computer simulations 
have been performed using Matlab/Simulink. The results 
showed that the emotional controller had some gains, 
which gave good freedom for choosing desired responses 

in terms of overshot, settling time, steady state error and 
smoothness. These made the controller effective and flex-
ible in high performance applications. Moreover, Simple 
structure, fast auto learning and high tracking potency of 
BELBIC have been made to present a new control plant 
that is independent of motor parameters and controls 
speed and flux simultaneously.

As a demonstration of the performance of the BELBIC 
controller in real-world applications beyond numerical 
simulation, it will be implemented on a KUKA Light-
weight Robot (LWR), a 7DoF KUKA LWR4+ [57]. Bio-in-
spired by the human arm and with a payload of 7 kg and 
its 7 axes, all equipped with internal position as well as 
force-/torque-sensors, this redundant robot offers a range 
of features which are essential for the considered appli-
cation. The seven revolute joints of the industrial robot 
are driven by brushless motors via harmonic drives. The 
working envelope is described in Figure A1.7.

Figure A1.7. Axes-nomination of the KUKA LWR4+ 
(KUKA, 2012) (left); Description of the work envelope of 

the KUKA LWR4+ (right)

The scientific work [57] is dedicated to the tasks of 
namely path following and position control. The tracking 
of complex freeform-trajectories by robotic manipulators 
is essential to many manufacturing processes like grind-
ing, welding, polishing or gluing. Besides pick-and-place 
operations, path following is the most common type of au-
tomation tasks. With conventional controllers satisfactory 
performance is obtained for basic constrained motions and 
therefore they are still widely used in industry. The use of 
these conventional control schemes is however restricted 
to robotic manipulators with well-known dynamic and 
kinematic parameters following rather simple continuous 
paths in a disturbance-free environment. The desire to 
extend position control to robotic manipulators with un-
known parameters following discontinuous freeform paths 
in the presence of disturbances explains the interest in the 
trajectory tracking control problem.

As a verification of the performance of the suggested 
control scheme, the controller is evaluated through simula-
tion in a Matlab/Simulink-environment. For the simulation 
a two-link planar robotic manipulator with revolute joints. 
Excellent simulation-results were obtained. Robot-external 
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disturbances are added as time-dependent 2-dimensional 
function. Internal uncertainties are added in the form of 
maximal +/-10% deviations from the dynamic parame-
ters-values. Switching constraints are implemented in the 
form of a desired trajectory switching between different 
curved and straight segments as shown in Figure A1.8. The 
desired continuous trajectory is not differentiable.

Figure A1.8. Trajectory to be tracked by the tool on the 
workpiece surface in the simulated application; the arrows 

indicate the movement-direction

Table A1.1 shows the performance of the three considered 
controllers for trajectory tracking of discontinuous freeform 
paths, exhibited on the example shown in Figure A1.8.

Table A1.1. Absolute maximal, minimal and mean posi-
tion errors for both manipulator-links using PID-, Com-

puted Joint Torque (CJT)-control and BELBIC-SMC

In order to demonstrate the efficiency of the suggested 
controller in real-world applications beyond numerical 
simulation, an experimental validation is performed. The 
first experiment is a goal-reaching task. The task is about 
moving the robot’s joints consecutively to a specified goal 
position. Table A1.2 shows that the BELBIC-SMC-concept 
outperforms PID- and Computed Joint Torque-control.

Table A1.2. Absolute maximal, minimal and mean posi-
tion errors for all manipulator-links using PID-, Comput-
ed Joint Torque (CJT)-control and BELBIC-SMC when 

reaching a desired goal position

The simulation verifies the tracking performance of 
the BELBIC-SMC-controller for the chosen case. The 
BELBIC-SMC-controller outperforms both, the PID- 
and the Computed Joint Torque-controller. The free-
dom-shape and especially the discontinuity of the path 
deteriorate the tracking performance of the conventional 
controllers.

Appendix 2: quantum computing in deep convolu-
tional neural networks [58]. The growing importance of 
deep learning in industry and in our society will require 
extreme computational power as the dataset sizes and the 
complexity of these algorithms are expected to increase. 
Quantum computers are a good candidate to answer this 
challenge. The recent progress in the physical realization 
of quantum processors and the advances in quantum al-
gorithms increase more than ever the need to understand 
their capabilities and limits. In particular, the field of 
quantum machine learning has witnessed many innovative 
algorithms that offer speedups over their classical coun-
terparts. Quantum deep learning, the problem of creating 
quantum circuit that enhance the operations of neural net-
works, has been studied in several works. It however re-
mains a challenging problem as it is difficult to implement 
non linearities with quantum unitaries. CNN are a type of 
deep learning architecture well suited for visual recogni-
tion, signal processing and time series. In this work we 
propose a quantum algorithm to perform a complete con-
volutional neural network (QCNN) that offers potential 
speedups over classical CNNs.

The adaptation of the CNNs to the quantum setting 
implies some modifications that could alter the efficien-
cy of the learning or classifying phases. In work [58] were 
presented some experiments to show that such modified 
CNNs can converge correctly, as the original ones. The 
experiment, using the PyTorch library, consists of train-
ing classically a small convolutional neural network for 
which was added a “quantum” sampling after each con-
volution. In the following results, we can see that r quan-
tum CNN is able to learn and classify visual data from 
the widely used MNIST dataset. This dataset is made 
of 60.000 training images and 10.000 testing images of 
handwritten digits. Each image is a 28x28 grayscale pix-
els between 0 and 255 (8 bits encoding), before normal-
ization.

Let’s first observe the “quantum” effects on an image 
of the dataset. In particular, the effect of the capped non 
linearity, the introduction of noise and the quantum sam-
pling (see Figure A2.1). 
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Figure A2.1. Effects of the QCNN on a 28x28 input im-
age

Note: From left to right: original image, image after ap-
plying a capReLu activation function with a cap C at 2.0, 
introduction of a strong noise during amplitude estimation 
with = 0.5, quantum sampling with ratio σ = 0.4 that sam-
ples the highest values in priority. The useful information 
tends to be conserved in this example. The side gray scale 
indicates the value of each pixel. Note that during the 
QCNN layer, a convolution is supposed to happen before 
the last image but we chose not to perform it for better vi-
sualization.

I. Kerenidis et al. present the full simulation of our 
quantum CNN. In the following, they use a simple net-
work made of 2 convolution layers, and compare quantum 
CNN to the classical one. The first and second layers are 
respectively made of 5 and 10 kernels, both of size 7x7. A 
three-layer fully connected network is applied at the end 
and a softmax activation function is applied on the last 
layer to detect the predicted outcome over 10 classes (the 
ten possible digits). Note that researchers didn’t introduce 
pooling, being equivalent between quantum and classical 
algorithms and not improving the results on our CNN. The 
objective of the learning phase is to minimize the loss func-
tion, defined by the negative log likelihood of the classifi-
cation on the training set. The optimizer used was a built-
in Stochastic Gradient Descent. Using PyTorch, researchers 
have been able to implement the following quantum effects 
(the first three points are shown in Figure A2.1): 

(1) The addition of a noise, to simulate the approxima-
tion of amplitude estimation during the forward quantum 
convolution layer, by adding gaussian noise.

(2) A modification of the non-linearity: a ReLu function 
that becomes constant above the value T (the cap). 

(3) A sampling procedure to apply on a tensor with a 
probability distribution proportional to the tensor itself, 
reproducing the quantum sampling with ratio σ. 

(4) The addition of a noise during the gradient descent, 
to simulate the quantum backpropagation, by adding a 
gaussian noise centered on 0 with standard deviation δ, 
multiplied by the norm of the gradient.

In the following researchers report the classification 

results of the QCNN when applied on the test set (10.000 
images). They distinguish to use cases: in Table 4 the 
QCNN has been trained quantumly as described in this pa-
per, whereas in Table 5 they first have trained the classical 
CNN, then transferred the weights to the QCNN only for 
the classification. This second use case has a global run-
ning time worst than the first one, but we see it as another 
concrete application: quantum machine learning could 
be used only for faster classification from a classically 
generated model, which could be the case for high rate 
classification task (e.g. for autonomous systems, classifi-
cation over many simultaneous inputs). Are presented the 
test loss and accuracy for different values of the sampling 
ratio σ, the amplitude estimation error ϵ, and for the back-
propagation noise δ in the first case. The cap C is fixed at 
10. These values must be compared to the classical CNN 
classification metrics, for which the loss is 0.129 and the 
accuracy is 96.1%. Note that researchers used a relatively 
small CNN and hence the accuracy is just over 96%, low-
er than the best possible accuracy with larger CNN.

Table A2.1. QCNN trained with quantum backpropaga-
tion on MNIST dataset. With C = 10 fixed

Table A2.2. QCNN created from a classical CNN trained 
on MNIST dataset. With δ = 0.01 and C = 10 fixed

QCNN is able to learn despite the introduction of noise, 
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tensor sampling and other modifications. In particular it 
shows that only a fraction of the information is meaning-
ful for the neural network, and that the quantum algorithm 
captures this information in priority. This learning can be 
more or less efficient depending on the choice of the key 
parameters. For reasonable values of these parameters, the 
QCNN is able to converge during the training phase. It 
can then classify correctly on both training and testing set, 
indicating that it does not overfit the data. The learning 
curves sometimes present a late start before the conver-
gence initializes, in particular for small sampling ratio. 
This late start can be due to the random initialization of 
the kernel weights, that performs a meaningless convo-
lution, a case where the quantum sampling of the output 
is of no interest. However it is very interesting to see that 
despite this late start, the kernel can start converging once 
they have found a good combination. Overall, it is possi-
ble that the QCNN presents some behaviors that do not 
have a classical equivalent. Understanding their potential 
effects, positive or negative, is an open question, all the 
more so as the effects of the classical CNN’s hyperparam-
eters are already a topic an active research.

In work [59] demonstrates the potential of Quan-
tum-Classical Convolutional Neural Networks (QCCNN) 
by applying it to the Tetris dataset. Researchers create a 
Tetris image dataset that consists of 1000 grey-scale im-
ages with shape 3×3, in which each grey-scale image is a 
simulated Tetris brick. 

Figure A2.2. (a) Hybrid quantum-classical Convolutional 
Neural Network (QCCNN); (b) Details of of parametric 
quantum circuit design, which is made of interlaced sin-

gle-qubit layer and two-qubit layers

Remark. On Figure A2.2 the input demonstrated here is 
a two-dimensional array, which is sent to a quantum con-
volutional layer of 6 filters. Each filter takes a 2x2 window, 
translating it into a separable 4-qubit quantum state, and 
evolves this state with a parametric quantum circuit. After 

that a correlational measurement is made on the output 
quantum state and a scalar is obtained. Gathering the scalar 
outputs, the final output of the quantum convolutional layer 
is a 3-dimensional array. Then a pooling layer is used to 
reduce the dimensionality of the data. This process could be 
repeated and finally ends with a fully connected layer. The 
single-qubit layer consists of Ry gates, each containing one 
tunable parameter. The two-qubit layer consists of CNOT 
gates on nearest-neighbour pairs of qubits

Concretely, the foreground pixels are represented by 
random floating numbers ranging from 0.7 to1, whereas 
the background are small floating numbers ranging from 
0 to 0.1. There are 5 labels, namely S, O, I, T and L, each 
of which represents a type of Tetris bricks. The dataset is 
further processed by randomly splitting into a training set 
and a testing set that contain 80% and 20% of the images, 
respectively. This QCCNN was compared with CNN with 
two particular structures, namely one with a single convo-
lutional layer and another with two convolutional layers. To 
see the performances with a different number of labels, re-
searchers create another dataset by only picking the two la-
bels S, T out of the original training and testing data. For the 
single-layer structure, they use a single (quantum) convo-
lutional layer with 5 filters with no padding, plus a pooling 
layer also with no padding. For the two-layer structure, they 
use two (quantum) convolutional layers with 2 and 3 filters 
respectively, plus a pooling layer with padding 1. The win-
dow shape for all the layers is 2 × 2, and the stride value s = 
1. Therefore, the number of qubits fed to the quantum filter 
is 4, and the depth of the parametric quantum circuit is set 
as 4. During 1000 iterations, it was computed the accuracy 
on the testing data and store the values of the loss function, 
which is chosen as mean square loss. In Figure A2.3 (a, c), 
researchers plot the accuracy and loss values for the 2-label 
case. While in Figure A2.3(b, d) they plot the accuracy and 
loss values for the 5-label case. 

Figure A2.3. Accuracy and loss as a function of the num-
ber of iterations

Note: In all the figures the blue line represents the result of one-layer 
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CNN and the black line represents the result of two-layer CNN, the blue 
dashed line represents the result of one-layer QCCNN and the black 
dashed line represents the result of two-layer QCCNN. The results are 
averaged over 10 random simulations. (a) Accuracy in case of 2 labels. (b) 
Accuracy in case of 5 labels. (c) Loss in case of 2 labels. (d) Loss in case 
of 5 labels.

We can see that QCCNN can reach almost 100% ac-
curacy for both the two structures they have used, and it 
can reach much lower loss values for both cases compared 
to its classical counterpart. Benefiting from the high-di-
mensional nature of the quantum system, the advantages 
of QCCNN become more transparent when the number 
of labels increases from 2 to 5. We can also see that the 
5-label case takes more iterations to converge than the 
2-label case, and that QCCNN with a two-layer structure 
converges faster than the single-layer structure, especially 
in the 5-label case, which indicates that for complex prob-
lems, better performance could be achieved by deeper 
architectures. In summary, researchers present a hybrid 
quantum-classical Convolutional Neural Network which 
could be used to solve real world problems with current 
quantum computers. As a quantum machine learning al-
gorithm inspired by classical CNN, QCCNN keeps the 
features of CNN such as the nonlinearity, locality of the 
convolutional layer, as well as extensibility to deep struc-
tures. Moreover, the generalized feature map with a para-
metric quantum circuit is able to explore the correlations 
of neighbouring data points in a exponentially large linear 
space, hopefully allowing this algorithm to capture the 
patterns in the dataset more efficiently or precisely with a 
quantum computer. 

In [60], authors have discussed the implementation of 
the fast Fourier transform (FFT) as a quantum circuit. 
The quantum version of the FFT (QFFT) is defined as 
a transformation of a tensor product of quantum states. 
The QFFT has been constructed by a combination of 
several fundamental arithmetic operators such as an 
adder, subtractor and shift operators which have been 
implemented into the quantum circuit of the QFFT 
without generating any garbage bits. One of the ad-
vantages of the QFFT is due to its high versatility: the 
QFFT are applicable to all the problems that can be 
solved by the conventional FFT. The frequency domain 
filtering of digital images is one of the possible appli-
cations of the QFFT. The major advantage of using the 
QFFT lies in its quantum superposition: multiple im-
ages are processed simultaneously (see Figure A2.4 as 
a conceptual image of quantum parallelism). It is even 
superior to the QFT when the number of images is suf-
ficiently large. Thus, the QFFT will be a great help in 
the industries including security, healthcare, and mar-
keting research, where numerous images are involved. 

In particular, we can create a high pass filter for edge 
detection (Figure A2.4). 

Figure A2.4. A conceptual image of the high pass filter 
applied to quantum multiple images

There are several issues remaining to be solved. The 
first one is how to effectively generate a quantum super-
position of multiple data sets. Though, in principle, one 
can generate it using the Hadamard gate and the Pauli-X 
gate, it is still a difficult problem to superpose arbitrary 
data sets with arbitrary probability amplitudes. The second 
is how to use the resultant multiple data sets obtained by 
performing the QFFT. The QFFT sustains all the informa-
tion of Fourier coefficients until the moment the quantum 
state is measured. If the quantum state that contains the 
Fourier coefficients of multiple data sets was passed on to 
some quantum device directly and there were some prop-
er techniques to handle it, it would play a key role in the 
field of quantum machine learning.
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