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A description of the design stage and results of the development of the 
conceptual structure of a robotic prosthesis arm is given. As a result, a 
prototype of man-made smart prosthesis on a 3D printer as well as a foun-
dation for computational intelligence presented. The application of soft 
computing technology (the first step of IT) allows to extract knowledge 
directly from the physical signal of the electroencephalogram, as well as 
to form knowledge-based intelligent robust control of the lower perform-
ing level taking into account the assessment of the patient’s emotional 
state. The possibilities of applying quantum soft computing technologies 
(the second step of IT) in the processes of robust filtering of electroen-
cephalogram signals for the formation of mental commands of robotic 
prosthetic arm discussed. Quantum supremacy benchmark of intelligent 
control simulation demonstrated.
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1. Introduction

The development of robotic human limbs prostheses 
and the production of human-like electromechani-
cal devices - anthropomorphic robots are receiving 

more, but not sufficient, attention in both the scientific, 
technical and socio-economic plants [1-4]. It should also 
be noted that in the strategy for the development of arti-
ficial intelligence (AI) in the Russian Federation [5] in the 
Healthcare section, the application of AI in such an im-
portant socio-technical domain as intelligent prosthetics 
and smart cognitive control systems, as well as rehabilita-
tion of disabled people, is not indicated at all. 

Principles of the development and application of intel-

ligent information technologies in the field of intelligent 
control using cognitive technologies (“brain-computer-de-
vice” interface - BCI) are considered. Neurointerface of 
this type (manmade interface) allow to restore and expand 
the capabilities of a person with physical (for example, 
disability with loss of limbs) or mental disorders in var-
ious activities (for example, autistic children or patients 
with impaired mental activity - dementia).  Cognitive 
interfaces provide the ability to communicate, evaluate 
emotions, transfer and control devices with mental com-
mands. 

The process of developing a cognitive intelligent simu-
lator toolkit discussed. The application of developed tool-
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kit provides developers with the ability to control robotic 
devices at the lower (executive) level (using the so-called 
“mental commands”), and at the upper level - the intelligent 
level (to develop cognitive intelligent control technologies 
with the possibility of application in applied tasks).

Let us consider briefly main principles, peculiarities 
and features of cognitive intelligent control applied in 
biomechanical products and presented the description 
of a hierarchical intelligent control system based on 
QSCOptKBTM (knowledge base optimizer on quantum soft 
computing).

2. Cognitive Intelligent Control: Design Prin-
ciples and Features of Biomechanical Product 

Sources of technological and breakthrough innovations in 
these areas are following: (1) new technologies for creating 
intelligent materials; (2) technologies for creating an intelli-
gent software product integrated into devices and applied at 
all stages of interaction with devices; (3) new human-ma-
chine interfaces, the principles of which are based primarily 
on the method of reading the activity of the functioning of 
the brain and nerve endings of the body [2,5].

So, the first direction allows a person to restore (and in 
the future, to exceed) the functional state of limbs dam-
aged as a result of any injuries due to the creation of more 
advanced alloys, material structures, nano coatings. The 
second, innovative direction is associated with the cre-
ation of sophisticated software that allows the biomechan-
ical device to learn and adapt to individual physiological 
and psychological qualities and characteristics of the 
human operator. Through the application of deep machine 
learning and medical recommendation systems with a 
deep knowledge representation, it is possible to recognize 
complex human commands, read and recognize the emo-
tional state of the operator [6 - 8]. At the same time, a certain 
computing basis in the form of embedded end-to-end 
technologies of cognitive computing and computational 
intelligence must correspond to software of this level. The 
development of the third direction based on the sources of 
new human-machine interfaces that can effectively com-
plement and expand human information capabilities. Such 
interfaces include infrared - spectrometers, electroenceph-
alographs, magnetoencephalographs, cognitive helmets 
and equipment for virtual and complementary (augmented) 
3D - and 4D - reality, invasive and non-invasive sensors 
and beacons, for example, mounted on the wrist, or other 
parts of the human body [9 - 15].

2.1 Related Works

Many researches known in which patients routinely 

apply such interfaces to solve everyday problems and 
control various devices. Interfaces are actively used for 
rehabilitation and diagnostic procedures, helping to im-
prove interaction with the human environment, including 
with robotic devices [10-14,16,17]. Technologies are actively 
involved quantum end-to-end technologies in EEG data 
processing and educational processes at state levels [18]. 
Research of this kind has been funded by states since the 
early 70’s. There are a number of research collaborations 
on the creation and development of man - machine inter-
faces associated with all three areas [10-14,19,20] etc. In par-
ticular, research in this area can divided into the following 
groups:

(1) Recognition research - development of devices for 
the diagnosis, modeling, simplification and reduction of 
threats to the interaction of the brain with the system.

(2) Simulation of the brain mechanism - the use of neu-
ral network effects and the phenomena of the functioning 
of the brain in applied problems of information technolo-
gy, for example, analysis and synthesis of information.

(3) Restorative medicine - restoration of behavioral 
cognitive functions lost as result of damage to the brain or 
body [8].

(4) Elaboration - development of brain-computer sys-
tems in the feedback loop to accelerate and improve the 
functional behavior of the system [1, 21].

The development of these researches made it possi-
ble to create new technologies for the neural interface to 
detect fundamental and interregional brain functions in 
online, as well as to develop complex mathematical algo-
rithms to model brain activity and the resulting behavioral 
functions and reactions.

2.2 Architecture of the Limbic System

The Limbic System, as part of the mammalian creatures’ 
brain, is mainly in charge of the emotional processes. (see 
Appendix 1). The Limbic System located in the cerebral 
cortex consists mainly of following components: Amygda-
la, Orbitofrontal Cortex, Thalamus, Sensory Cortex, Hy-
pothalamus, Hippocampus and some other less important 
areas. We try to describe briefly these main components 
and their tasks.

Figure 1 illustrates the anatomy of the main compo-
nents of Limbic System [22]. 

The first sign of affective conditioning of the system 
appears in Amygdala which is a small almond-shaped in 
sub-cortical area. This component placed in a way to com-
municate with all other Sensory Cortices and areas within 
the Limbic System.
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Figure 1. The major brain structures associated with the 
Limbic System [22]

The Amygdala connections to other components illus-
trated in Figure 2 [23].

Figure 2. Connections of the Amygdala with other com-
ponents of the Limbic System [23]

The studies show that a stimulus and its emotional 
consequences are associated in the Amygdala area. In this 
region, highly analyzed stimuli in the Sensory Cortices, as 
well as coarsely categorized stimuli in the Thalamus are 
associated with an emotional value. Furthermore, one of 
the most complex and twisting components of the Lim-
bic System is Hippocampus which is located in the same 
area as the Amygdala. Its main role is the mapping of the 
environment based on environmental cue. The Hippocam-
pus has other functions such as spatial navigation, laying 

down of the long-term memory and formation of the con-
textual representations there are other components, which 
have specific role in the Limbic System. To that extent 
components such as Basal Ganglia, Globus Pallidus, Sub-
stantia Nigra, Subthalamic Nucleus and Periamygdaloid 
Cortex could be mentioned. Since in this paper, biological 
description of the Limbic System is not under focus, it has 
been tried to avoid detailed and comprehensive explana-
tion of each component. We deal with the key characteris-
tics components in the System.

A computational model developed that mimics Amyg-
dala, Orbitofrontal Cortex, Thalamus, Sensory Input Cor-
tex and generally those parts of the brain thought respon-
sible for processing emotions. 

Figure 3 shows the computational model of emotional 
learning [24].

Figure 3. Graphical depiction of the Brain Emotional 
Learning (BEL) process [24]

The model divided into two parts: The Amygdala and 
the Orbitofrontal cortex. The Amygdala part receives in-
puts from the Thalamus and from cortical areas, while the 
Orbitofrontal obtains inputs from the cortical areas and 
the Amygdala. The system also receives a reinforcing sig-
nal (Primary Reward) which been left unspecified, as it is 
still uncertain from where it comes.

2.3 Brain Emotional Learning Based Intelligent 
Controller

Based on the cognitively motivated open loop model, 
BELBIC- Brain Emotional Learning Based Intelligent 
Controller- was introduced by Lucas et al [24, 25]. The in-
telligent controller has been utilized by several industrial 
applications and control purposes. The model of Figure 3 
illustrated as control blocks in Figure 4 [25].

The BELBIC is essentially an action generation mech-
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anism based on sensory inputs and emotional cues (Reward 
signals) (see Appendix 1).

Figure 4. Basic block structure of emotional controller [25]

Figure 5 demonstrates a reasonable candidate for em-
bedding the BELBIC model within a typical feedback 
control block diagram [25]. The implemented functions in 
emotional cue and sensory input blocks defined for each 
application [22 - 25].

Figure 5. Control system configuration using BELBIC [25]

Example. A locally linear learning algorithm called Lo-
cally Linear Mode Tree (LoLiMoT) applied to build the 
neuro - fuzzy model. Then, the BELBIC based on PID con-
trol adopted for the micro-heat exchanger plant. The perfor-
mance of presented controller compared with classic PID - 
controller. Figures 6a and 6b show the closed-loop system 
response using BELBIC and PID - controller respectively. 

Figure 6. Closed - loop system response using PID with 
LoLiMoT identifier [26] (a).Closed-loop system response 

using BELBIC with LoLiMoT identifier [26] (b)

As shown the performance of the system using BEL-
BIC is much better than that of PID controller.

Example. Figure 7a demonstrates afferent somatosen-
sory signal that taken from the prosthetic device and is 
fed into the brain, from where the motor signal is sent 
back to the prosthetic limb. The nerve endings (located 
at the red circle). Figure 7b, still present at the site of the 

amputation, send signals (red arrows) or the cortical re-
organization (red star in the brain) generates the phantom 
limp pain. Other sensations that can felt involve tingling, 
cramping, heat, and cold.

Figure 7. Working of neural prosthetics using a brain-ma-
chine interface (a). Phantom limb pain depiction (b)

Depending on the type of amputation, (see Table 1) 
the most suitable type of prostheses selected (see Figure 
8a). The choice of prosthesis design determined by the 
position of phantom pains (see Figure 7b). On Figure 8b 
presented an artificial limb which replaces an arm missing 
above the elbow. The complexity of the artificial limb de-
pends on the level of amputation.

Table 1. Presents Classification of Prosthetic as per ampu-
tation

N Type of Amputation Type of Prostheses
1 Shoulder disarticulation From Shoulder

2 Elbow disarticulation
Below Elbow
Above Elbow

3 Wrist disarticulation Below Elbow
4 Trans carpal disarticulation Below Elbow
5 Finger amputations Below Elbow

Automated Prosthetic arms considered as biomedical de-
vices and developing the same is interdisciplinary activity, 
i.e. combination of mechanisms and electronics. The selec-
tion of prosthetic arm depends upon type of the disarticula-
tion the patient has undergone and the patients need.

Figure 8. Amputation level (a). Transhumeral Prosthesis (b)
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Figure 9 shows some of the ways to determine funda-
mental and interregional brain functions online: behavior-
al functions and reaction control of robotic limb prosthet-
ics using different BCI.

Figure 9. Detect fundamental and interregional brain 
functions in on line: behavioral functions and response 

control of robotic prosthetics limb with BCI

Figure 10 shows the generalized structure of an intel-
ligent cognitive control system with feedback based on 
deep machine learning using artificial neural networks 
with an optimal structure, taking into account existing 
approaches to the cognitive control of a robotic prosthetic 
arm [27 - 29]. 

Figure 10. The structure of cognitive intelligent control 
system

In the considered part of the work cycle, the existing 
hardware and software research basis and information 
technology of sophisticated class of cognitive intelligent 
control system (see Figure 11) for supporting the design 
and operation of a new class of devices are presented.  

-

Figure 11. Structure of Quantum cognitive intelligent 
control system

Remark. According [17] the application of quantum neu-
ral network in filtering processing of EEG signals increase 
the accuracy of the filtering processing. The architecture 
of recurrent quantum neural network (RQNN) model is 
based on the principles of quantum mechanics with the 
Schrodinger wave equation playing a major part. This 
approach enables the online estimation of a time-vary-
ing probability density function that allows estimating 
and removing the noise from the raw EEG signal and 
demonstrate quantum supremacy in signal data process-
ing. Applications of sophisticated intelligence toolkit 
(QSCOptKBTM) include universal approximating func-
tions of RQNN with optimal structure for quantum deep 
machine learning and achieved quantum soft computing 
supremacy [21] (see below Figures 23 and 24).

Structure of cognitive intelligent control system on 
Figure 11 includes two controllers: fuzzy and cognitive 
controllers. Design of fuzzy controller and of cognitive 
controller KBs is achieved with SCOptKBTM toolkit [30, 31]. 
In this case the responses of fuzzy and cognitive control-
lers in general case with imperfect KB are inputs for box 
“quantum fuzzy inference (QFI)” and the output of QFI is 
robust KB of self-organized controller for forming in on 
line time dependent control laws of coefficient gain sched-
ule for conventional controller of robotic prosthetic arm. 

3. Cognitive Intelligent Control of the Pros-
thetic Arm: Quantum Soft Computing Ap-
proach

Let us consider the redistribution problem of the level of 
responsibility between the cognitive and fuzzy controller. 
The basis of prostheses and robotic manipulators is spatial 
mechanisms with many degrees of freedom. According-
ly, when designing a cognitive intelligent controller for 
a prosthesis, the intelligent control system of the robotic 
arm can take as the basis. In this example, three fuzzy 
controllers are implemented in the structure of the in-
telligent control system of the robot manipulator with 3 
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Degrees of Freedom (DoF), each of which controls one of 
the three links independently (see Figure 12).

Among unforeseen situations, the management distin-
guish external and internal. To external unforeseen situa-
tion it is customary to include disturbing influences - such 
as a forced change in the position of the control object at 
the beginning or in the process of working, changing the 
reference signals, etc. Internal control situations include 
changes to the parameters of the components of the con-
trol system (limits, noise, and signal delays). In details, 
intelligent control system on soft computing described in 
[30 - 32].

To prevent the negative effects of unforeseen situa-
tions in control, a quantum fuzzy inference (QFI) unit 
integrated in the control system of the robot manipulator, 
with the application of which KB self-organization in FC 
is realized. In this case, it is possible not only to combine 
information about the standard situation for three links, 
but also to extract additional information (by methods of 
quantum computing and quantum information theory) 
from the response of the designed KB for the implemen-
tation of robust control in regular and unforeseen control 
situations (which are not included in existing designed 
KB).

Figure 12. Intelligent control system with separate con-
trol for Soft Computing Optimizer of KB for manipulator 

control with 3DoF

Remark. On Figure 12: K - matrix of proportional, dif-
ferential and integral coefficients PID-regulator, Kpi, Kdi, 
Kii , i=1,3 , i - the number of link of the robot manipulator, 
TSi - training signal, GAi - a genetic algorithm that gener-
ates a learning signal for design a knowledge base.

Moreover, the knowledge bases themselves, whose 
responses are used to design robust control, in emergen-
cies may not be robust (imperfect KBs). The scheme for 
extracting hidden information about the relationships 
between existing FC (designed using soft computing 
technologies) for the three links of the manipulator with 
knowledge base obtained for regular control situations us-
ing the quantum fuzzy sensing unit shown on Figure 13 [32].

Figure 13. The methodology of extraction of hidden 
information from relationships between KB, designed for 

learning control situations

As result of inclusion SCO on soft computing with 
divided controls of the designed block Quantum fuzzy 
inference, get a new type of control system - Intelligent 
Control System Based on Quantum Computing.

The quantum fuzzy inference (see Figure 14) algorithm 
performs the following sequence of steps:

Step1. Coding.
Step 2. Selection with quantum genetic algorithm (QGA) 

the type of quantum correlation for constructing control 
output signals. It is considered spatial, spatio - temporal and 
temporal correlations (all three types are mixed)
Spatial. Output dependency ( ) ( ) ( )_ _ _, ,i new i new i new

P D IK t K t K t  
is determined by the correlation of the following sets of 
input coefficients:
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Where each set is an entangled state: 
( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3

1 2 3 4 5 6 , , , , , .P P P D D Da a a a a a K t K t K t K t K t K t=

Figure 14. Quantum fuzzy inference algorithm sequence 
of steps
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Spatio - temporal:
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Step 3. Building a superposition of entangled states.
Step 4. Intelligent quantum state measurement.
Step 5. Decoding.
Step 6. Denormalization.
The overall assessment of the quality of control is high-

er in the case of applying the intelligent control systems 
on the QCO on quantum computing (for all considered 
types of correlations) compared to the intelligent control 
systems on the SCO on soft computing with conventional 
control. Which is a consequence of introducing into the 
structure of the intelligent control systems an additional 
quantum fuzzy inference link organizing coordination 
management. Moreover, if for a robot manipulator with 3 
DoF as result of testing MatLab / Simulink models, it had 
the best performance intelligent control systems, using 
spatio - temporal correlation, then physical testing deter-
mined the use of spatial correlation to be the most opti-
mal. For a robot manipulator with 7 DoF, in most cases, 
spatial correlation was also optimal.

For a robotic arm as robot with 3 DoF, the overall as-
sessment of control quality is improved when using intel-
ligent control systems on QCO with quantum computing 
compared to using intelligent control systems on SCO on 
soft computing with one FC. Intelligent control systems 
on SCO with soft computing with one FC, it is able to 
solve the positioning problem in the conditions of external 
unforeseen situations, but it does not always cope with the 
occurrence of internal unforeseen situations.

Example. On Figures 15 and 16 demonstrated the oper-
ation of the manipulator Intelligent Control System (ICS) 
when using the intelligent control systems on the SCO (on 
soft computing) and the intelligent control systems on the 
QCO (on quantum computing) in the conditions of a reg-
ular control situation and an external unforeseen control 
situation (the initial position is changed).

Quantum supremacy. As can be seen from Figures 15 
and 16, the intelligent control systems on the QCO (on 
quantum computing) under the conditions of the consid-
ered standard and external unforeseen control situations 

solves the problem of the exact positioning of the manipu-
lator robot in contrast to the intelligent control systems on 
the SCO on soft computing.

Let us demonstrate the operation of the intelligent con-
trol systems on the SCO on soft computing with divided 
control in the conditions of an external unforeseen control 
situation (Figure 17) in comparison with the intelligent 
control systems in the SCO on quantum computing. As an 
unforeseen situation is the forced displacement of the sec-
ond link of 3DOF manipulator.

Figure 15. The movement of manipulator in a standard 
control situation: under control of ICS based on SCO 

with soft computing (a). ICS based on SCO with quantum 
computing (b)

Figure 16. The movement of manipulator in an external 
unforeseen situation: under control of ICS based on SCO 
with soft calculations (a). ICS based on SCO with quan-

tum computing (b)

From Figure 17 it is seen that in the considered un-
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foreseen situation, the control of the intelligent control 
systems on the SCO on quantum computing copes with 
the task of positioning with a given accuracy, in contrast 
to the intelligent control systems on the SCO on soft com-
puting with a divided control.

Figure 17. The work of the intelligent control systems on 
the SCO on soft computing with divided control in an un-
foreseen control situation (a); intelligent control systems 

operation on SCO on quantum computing (b)

The inability of the intelligent control system on SCO 
on soft computing to solve the problem of exact positional 
control is also illustrated in Figure 18. FC, responsible 
for managing the second link for the allotted time, was 
not able to “rehabilitate” after a powerful external impact, 
as result of which the positioning error of the second 
link was more than 50 degrees, the control goal was not 
achieved and the control system as a whole was not robust 
(Figure 17).

Figure 18. Changing the position of the second link under 
the control of the intelligent control system on SCO on 

soft computing with divided control

The results presented on Figures 17 and 18 demon-
strated quantum soft computing supremacy in intelligent 
robust control and can guarantee goal control achievement 
with required accuracy (in case on Figure 17 the accura-
cy of control goal achievement achieved more than 120 
times).

This result is especially noteworthy in the situation 
when organizing coordination control due to a single 
knowledge base (correspondingly using one FC in the in-
telligent control systems for the SCO on soft computing) 
the number of input variables. For this case parameters 
(that determine the functioning of the system) limited by 
the computing resources of the processor on which the 

FC is created and the amount of memory in the system in 
which the FC is located. 

Moreover, for complex control objects, such as a robot 
manipulator with 7DoF, the organization of a single FC is 
impossible.

In general, the possibility of decomposing the control 
(dividing one knowledge base into several identical inde-
pendent knowledge bases) and organizing coordination 
management by introducing the quantum fuzzy factor link 
significantly increases the possible number of input vari-
ables and thereby expands the possibilities of accounting 
for the parameters of the system and the control object.

3.1 Information-thermodynamic Analysis of Cog-
nitive Intelligent Control System

The distribution (trade-off) of control qualities determined 
by the following system of equations: 
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where  and  means the total thermodynamic and infor-
mation entropies of the conventional intelligent (Tc) and 
Cognitive (Cc) controllers, respectively.

It follows from Eq. (1) that the robustness of an intelli-
gent control system can increased by the entropy produc-
tion of the cognitive controller, which reduces the loss of 
useful work, and Eq. (2) shows that the negentropy of the 
cognitive controller reduces the minimum requirements 
for initial information amount to achieve robustness.

3.2 Information Control Extraction and Action 
Work

Moreover, information based on knowledge in the knowl-
edge base of the cognitive regulator allows get an addi-
tional resource for useful work, which is equivalent to the 
appearance of a targeted action on the control object to 
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ensure the guaranteed achievement of the control goal.
One of the key tasks of modern robotics is the devel-

opment of technologies for the cognitive interaction of ro-
botic systems, which allow solving the tasks of intelligent 
hierarchical management by redistributing knowledge and 
control functions, for example, traditionally between a 
leader and a subordinate (“master - slave” system). Mod-
ern approaches to solving this problem based on the theo-
ry of multi - agent systems, the theory of swarm artificial 
intelligence, and many others [33 - 35].

Due to the synergetic effect, an additional information 
resource created and the multi-agent system is able to 
solve complex dynamic tasks for performing team mutu-
al work. The given task may not fulfill by each element 
(agent) of the system separately in various environments 
without external management, control or coordination, 
however, exchange of knowledge and information allows 
performing useful teamwork to achieve the management 
goal under the conditions of uncertainty of the initial in-
formation and limited consumption of useful resources.

In particular, it is known that for closed-loop control 
systems, the amount of useful work W that is extracted 

satisfies the inequality ( )max min0

t

c cW t k T I dt kTI′= ≤∫  , 

where k is the Boltzmann constant, ( )minT t  is interpret-
ed as the lowest achievable temperature by the system in 

time t for feedback control, assuming ( )min 0T T=  and Ic 
determines the amount of Shannon information (entropy 
transfer) , extracted by the system from the measurement 
process [36].

Physically, the synergetic effect means the design of 
knowledge self-organization and the extraction of addi-
tional information that allows the multi-agent system to 
perform the most useful work with a minimum loss of 
useful resource and with a minimum of the required initial 
information, and without destroying the lower executive 
level of the control system. 

Together with the information-thermodynamic law of 
intelligent control (optimal distribution of the manage-
ment qualities as “stability - controllability - robustness”), 
an intelligent control system (ICS) is designed with multi-
agent systems, ensuring the achievement of the manage-
ment goal under the conditions of uncertain initial infor-
mation and limited useful resource [37].

A network of loosely coupled groups of robots working 
together to solve tasks that go beyond individual capa-
bilities. Different nodes of such a system, as a rule, have 
a different intelligent level (knowledge, algorithms, and 
computational bases) and various information resources 
for design process. Each node should be able to modify 

its behavior depending on the circumstances, as well as 
to plan its communication and cooperation strategies with 
other nodes. Here the indicators of the level of coopera-
tion are the nature of the distribution of tasks, the unifica-
tion of various information resources and, of course, the 
possibility of solving a common problem in a bounded 
time interval.

Example. As noted above, if microscopic degrees of 
freedom are available to the observer in the form of the 
Maxwell demon, then the second law of thermodynam-
ics can violated. Szilard showed from an analysis of the 
Maxwell demon model that work extracted from the ther-
modynamic cycle in the form as ln 2kT . Moreover, it 
was shown [38] that recoverable work S

extW  from the system 
is determined by the amount of information (or quan-
tum-classical mutual information) I, which estimate the 
extracted knowledge of the system from measurements. 
At the same time, a similar ratio in the form of a lower 

boundary exists for the full cost cost
MW measuring and eras-

ing information S S
extW F kTI≤ −∆ +  and cost

MW kTI≥ , where 
SF∆  determines the free energy of the system. Then it is 

easy to see the speed of the recoverable work extW  limited 

by extW kTI≤  , i.e. limited by the speed of information re-
trieved [39]. 

Model of self-organized intelligent control system pro-
posed based on the principles of minimum informational 
entropy (in the “intelligent” state of control signals) and 
the generalized thermodynamic measure of entropy pro-
duction (in the system “control object + regulator”). The 
main result of the application of the self-organization pro-
cess is the acquisition of the necessary level of robustness 
and the flexibility (adaptability) of the reproducible struc-
ture. 

It has noted that the property of robustness (by its phys-
ical nature) acts as an integral part of self-organization, 
and the required level of robustness in intelligent control 
system achieved by fulfilling the principle of minimum 
production of generalized entropy noted above. The prin-
ciple of minimum entropy production in object control 
and system control serves as the physical principle of op-
timal functioning with a minimum consumption of useful 
work and underlies the development of robust intelligent 
control system. 

This statement is based on the fact that for the general 
case of controlling dynamic objects, the optimal solu-
tion to the finite variational problem of determining the 
maximum useful work W according to, it is equivalent 
to solving the final variational problem of finding the 
minimum of entropy production S. Thus, the study of the 
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maximum functional condition ( )
,

max
iq u

W  (where ,iq u are 

the generalized coordinates object control and control sig-
nal respectively) is equivalent, the study of the associated 

problem of minimum entropy production, i.e. ( )
,

min
iq u

S . 

Therefore, in the developed model, the principle of 
minimum informational entropy guarantees the necessary 
condition for self-organization - the minimum of the re-
quired initial information in the teaching signals; the ther-
modynamic criterion of the minimum of a new measure of 
generalized entropy production provides a sufficient con-
dition for self-organization - the robustness of control pro-
cesses with a minimum consumption of useful resource.

More significant is the fact that the average amount of 

work performed by dissipation force ( )diss
KL F B

W
S P P

kT
= , 

i.e., the work of the dissipation forces is determined by the 
Kullback - Leibler divergence for probability distributions 

,F BP P . Note that the left side of this relation represents 
physically thermal energy, and the right side defines pure-
ly extracted information about the system.

Information entropy is a measure of the amount of 
information about the system and the Kullback - Leibler 
divergence, as well as the determination of the amount of 
Fisher information.

A similar relationship exists between the work pro-
duced by the forces of dissipation and the difference be-
tween Renyi [37].

Thus, substituting the relations between the informa-
tion and the extracted free energy and work in (1) and (2), 
we obtain the conclusion noted above. Therefore, the ro-
bustness of the intelligent control system can increase by 
the entropy production of the cognitive controller, which 
reduces the loss of useful resource of the control object; 
negentropy of the cognitive regulator reduces the require-
ments for minimum initial information to achieve robust-
ness. 

Moreover, the extracted information, based on knowl-
edge in the knowledge base of the cognitive controller, al-
lows getting an additional resource for useful work, which 
is equivalent to the appearance of a targeted action on the 
control object to guarantee the achievement of the control 
goal. 

In this Part I of article the solution of intelligent robotic 
prosthetic arm design is considered. 

Remark. This work is a continuation of [40] and based 
on the concept of an intelligent simulator [41], which in-
cludes advanced information technology for the design of 
intelligent control systems. In contrast to the methodology 
[14], visual reinforcement of the generation of mental com-

mands is not used in the learning process (the operator 
is fully concentrated on his own cognitive processes). In 
particular, the possibility of controlling the prosthetic arm 
in on line using an electroencephalograph and the corre-
sponding neurointerface software considered. 

4. Development of Prosthetic Models

A lot of research has done on prosthetics and the imple-
mentation of projects to create new types of limbs. 

4.1 Related Prototypes of Prosthetic Arms and 
Differences from Known Approaches - advantag-
es and Disadvantages 

For illustration purposes, Figure 19a shows modern hand 
prostheses. Figure 19b shows promising interfaces - 
hands, virtual reality helmet, cognitive helmets.

Remark. Such (and similar) projects have their advan-
tages and disadvantages. Many prostheses don’t have 
feedback from the user (they do not allow him to convey 
emotional or physiological sensations), cannot be a com-
plete replacement for a lost limb (for example, a long - 
term phantom of having a healthy limb). Most prostheses 
are expensive, and their operation and implementation 
are very costly. They include invasive interfaces and have 
more features, which, accordingly, affect their cost. 

Of the abundance of prostheses presented, three classes 
can be distinguished: 1) Cosmetic (do not carry any func-
tionality in themselves, only increase the aesthetic lev-
el); 2) Mechanical (use the power of levers and rods for 
movement, which creates some inconvenience in the way 
they are used); and 3) Bioelectric (have great functional-
ity, but are very expensive and require a constant charge 
of batteries).

The ability to use 3D printing greatly facilitates the cre-
ation of a prosthesis. There are many open resources that 
provide drawings, sketches, and assembly technologies for 
various parts and mechanisms, including anthropomorphic 
parts.

However, the interface development process accom-
panied by complexity of execution and high cost of such 
products. An open source project from the Thingiverse 
[42, 43] website adopted as the basis for a robotic prosthesis 
with a cognitive control system.

Purpose and goal of Part 1: creation of a model of 
an anthropomorphic intelligent robotic arm. The work 
uses the limb of a robot to demonstrate the application of 
developed technologies. It decided to use the cognitive 
helmet company EmotivEpoc+ [44] as an interface for re-
cording EEG signals. The combination of these devices 
creates a software and hardware basis for the laboratory 
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bench of an intelligent robotic simulator. 

Figure 19. Modern prostheses of hands and hands (a). 
Computer interfaces in the form of brushes with installed 
sensors, augmented and virtual reality, cognitive interfac-

es (b). Examples of application in control tasks (c)

Let us consider in more detail the lower (executive) 
level of the developed device. 

4.2 Prosthesis Manufacturing

The first stage of work is the manufacture of prosthesis 
parts on a 3D printer. For this purpose, ABS plastic was 
used (a polymer consisting of acrylonitrile, butadiene, sty-
rene, which, due to its technical characteristics, was wide-
ly used as an engineering and structural material in layout 
engineering) and a 3D printer. The project [42, 43] dedicated 
to the creation of an anthropomorphic robot was taken as 
the basis.

Figure 20 illustrates an anthropomorphic robot, sketch-
es of its individual parts and the manufactured part of the 
project.

Figure 20. Project to create an anthropomorphic robot (a).
Sketches of the robot (b). Manufactured prototype pros-

thesis (c)

In order to implement a system of mechanical “tendons” 
that transmit force from “muscle” motors to the limbs 
(Figure 20b), a nylon thread with a diameter of 2 mm 
used. Servomotors used as drives, which made it possible 
to vary the angle of rotation of the output shaft, and then 
transfer the force with the help of “tendons” to the limbs. 
Note that it is possible to set the compression ratio of the 
fingers. The results of the first stage of work (creating a 
finished prototype) presented in Figure 20c.

To control the servomotors and control the prosthesis 
itself, a unified Arduino Uno controller based on the AT-
mega 328 microcontroller used, to control many servomo-
tors, Sensor Shield v 4.0 company Arduino [45] connected 
to the controller. A schematic diagram of the connection 
of servomotors shown in Figure 21.

Figure 21. Connection diagram of devices

In this paper, for presenting simplicity of results, the 
training and operation process performed on a personal 
computer, and the microcontroller used only to receive 
and send specific control commands. The implementation 
scheme presented on Figure 22.

Figure 22. Microcontroller to PC connection diagram

Comment. From the point of view of information tech-
nology, it is necessary to take into account the consump-
tion of computing resources in the process of training, up-
dating and operating the device. The rational distribution 
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of information-thermodynamic load [46], allows designing 
the optimal structure of neural networks and integrating 
quantum cognitive computing on-board processor of the 
final device. In this case. The processor load in the learn-
ing process distributed between the central computer and 
the controller of the actuator.

4.3 EEG Signal Removal and Data Information 
Processing

The general concept of using a cognitive simulator is de-
scribed in [19, 20, 41]. 

Figure 23a,  shows the fi l tered (refined) with 
QSCOptKBTM  toolkit EEG channel placement on the hu-
man scalp. 

Figure 23. EEG channel placements on the human scalp

Each scalp electrode is located at the brain centers. In 
2001 Pfurtscheller identified that many of the neural ac-
tivity related to fist movements are found in channels C3, 
C4 and Cz as shown in Figure 23b. F7 is for rational ac-
tivities, Fz is for intentional and motivational data, P3, P4 
and Pz contain perception and differentiation, T3, T4 is for 
emotional processes, T5, T6 has memory functions and 
O1 and O2 contain visualization data. In order to remove 
the noise from the obtained signal, any of the suitable fil-
tering techniques may adopted. Further, the extracted data 
may move for classification phase.

A well - known marker of cognitive processes is the 
restructuring of brain rhythms, manifested in a surface-re-
corded electroencephalogram (EEG) of a person. To signal 
the brain activity, we used the cognitive helmet company 
Emotiv EPOC+ (see Figure 25a), and the functional dia-
gram of the software implementation is shown in Figure 
24.

Figure 24. Functional structure of software in on line

In on line, the EEG data received in the block “Analysis 
of the extracted data”. Then, after filtering and frequency 
decomposition, the signals enter the recognition unit (see 
Figure 23). The recognition result is the degree of similar-
ity with previously recorded commands during training. 
As neural networks, deep machine learning patterns of 
pattern recognition are used. 

Further, when the activation level is exceeded, such 
signals enter the fuzzy neural network of decision-mak-
ing, designed using the soft computing optimizer [30, 31]. 
The output of such a neural network is the target values of 
the indicators of a managed device. At the same time, the 
training and operation process is supported by an emo-
tional (positive or negative) reaction of the operator [21], 
thereby evaluating the quality of training and adaptation 
of the control system. The design of the “Cognitive Reg-
ulator” block based on quantum soft computing optimizer 
considered in the Part II of this paper. 

EPOC has 14 electrodes, which are passive sensors 
that allow you to register electromagnetic signals. Sensors 
are mounted on the surface of the skin (non-submersible, 
non-invasive interface).

Figure 25 b, shows the structure of Emotiv EPOC+ 
consisting of channels AF3, F7, F3, FC5, T7, P7, O1, O2, 
P8, T8, FC6, F4, F8, AF4 (plus CMS/DRL и P3/P4). 

Figure 25. EmotivEPOC+ cognitive helmet(a).The layout 
of the electrodes of the cognitive helmet Emotiv EP-

OC+(b)
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The supplied software allows receiving, recognizing 
and recording the EEG signal from the helmet. To ana-
lyze the received signal, the so - called EEG frequency 
rhythms are distinguished. 

Remark. The term “frequency rhythm” means a certain 
type of electrical activity corresponding to a certain state 
of the brain, for which the boundaries of the frequency 
range are defined. In the process of cognitive activity, 
characteristic rhythms of the beta, alpha, theta and delta 
ranges appear [47] (Figure 26). 

The set of simultaneously present rhythms forms a 
specific spatial-frequency EEG pattern. Patterns are char-
acteristic of different types of cognitive activity and are 
highly individually specific [15, 19].The ability of an individ-
ual to establish rhythmic EEG patterns when performing 
certain cognitive tasks makes up an “encephalographic” 
portrait of his personality. 

Comment. One of the main components of cognitive 
neurointerface technology is gaming simulators. It is 
important to note that during training, the control model 
acts as a system model on the monitor screen. This, in 
turn, allows not only to train the brain to generate men-
tal commands, but also to tune the control system of the 
control object itself, adjusting it to the operator, thereby 
ensuring increase of overall performance in the system 
“brain - computer”. This kind of feature is because when a 
person works with a cognitive helmet, the program adapts 
to the characteristics of the operator, adjusting the control 
system. Developers of such equipment with the level of 
operator training to generate various mental commands 
usually associate the quality of team recognition.

Figure 26. EEG frequency rhythms

The software bundle provides specialized games - sim-
ulators, in which the learning and training process takes 
place. Typically, computer games used for this, where the 
operator must perform an action that can matched with 
some command used to control the object. When playing, 

the operator develops his skill in working with a helmet, 
which subsequently makes it possible to control real tech-
nical devices (manipulators, wheelchairs, and other de-
vices). Training can be either active, with external stimuli 
(for example, light of a certain frequency, video and audio 
material, pictures, etc.), or passive if the operator presents 
it without external influence during the generation of a 
mental command. 

Also, additional hardware, such as a virtual reality hel-
met, which will visualize the user’s actions in the virtual 
world, thereby increasing the effectiveness of training, 
can be used to form a user with a more complete picture 
of learning. The duration of training and the intensity 
of training affects the quality and number of recognized 
mental teams. If the first time a person can learn how to 
generate signals in the brain for one team, then for good 
recognition of two or more teams, several exercises are 
necessary. 

Accordingly, both the psychophysiological character-
istics of a person’s state (including his position in space) 
and his level of training will influence the management 
system and the achievement of the management goal. 
Usually (according to information from the manufacturer) 
for the system to work well using four teams. It is neces-
sary to conduct regular training for 2-3 weeks, and after 
training the operator experiences fatigue. And accordingly, 
time is required to restore strength. The learning process 
described in more detail in [37, 45]. A program based on the 
Epoc cognitive helmet SDK written to control the prosthe-
sis servomotors.

The learning process consists of two main blocks: (1) 
analysis of electroencephalographic indications and iden-
tification of frequency patterns specific to a particular op-
erator; (2) generating and recording mental commands.

At the training stage, using the wet non-immersed 
brain-computer interface with passive electrodes of Emo-
tivEpoc+, the activity of certain parts of the operator’s 
brain recorded. Initially, it is necessary to obtain a fre-
quency slice of the operator’s neutral state (the operator 
is at rest), this frequency slice is necessary to improve 
detection of the nervous excitation of the operator during 
further analysis.

In the future, to generate mental commands, the op-
erator for a certain period of time (8 seconds) mentally 
models the necessary action, which will serve as the basis 
of the mental command (contraction, relaxation of various 
muscle groups, etc.). And also at this moment performs 
this action with «Live» hand. An individual signal record-
ed for each mental command.

From the viewpoint of the control system, the operator 
must be able to re-generate the recorded signals, which 
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interpreted by the system to control the movement of the 
device. The frequency rhythm shown in Figure 27.

Figure 27. Frequency rhythm of the neutral state (a) and 
the state of excitation (b)

Typically, statistical methods used to evaluate and rec-
ognize signals, including the calculation of variance and 
mathematical expectation. 

Figure 28 demonstrate highlights the most different sig-
nals from each other, which the operator associates with a 
mental command and a neutral state.

Figure 28. Dispersion of mental command signals

Dispersion of signals generated by the operator is a 
fairly simple and effective method for comparing signals 
of mental commands. Additional various methods de-
scribed in [47].

Figure 29 shows the interface of software tools that al-
lows you to receive and process data from the brain-com-
puter interface of EmotivEpoc+ (the program code created 
in the C# programming language using the Windows 
Forms graphical interface).

Figure 29. Program interface

Data exchange between the cognitive helmet and the 
computing center done using the Bluetooth protocol stack, 
as well as the UART protocol. To initialize a cognitive 

helmet, it is necessary to mark the “Connect” field, then 
select a mental command from the drop-down list or cre-
ate a new one. Now of pressing the “Train” button, the 
operator begins active cognitive activity associated with 
the selected team. After completing the training process, 
it is necessary to save the obtained data, connect the pros-
thesis to the computer, set the boundaries for activating 
the mental command. And then put the application into 
the prosthesis control mode (by marking the “Rсactive” 
field). When click on the “Train” button, information sent 
to the helmet about the currently selected mental team 
for training, after which some time activity indicators of 
the human brain recorded. When the helmet fixes similar 
parameters of mental activity, the key of the current team 
will change from neutral to the team associated with these 
parameters.

In addition to connecting directly to the helmet and 
prosthesis, it is possible to test the program using the 
third-party program Emotiv Xavier Composer, which 
simulates the work of a cognitive helmet and allows send-
ing virtual mental commands to the application. In the 
program code, this implemented as a call to the Remote 
Connector Connect methods.

If the user sends a mental command to the program, 
then the spatial-frequency pattern evaluated, after the 
scaling of the received signal relative to the set minimum 
and maximum, the corresponding signal sent to the COM 
port. The following event occurs when the timer is started, 
which starts to control the prosthesis during the connec-
tion of the cognitive helmet, which is shown on the main 
screen.

Comment. The variable “power” is the power of mental 
effort. Since the prosthesis has physical limitations during 
operation (it is not possible to send servomotors an an-
gle of rotation that extends beyond the interval [0.180]), the 
variable “a” trimmed in possible values to the boundaries 
of this interval. In the program code, the second possi-
ble value is another such construct. Thus, a binary tree 
implemented. After the operations performed, a line of 
the form “a A” is sent to the COM port, where “A” is the 
angle from 0 to 180, by which all five servomotors will be 
rotated, taking into account the physical restrictions previ-
ously established in the Arduino program for each one in 
particular. Such methods prevent possible damage to the 
prosthesis if the commands coming from the helmet are 
misinterpreted.

Figure 30 shows a graph showing the frequency rhythm 
of the operator. The trained cognitive control system, ana-
lyzing this frequency pattern, recognizes the mental com-
mands present in the frequency rhythm.
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Figure 30. Execution of mental commands

Figure 31 shows a graph showing the registration of 
mental commands at discrete time intervals. 

Figure 31. Regulatory signaling for the actuator

Figure 32 shows the process of the experiment. 

Figure 32. Conducting an experiment: execution of the 
“unload” command (a), the execution of the command 

“compression” (b)

The operator, using mental commands that read by the 
EPOC+ cognitive interface, controls the compression-un-
loading process of the prosthesis brush.

In accordance with the scheme shown in Figure 10, 
EmotivEpoc in on line captures the excitations of the 
cerebral cortex at the time of a certain cognitive activity 
(generation of mental command). The received data goes 
to the computer center, where they are recognized. Based 
on the analysis of the obtained frequency pattern and 
estimation of the signal level at a discrete time instant, a 
control action generated for the actuator.

This experiment demonstrates the possibilities of sharing 
electromechanical, anthropomorphic devices of a modern 
class of computer neurointerfaces and software, which in turn 
is one of the strongest incentives for the development of end-
to-end digital information technologies of “strong” artificial 
intelligence and intelligent assistants of service use.

5. Conclusion

(1) This work (the first part) presents the development 
of several high-tech areas of robotics, which have practi-
cal scientific and technical interest, both in separate and in 
joint developments.

(2) It has been shown that the prospect of developing 
cognitive intellectual control using soft and quantum 
computing technologies is one of the important tasks in 
creating a robotic prosthetic arm, such as a simple case of 
a robot avatar, and is integral to the development of infor-
mation technology in the framework of the concept of an 
intelligent simulator [41].

(3) The use of expert recommendation systems with a 
deep representation of knowledge [6,7] and quantum end-to-
end technologies of deep machine learning with quantum 
EEG processing [17,49] allows the appointment, selection 
of control of robotic prostheses of the hand, taking into 
account the individual psychophysiological characteristics 
of the patient and the operating environment.

(4) On the one hand, these products if properly devel-
oped can presented on the market of commercially attrac-
tive products, on the other hand, technologies for using 
new types of intelligent information technologies and 
human-machine cognitive interfaces.

(5) The next stage of development is the creation of a 
cognitive intellectual control system for a robotic arm-pros-
thesis for maintenance based on IT quantum soft comput-
ing, quantum EEG processing filters [17] and Kansei / Affec-
tive Engineering intelligent computing technologies with an 
assessment of the user’s emotional state [49 - 51].

(6) The work, in its essence, reflects the completeness 
of the formation of a new educational approach in intel-
ligent robotics [32, 40, 41, 52] - a hybrid cognitive intelligent 
robotics based on neural interfaces with new types of IT 
data processing.

Appendix 1. Contemporary models of affect, motiva-
tion, emotion and cognitive control for Kansei /Kawaii / 
Affective Engineering

Let us briefly consider the models of negative affect, 
pain and emotion that play important role in Kansei engi-
neering and cognitive control. 

Example. In humans and other primates, the cingulate 
- a thick belt of cortex encircling the corpus callosum - is 
one of the most prominent features on the mesial surface 
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of the brain (Figure 33a). Early research suggested that 
the rostral cingulate cortex (Brodmann’s ‘precingulate’; 
architectonic areas) plays a key part in affect and motiva-
tion (Figure 33b). More recent research has enlarged the 
breadth of functions ascribed to this region; in addition to 
emotion, the rostral cingulate cortex has a central role in 
contemporary models of pain and cognitive control. The 
most basic question is whether emotion, pain and cogni-
tive control are segregated into distinct subdivisions of 
the rostral cingulate or are instead integrated in a common 
region. There is a growing recognition that aMCC might 
implement a domain-general process that is integral to 
negative affect, pain and cognitive control [22]. 

Cognitive control is a range of elementary processes (such 
as attention, inhibition and learning) that are engaged when 
automatic or habitual responses are insufficient to sustain 
goal-directed behavior. Control can be engaged proactively 
or reactively. Activation foci maps between negative affect, 
pain and cognitive control is shown on Figure 33d.

Figure 33. (a) - Divisions of the human rostral cingulate 

cortex; (b) - Negative affect, pain and cognitive control 
activate a common region within the anterior subdivision 
of the midcingulate cortex - aMCC (The map depicts the 
results of a coordinate-based meta-analysis (CBMA) of 
380 activation foci derived from 192 experiments and 

involving more than 3,000 participants); (c) - Activation 
likelihood estimate (AlE) maps of the three behavioral do-
mains (left) and pairwise ALE minimum conjuction maps; 

(d) - Activation foci maps [22]

Example: Emotional learning occurs mainly in the 
amygdala. The system operation consists of two levels: 
the amygdale learns to predict and react to a given rein-
forcement signal. This subsystem cannot unlearn a con-
nection. The incompatibility between predictions and the 
actual reinforcement signals causes inappropriate respons-
es from the amygdala. As depicted in Figure 34, the sys-
tem on Figure 34a, consists of four main parts [54]. Sensory 
input signals first enter the thalamus. Since the thalamus 
must provide a fast response to stimuli, in this model the 
maximum over all stimuli S is sent directly to the amyg-
dala as another input. The amygdala receives inputs from 
the thalamus and sensory cortex, while the orbitofrontal 
cortex (OFC) part receives inputs from the sensory cortex 
and the amygdala. The system also receives a reinforcing 
signal (REW - emotional signal).

For each Anode in the amygdala, there is a plastic con-
nection weight Vi. Any input is multiplied by this weight 
to provide the output of the node. The O nodes show sim-
ilar behavior, with a connection weight Wi applied to the 
input signal to create an output. There is one output node 
in common for all outputs of the model, called E (see Fig-
ure 34a). The E node sums the outputs from A except for 
the Ath and then subtracts the inhibitory outputs from the O 
nodes. The result is the output from the model.

Figure 34. Graphical depiction of the brain emotional 
learning process (a) and the process of generating emo-

tional reactions in the limbic part of human brain (b)

The OFC learns to prevent the system output if such 
mismatches occur. The learning in the amygdala and the 
OFC is performed by updating the plastic connection 
weights, based on the received reinforcing and stimulus 
signals.

Example. Let us consider briefly Brain Emotional 
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Learning Based Intelligent Controller (BELBIC) structure 
[53]. In a biological system, emotional reactions are utilized 
for fast decision‐making in complex environments or 
emergency situations. It is thought that the amygdala and 
the orbitofrontal cortex are the most important parts of the 
brain involved in emotional reactions and learning. The 
amygdala is a small structure in the medial temporal lobe 
of the brain that is thought to be responsible for the emo-
tional evaluation of stimuli. This evaluation is in turn used 
as a basis for emotional states and reactions and is used for 
attention signals and laying down long‐term memories. 
The amygdala and the orbitofrontal cortex compute their 
outputs based on the emotional signal (the reinforcing 
signal) received from the environment. The final output 
(the emotional reaction) is calculated by subtracting the 
amygdala’s output from the orbitofrontal cortex’s (OFC) 
output (see Figure 34b). A control system strategy, based 
on brain emotional learning, was proposed by Caro Lucas 
in the early 2000s (Lucas et al., 2004). The limbic model 
used was based on the neural link, between the amygdale 
and the orbitofrontal cortex, proposed by Balkenius and 
Moren. This control paradigm is commonly designated by 
BELBIC which stands for brain emotional learning based 
intelligent control. The reasoning behind the integration of 
the limbic model into a closed loop control system can be 
tracked down to the seemingly robust way that the brain 
performs decision making. Actually, control has all to 
do with decision making: the controller goal is to devise 
the best input actions based on the incoming information 
according to the system states. These actions can be tak-
en considering the past, the present or even forecasts on 
the future system states. Hence the controller produces a 
mapping between its input signals and the output control 
signals by means of an arbitrary decision function which 
can be described by means of differential equations, as 
in PID-controllers, or by an inference mechanism such 
as in Fuzzy or Neuro-Fuzzy control. Alternatively, it can 
be based on the result of the optimization of a cost func-
tion such as linear quadratic regulators (LQR) or model 
predictive control (MPC). In the BELBIC control system 
architecture this input-to-output transformation is imposed 
by means of the limbic system model. In this case, both 
the external stimuli and reward signals are generated in 
such a way as to produce a closed loop system response 
according to some target characteristics. In addition, due 
to the recursive nature of the weights update law, this con-
troller is able to gradually learn how to handle changes in 
the system dynamics. A key point in BELBIC is the exter-
nal stimulus and reward signals definition.

Notice that there are not universal rules to carry out this 
task. This choice is flexible and must be custom defined 

according to the end application. For example in Lucas 
et al. the reward signal r(t) is obtained as a weighted sum 
of the error signal and the control effort and the external 
stimulus signal i(t) is defined as a linear combination of 
the system output and its first derivative.

It should be observed that it essentially converts two 
sets of inputs (sensory inputs and emotional cues or rein-
forcing signals) into the decision signal (the emotional re-
action) as its output. Closed loop configurations using this 
block (BELBIC) in the feedforward control loop of the to-
tal system in an appropriate manner have been implement-
ed so that the input signals have the proper interpretations. 
The block implicitly implemented the critic, the learning 
algorithm and the action selection mechanism used in the 
functional implementations of emotionally based (or, gen-
erally, reinforcement learning based) controllers, all at the 
same time.

Reza Keramat et al. [54] consider that in practical sys-
tems important information originates from two sourc-
es. One of the sources is the experts, who define their 
knowledge of the system using the natural language. The 
other consists of measurements and mathematical models 
derived from physical laws. Hence, what matters is how 
to incorporate these types of information into the design 
of systems. The question is that how it is possible to for-
mulate human knowledge within a framework similar to 
mathematical models.

Basically, the main function of a fuzzy system is to 
make such a conversion possible. Fuzzy systems are 
based on knowledge or rules. The core of a fuzzy system 
is a knowledge base following the IF-THEN fuzzy rules. 
If a fuzzy system is used by a controller, the controller is 
called “fuzzy controller”.

The fuzzy controller designed for the full bridge DC-
DC converter takes two inputs: error (e) and error varia-
tions (Δe). The membership input functions for this con-
troller are in the range of (-5, 5). Membership functions 
for each of the two input components of error and error 
variations are shown in Figure 35. 

Figure 35. The membership functions for e and Δe

Seven membership functions are used here for the in-
put: negative big (NB), negative medium (NM), negative 
small (NS), zero (Z), positive big (PB), positive medium 
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(PM), and positive small (PS). The controller output is as-
sumed to be equal to the duty cycle, which varies between 
0 and 0.5. Figure 36 displays the controller output func-
tions.

Figure 36. The output membership functions

Reza Keramat et al. show the effectiveness of BELBIC 
for the full bridge DC-DC converter. Figure 37 shows the 
system output voltage after the application of the fuzzy 
and BELBIC controllers. 

Figure 37. The comparison of the fuzzy controller with 
the BELBIC

As seen in this figure, the BELBIC has a slight over-
shoot while the fuzzy controller has a considerable over-
shoot (the initial overshoot is 35 V). The time required for 
stabilization is almost the same in both cases. It is there-
fore concluded that the BELBIC outperforms the fuzzy 
controller.

In Reza Keramat’s experiment the BELBIC controller 
outperforms the fuzzy controller. Considering the uncer-
tainty of system parameters (including inductance, ca-
pacitance, and input voltage and acceptable variations of 
load), the BELBIC presents better performance than the 
fuzzy controller. Although fuzzy control is a robust and 
effective method for a large number of engineering sys-
tems, but its design (and consequently its performance) is 
almost depend on the experience and tact of the designer. 
Furthermore, after design and installation, its performance 
is not improved, and in other word, it is not a learn-
ing-based or intelligent controller.

It can be stated that a Learning Based Intelligent Con-
trol which “may” in the first step, act not as satisfying as 
any another modern controller, any straight-forward-de-
signed controller after few iterations thanks to its learning 

automata feature. Based on this deduction, we felt no need 
to emphasize the comparison of these controllers after set-
ting optimization.
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