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 The technology of knowledge base remote design of the smart fuzzy con-
trollers with the application of the "Soft / quantum computing optimizer" 
toolkit software developed. The possibility of the transmission and commu-
nication the knowledge base using remote connection to the control object 
considered. Transmission and communication of the fuzzy controller’s 
knowledge bases implemented through the remote connection with the 
control object in the online mode apply the Bluetooth or WiFi technologies. 
Remote transmission of knowledge bases allows designing many different 
built-in intelligent controllers to implement a variety of control strategies 
under conditions of uncertainty and risk. As examples, two different models 
of robots described (mobile manipulator and (“cart-pole” system) inverted 
pendulum). A comparison of the control quality between fuzzy controllers 
and quantum fuzzy controller in various control modes is presented. The 
ability to connect and work with a physical model of control object without 
using than mathematical model demonstrated. The implemented technol-
ogy of knowledge base design sharing in a swarm of intelligent robots 
with quantum controllers. It allows to achieve the goal of control and to 
gain additional knowledge by creating a new quantum hidden information 
source based on the synergetic effect of combining knowledge. Develop-
ment and implementation of intelligent robust controller’s prototype for the 
intelligent quantum control system of mega-science project NICA (at the 
first stage for the cooling system of superconducted magnets) is discussed. 
The results of the experiments demonstrate the possibility of the ensured 
achievement of the control goal of a group of robots using soft / quantum 
computing technologies in the design of knowledge bases of smart fuzzy 
controllers in quantum intelligent control systems. The developed software 
toolkit allows to design and setup complex ill-defined and weakly formal-
ized technical systems on line. 
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1. Introduction: Self-organized Smart Con-
trol in Advanced Intelligent Robotics

The PID controller is distinguished as the most com-
mon form of feedback: more than 95% of the control 
feedback-loops are of PID type. These controllers can 
be found in all areas where control is used. Despite its 
straightforward structure, the popularity of PID control-
lers lies in the simplicity of the design procedures and 
in the effectiveness obtained to the system performance. 
Therefore, the beauty of the proportional-integral-deriv-
ative (PID) algorithm for feedback control is in its nature 
simplicity and efficiency. Those are the main reasons why 
PID controller is the most common form of feedback. PID 
– controller combines the three natural ways of taking into 
account the error: the actual (proportional), the accumu-
lated (integral), and the predicted (derivative) values. The 
mentioned three gains depend on the magnitude of the 
error, the time required to eliminate the accumulated error, 
and the prediction horizon of the error. Those are the main 
reasons why PID controllers have survived many changes 
in technology, from mechanics and pneumatics to micro-
processors via electronic tubes, transistors, integrated cir-
cuits, among others and applied as executive control level 
in projects [1] of “Industry 4.0” with Industrial AI.

Remark. The advent of the Industry 4.0 initiative has 
made it so that manufacturing environments are becoming 
more and more dynamic, connected but also inherently 
more complex, with additional inter-dependencies, uncer-
tainties and large volumes of data being generated. Recent 
advances in Industrial AI have showcased the potential 
of this technology to assist manufacturers in tackling the 
challenges associated with this digital transformation of 
Cyber-Physical Systems, through its data-driven predic-
tive analytics and capacity to assist decision-making in 
highly complex, non-linear and often multistage environ-
ments. However, the industrial adoption of such solutions 
is still relatively low beyond the experimental pilot stage, 
as real environments provide unique and difficult chal-
lenges for which organizations are still unprepared. A set 
of key challenges and opportunities to be addressed by fu-
ture research efforts are formulated along with a concep-
tual framework to bridge the gap between research in this 
field and the manufacturing industry, with the goal of pro-
moting industrial adoption through a successful transition 
towards digitized and data-driven conventional controllers 
on executive control levels.

Actually, practically all PID controllers made today 
are based on microprocessors, so this nanoelectronics ele-
ment has had a dramatic influence on this kind of control 
providing PIDs additional advances features for “Industry 

4.0”, such as gain scheduling, continuous adaptation, and 
automatic tuning. The quantum self-organization algo-
rithm model of wise knowledge base design for hybrid in-
telligent fuzzy PID - controllers with required robust level 
considered in [2,3].

Problems of advanced control system design. From the 
advanced control engineering point of view, improving 
system robust behavior is the major concern. To that end, 
the generalization of classical PID controllers to non-inte-
ger orders of integration and differentiation was proposed. 
Intuitively, with this extension of classical PIDs there are 
more tuning parameters and, consequently, more flexi-
bilities in adjusting time and frequency responses of the 
control system. This also translates in more robustness in 
designs. However, the first step when applying an existing 
or new controller is to understand exactly what their ac-
tions can do in closed-loop in order to take full advantage 
of the possible effects on the system response. In the case 
of integer order, the interpretation of the three actions of 
PIDs seems to be clear: the proportional action is simply 
proportional to the current control error; the integral ac-
tion is related to the past values of the control error, so 
represents the accumulated error, i.e., the area under the 
error curve; the derivative action predicts future values of 
the error or, in other words, corrects based on the rate of 
change of the deviation from the set-point.

The key aspect when tuning PID controllers is in de-
ciding how to best combine those three terms to achieve 
the most efficient regulation of the process variable for 
the considered problem. As well known, the most obvious 
way is to use a simple weighted sum where each term is 
multiplied by a tuning constant or gain, and the results are 
then added together as follows: A new design of nth order 
binomial filters has shown that an appropriately tuned fil-
tered PID control may yield faster closed-loop transients 
by producing a less excessive control effort than an opti-
mally tuned PI control. These made it possible to deal, for 
example, with controllers using higher order derivative 
actions and to show them attractive also in control of the 
time-delayed systems. Physically, as example, PIDD2 con-
trollers offer position, velocity and acceleration feedback 
useful in dealing with systems not allowing rapid output 
changes, when the loop behavior depends significantly on 
the previous control history. Since an analytical optimal 
design of four parameters of a PIDD2 controller, which, 
in addition, requires appropriate implementation filters to 
represent a highly complex problem, different alternative 
approaches as, for example, the particle swarm optimiza-
tion have been tested. 

Different approaches to design of expanded conven-
tional controller’s structures in [4-9] described. In compar-
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ison with the much simpler PI control, which still attracts 
attention of the contemporary research, the design is yet 
more complicated also due to the fact that an increased 
speed of transients exhibits all modeling and tuning im-
perfections. This task is intractable problem in advanced 
control system design. 

Figure 1 demonstrates the structure of information 
technology design of intelligent control systems based on 
quantum soft computing. 

Figure 1. Main steps of intelligent control system design.

Background of the model representation is a new 
model of quantum inference based on quantum genetic 
algorithm [2]. Quantum genetic algorithm applied on line 
for the quantum correlation’s type searching between un-
known solutions in quantum superposition of imperfect 
knowledge bases of intelligent controllers designed on 
soft computing toolkit. Disturbance conditions of analyt-
ical information-thermodynamic trade-off interrelations 
between main control quality measures (as new design 
laws) discussed. The smart control design with guaran-
teed achievement of these trade-off interrelations is main 
goal for quantum self-organization algorithm of imperfect 
KB. Sophisticated synergetic quantum information effect 
(autonomous robot in unpredicted control situations and 
swarm robots with imperfect KB exchanging between 
“master – slaves”) introduced. A new robust wise con-
troller designed on line from responses on unpredicted 
control situations of any imperfect KB applying quantum 
hidden information that extracted from quantum correla-
tion. Within the toolkit of classical intelligent control, the 
achievement of the similar synergetic information effect is 
impossible.

Physical interpretation of this new quantum supremacy 
effect in system of system engineering introduced. Bench-

marks of intelligent cognitive robotic control applications 
considered. The role of information extremum and free 
energy principles in quantum self-organization imperfect 
KB of smart fuzzy controllers with imperfect KB dis-
cussed.

2. Problem Statement: Main Tasks

Under conditions of uncertainty or inaccuracy of the 
initial information, unforeseen situations or information 
risk, the conventional (using the principle of global nega-
tive feedback) and industry-wide PID controller often fails 
to cope with the control task. At the same time, there is no 
solution to the problem of the global robustness of the PID 
controller so far, despite the urgency of this problem. The 
application of fuzzy controller (FC) in combination with 
a PID controller led to the creation of hybrid fuzzy ICSs 
with different levels of intelligence, depending on the 
completeness and correctness of the designed knowledge 
base (KB).This allowed to improve the quality of control, 
but doesn't completely solve the problem of robust con-
trol in unforeseen situations. The application of the soft 
computing technology (based on the genetic algorithms, 
neural networks and fuzzy logic) has expanded the areas 
of effective use of PID with FC by adding new functions 
in the form of teaching and adaptation.

The application of quantum computing technologies 
(based on quantum deep machine learning with quantum 
neural network and quantum genetic algorithms) finds the 
solution to the above mentioned problem of the global ro-
bustness of the PID controller so far, despite the urgency 
of this problem.

This article considered a network of loosely coupled 
groups of robots working together to solve tasks that go 
beyond individual capabilities, and individually the el-
ements don't implement the difficult task. Different and 
information nodes of such a system, as a rule, have a dif-
ferent level of computational intelligence (knowledge, al-
gorithms, and computational bases) and various resources 
in designing. Each node should be able to modify its be-
havior depending on the circumstances, as well as to plan 
its communication and cooperation strategies with other 
nodes. Here the indicators of the level of cooperation are 
the nature of the distribution of tasks, the unification of 
various information resources and, of course, the possibil-
ity of solving a common problem in a given time [2,3].Typi-
cal examples of the interaction of such robotic systems are 
the tasks of object recognition and manipulation, control 
when moving along an optimal trajectory, route planning, 
stabilization of dynamically unstable systems (for exam-
ple, an inverted pendulum), control of multi-link manipu-
lators, when implementing hierarchical and decentralized 
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control in a group of robots [10-18].
In this work, to demonstrate the interaction of the 

robotic systems, the robot’s models were designed - in-
verted pendulum and mobile platform with navigation, 
manipulator and stereo vision system (see, Figure 2). The 
robot control systems operate on the basis of quantum 
fuzzy controllers that were developed using the technol-
ogy presented below [19-21]. In particular, solving the task 
of controlling executive mechanisms, electric motors in 
coordination control and navigation systems, are used, 
above mentioned conventional PID - controllers.

The developed intelligent toolkit as Quantum Soft 
Computing Optimizer (SCO) of Knowledge Base 
(QSCOptKBTM) [19,22,23] allowed to design robust KBs ap-
plying the solution of one of the problems of the theory 
of artificial intelligence difficult to solve algorithmically 
- extraction, processing and formation of the objective 
knowledge without expert estimates.

Figure 2. A two-dimensional model of an inverted pendu-
lum and mobile manipulator.

[here CO – control object, QFI – quantum fuzzy inference, ICS 
– intelligent control system]

In this SCO, three GAs are used that allow designing 
an optimal structure of a FC (the type and number of the 
MFs, their parameters, and the number of fuzzy inference 
rules), that approximates the teaching signal with the 
required error. In this case, the teaching signal can be ob-
tained directly from the control object functioning in the 
learning mode. At the same time, an optimal structure of 
the fuzzy neural network is automatically designed and a 
model is formed of the universal approximator in the form 
of a fuzzy controller with a finite number of production 
fuzzy logic rules in the KB.

SCO on soft computing is a new effective software 
tool for KB design of robust ICS applying the presented 
criteria on the basis of information and thermodynamic 

measures of entropies. Structurally, SCO consists of inter-
related genetic algorithms (GA1, GA2, GA3) that optimize 
individual components of KB [1]. The basic optimization 
steps and the structure of the SCO are shown in Figure 3.

Figure 3. Main stages of the knowledge base design on 
Soft Computing Optimizer (SCO).

Block FC is the central element of the ICS (Figure 1) 
and generates control signals of the time-varying (control 
laws) gain factors, (kp, ki, kd) (coefficient gain schedule) 
of the PID controller, applied to stabilize an inverted pen-
dulum, mobile platform control and manipulator control. 
The functional structure of the ICS with FC and SCO 
blocks on soft and quantum computing is shown in Figure 3.

At the same time, the sources of teaching signals (TS) 
are on the one hand the physical environment measured 
by sensors with the ability to influence it with actuators 
and translate the system into the required state; on the oth-
er hand, the information (including model) representation 
of individual systems functioning among themselves with 
the set accuracy of approximation.

Key stages of knowledge extraction from physically 
measured control signal and teaching with reinforce-
ment are hardware and software implementation of such 
algorithm, which allows to extract and form KB of cog-
nitive-intelligent controller, while connecting to the CO 
on all stages of KB design. In the process of knowledge 
extraction, the classification of input control situations 
and verification of control actions on the CO is carried 
out. The learning process itself causes the expenditure of 
physical resources and a decrease in the quality of con-
trol, by checking the various trajectories of control and 
commands, while the information environment forms the 
structure of the KB. Note that in the space of the formed 
solutions, all the features of the physical implementation 
of the system (noise, backlash, errors in the manufacture 
of parts and environmental conditions) are taken into 

https://doi.org/10.30564/aia.v3i2.3849
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account. As a result, imperfect data in TSs - resource in 
the learning process is compensated by knowledge, for-
malized in the form of KB, while laying the accuracy and 
reliability of control in the learning situation, taking into 
account the physical characteristics of the system.

Modeling the behavior of the system, firstly, allows 
to expand the class of problems solved by increasing the 
number of simulated situations (changes in mass, friction, 
various kinds of noise sensors and modeling the influence 
of the environment), and secondly, provides the abili-
ty to search for optimal trajectories in given situations 
modeling. However, the previous process of verification 
and identification of the model, as well as the process 
of search and approximation of optimal trajectories in 
the KB, require significant computational resources and 
strongly depends on the level of complexity of the de-
scribed system, its correctness, the number of structural 
elements and connections between them. Moreover, in the 
case of unforeseen situations-not inherent in the KB ICS, 
the application of such an approach will cause significant 
time delays in the feedback loop, which is quite critical 
from the point of view of control of these systems. 

Let us consider the problem of maintaining a con-
stant pressure and in a liquid nitrogen collector on an 
experimental setup designed to control the manufactured 
superconducting (SC) magnets of the complex apply 
SCO based on soft computing and SCOptKBTM toolkit  
(Figure 3).

Example: Intelligent robust liquid nitrogen flow control 
system in the collector of a cryogenic plant for control of 
superconducting magnets. 

By controlling the nitrogen supply valve, it is neces-
sary to regulate the pressure and flow rate of nitrogen in 
the collector. The control loop status is monitored by a 
pressure sensor and a nitrogen level sensor. In this state 
of superconductivity, the magnet winding must be main-
tained at the equilibrium point of the permissible range 
of changes in current, temperature and magnetic field  
(Figure 4).

Figure 4. The region of the superconducting state of the 
magnet winding

The SC magnetic element of the accelerator complex 

itself during the tests has the following features: heat gain 
due to eddy currents leading to heating of the core, heat 
gain from the walls and uneven cooling in the connecting 
nodes. These features of an individual magnetic element 
also impose the complexity of managing a group of simi-
lar elements.

The principle of intelligent control implies compensa-
tion for the uncertain and inaccurate parameters of a mag-
netic element existing in a real object through the use of 
soft and quantum computing technologies and taking into 
account the peculiarities of individual knowledge bases.

Table 1 shows the input data - indicators of the state of 
the system and output - parameters of the actuators con-
trolled by an intelligent control system for the conditions 
of the state of nitrogen in the stand collection.

Table 1. Input and output data of MIS of nitrogen con-
sumption

Input data Output

Nitrogen outlet temperature data Target valve flap position

Inlet nitrogen temperature data Valve rotation speed

Pressure level reference signal

Setpoint signal for nitrogen level in the 
collector

Data on the state of the nitrogen level in 
the collector (tank)

The efficiency of pumping, cooling the magnetic el-
ement and maintaining the superconductivity regime 
depends, among other things, on the pressure in the cool-
ing system, and therefore on the nitrogen pressure in the 
collector and its level. In this case, it is necessary to take 
into account the increase and decrease in the nitrogen 
consumption in the process of heating and cooling the 
magnetic element, taking into account the inaccuracy of 
the actuator (valve).

Figure 5 shows the control loop of the first level, im-
plemented in the form of a proportional-integral-differen-
tial (PID) controller with adjustable control parameters (Kp, 
Ki, Kd). The choice of optimal control parameters depends 
both on the listed features in the implementation of a sep-
arate magnetic element, and when controlling a group of 
magnetic elements.

Let us consider an example of designing an ICS for 
pressure control in a storage tank with nitrogen of a test 
bench of a magnet factory. At the first design stage, the 
indicators and parameters set by the operator in the con-
trol system were recorded (Figure 5). Further, the most 
effective trajectories of valve control (operator actions) 
were selected from the point of view of maintaining the 

https://doi.org/10.30564/aia.v3i2.3849
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required pressure level and nitrogen flow rate. 
Based on these data, using soft computing software 

tools from Figure 3, a fuzzy controller was designed (Fig-
ure 6). 

In Figure 7 below is a graph showing operator actions 
(blue line) and fuzzy controller (brown line). 

Figure 7. Control action of the operator (V19) and fuzzy 
controller (FC19).

In general, at this stage, the work of the regulator was 
assessed as correct.

In Figure 8 the experimental graphs of the nitrogen 
flow rate and pressure in the storage tank in the process of 
testing the magnetic element demonstrated, respectively.

Figure 8. Nitrogen level in the storage tank

The studies carried out have shown that when regulat-
ing in the control mode of a fuzzy controller, the nitrogen 
flow rate decreases.

Consider the example of the process of designing an 
intelligent control system (ICS) of inverted pendulum, 
the possibility of creating an intelligent robust control 
system with an increased level of robustness due to the 
application of quantum computing technologies and vari-
ous information resources in the process of extraction and 
formation of KB.

3. Information Technology Design of Intelligent 
Control System with Remote Connection to SCO & 
QC

Control of inverted pendulum position it’s a classical 
task of control theory (see Figure 9). A dynamic system 
has global dynamic instability; in the absence of a control 
force, an unlimited increase in the deflection angle occurs, 
i.e. the pendulum falls. The task of controlling the system 
is to, by acting on the trolley by means of a control force, 
hold (stabilize) the pendulum in a vertical position (the 
angle of deviation of the pendulum axis from the vertical 
should be kept close to 0 under changing environmental 
conditions).

The equations for entropy production rate are as fol-
lows:

2 3
2 21

2

1/ 2 sin 2 ; ; .
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z u d
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+ 
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In Equation (1), z and θ are generalized coordinates; 

g is the gravity constant ( 29.8 / secm ), is the mass of the 
cart, m is the inverted pendulum (called the "pole"), l is 
half the length of the pendulum, k and 1a  the coefficients 
of friction in z and θ respectively, 2a  is the elastic force 
of the cart, ( )tξ external stochastic noise, and u is the con-
trol force.

The structure of the computer model "cart – pole” (in-
verted pendulum), made in the environment of modeling 
MatLab/Simulink, is shown in Figure 10.

This computer model is used to obtain a training signal 
and configure the KB using SCO. As a control model of 
this system, we will use the expression (1) to calculate the 
control effect. In accordance with this control scheme, we 
will use the PID controller in the global negative feedback 
loop.

The sequence of application of software tools, sources 
of training signals and the result of the stages of applica-
tion of tools are presented in Figure 11. The technology of 
application of the quantum optimizer and quantum fuzzy 
inference (QFI) allows to combine into a single control 
system several KB obtained from various information 
sources, which allows to take into account both the physi-
cal features of the CO and the model representation of the 
system.

The model includes a PID controller, noise in the con-
trol and measurement system, as well as a unit that gener-
ates a signal for the controller.

https://doi.org/10.30564/aia.v3i2.3849
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Figure 9. Intelligent control system of inverted pendulum and mobile manipulator

Figure 10. Modeling system structure: 1-fuzzy output unit; 2-PID controller; 3-control object; 4-noise generators

https://doi.org/10.30564/aia.v3i2.3849
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Figure 11. SCO & QO technology for designing  
robust ICS

The input of the SCO is a teaching signal (TS), which 
can be obtained either at the stage of stochastic simulation 
of the CO behavior (using its mathematical model), or 
experimentally, i.e. directly from the results of measure-
ments of the dynamic parameters of the physical model 
of the CO.TS is a source of knowledge and is an array of 
data divided into input and output components, each of 
which, in turn, consists of one or more signals. If some 
control signal is approximated, the input components may 
be a control error, an error integral and its derivative, and 
the output component is the desired control action value, 
or some adjustable control system parameters, for exam-
ple, the gain coefficient of the PID controller. 

For Figure 12, the input data for FC is the error vector, 
which consists of the control error ( )e t , the integral of the 

control error ie edt= ∫ , and the rate of change of the con-

trol error ( )e t . 

Figure 12. Example of teaching signal.

Output data FC is a vector consisting of the values of 
the gain, pk , dk , ik , PID controller, the values of which 
are used in the formation of the control action in the fol-
lowing form:

( )
0

( ) ( ) ( ) ( ) ( ) ( )
t

p i du t k t e t k t e d k t e tτ τ= + +∫  � (2)

Before proceeding with the design of the IC, it is nec-
essary to verify the parameters of the mathematical model 
(1). 

Table 2 presents the classification of defined and un-
defined parameters of the system model. The problem of 
finding undefined parameters can be solved on the basis 
of GA. The assumed ranges of undefined parameters are 
the boundaries of the search space for multi-criteria opti-
mization. The chromosome of the algorithm consists of a 
vector of indeterminate parameters, and the initial popula-
tion is randomly generated by the spread of chromosome’s 
carts the search space. GA selects a set of parameters 
of the mathematical model so that the dynamics of the 
mathematical model corresponds to the dynamics of the 
robot (for example, the error in the form of the difference 
between the signals from the mathematical model and the 
physical signal is minimal).

Table 2. Defined and undefined parameters in the model

The target function of the algorithm for verification can 
be based on the dispersion of information supplied to the 
input and received at the output of the controller or fuzzy 
controller. 

In this case, the fitness function was used as a function 
of the form:
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Where mod( )Var e  – variance of control error in the model, 
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( )robVar e  – variance of control error in operation, mod( )Var u

и ( )robVar u  – dispersion of the control action in the model 
and layout, mod( )Var ie и ( )robVar ie  – variance of the integral of 
the control error model and layout, respectively.

It should also be noted that it is possible to use other 
fitness functions, for example, the integral of the differ-
ence between the points of the resulting sample graphs, 
etc.

After verification, the found parameters are substituted 
into the model, and then the coefficients for the PID con-
troller are searched. To do this, use GA, the chromosome 
of which are gain, and the fitness function – the evaluation 
function of quality control the following:

2

0

1( ) ,
1

r tf x
e dt

=
+ ∫

� (4) 

Where e is the value of the deviation from the master 
signal, t is the integration range equal to the test time of 
one solution. Next, the coefficients are tested on the layout 
according to the scheme in Figure 13.

Figure 13. Algorithm verification with the use of GA

In case of unsatisfactory result, it is necessary, if pos-
sible, to re-identify the system-to reduce or increase the 
number of undefined parameters by fixing one or more 
of them in the mathematical model, with a corresponding 
increase in the search space parameters.

The results of verification of the mathematical model 
and layout of the system, in the form of graphs of control 
errors are presented in Figure 14.

It is required to achieve a high level of suitability of the 
tested solution for verification. For this case, the algorithm 
finished with the value of the fitness function: Fit = 0.9847.
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Figure 14. The angle of deviation of the robot and model

Further, on the basis of the verified model, including 
the selected undetermined parameters (control noise, noise 
intensity in the control, the coefficient of friction of the 
wheels on the surface, the coefficient of friction in the axis 
of rotation, the coefficient of elasticity, etc.) was designed 
KB.

4. Design Using System Layout

Consider the possibility of using GA-PID controller to 
obtain TS and further approximation of the signal on the 
neural network using SCO. 

One of the disadvantages of GA is the inability to use 
in the future solutions that do not fall into the next gen-
eration. When documenting solutions, for a third-party 
observer of the algorithm, this data turns into a huge array 
of hard-to-process information. 

For Figure 15 on the left is the TS with the layout in 
the form of a graph of the angle of deviation and changes 
in gain. 

This signal is derived from the GA-PID controller. The 
presented data set of the learning process of the CO and 
the selected areas are "knowledge" about the gain and 
their changes. It is obvious that the information about 
the learning process of the robot contains knowledge (in 
terms of the selected quality criterion) about the suitability 
of the tested solutions. 

It is important to note that the amount of this knowl-
edge grows in the learning process. In the first generations 
(with a random distribution of chromosomes in the search 
space), this knowledge is minimal, but with the passage of 
time and the change of generations, the amount of useful 
information increases, and the quality of control increases. 
This data set contains information about both the possible 
States of the CO (deflection angle) and the gain for each 
time. Using the software tools SCO, it is possible to allo-
cate knowledge from the signal obtained in the process of 
GA in on line, with their further use in the KB FC. 

Thus, the designed KB will contain knowledge about 
the physical features of the control object, backlash, noise, 
friction and implementation features. This type of training 
allows you to extract knowledge about poorly formalized 
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and poorly structured CO, for which it is difficult to de-
sign an adequate model.

It should also be noted the set clock cycle time of the 
system. For simulation and experiment, the duration of the 
cycle was taken constant during the tests and is 0.01 sec.

The result of genetic selection was a signal, part of 
which is shown in Figure 15. This signal is the input sig-
nal in the QFI.

The first three columns in Figure 15 describe the con-
trol error, differential and integral errors, respectively, the 
last three coefficient gain schedule kP, kD, kI.

In the second stage, the TS is fed to the SCO input, 
which approximates it using an user-defined fuzzy output 
model. The optimal representation of the linguistic varia-
ble membership functions and the number of rules is cho-
sen. 

In the second stage, the TS is fed to the SCO input, 
which approximates it using a user-defined fuzzy output 
model. The optimal representation of the membership 
functions of the linguistic variable is chosen. The result 
of the stage of construction of input linguistic variables is 
presented in Figure 16.

At this stage, the right parts of the rules are optimized. 
This uses GA2 (for TS with layout) and Matlab modeling 
for TS obtained using model and layout. 

The results of the KB construction are illustrated below 
(Figure 17).

For formation of the right parts of rules for KB which 
TS is received from a layout, GA 2 was used. The fitness 
function at this stage is the minimum of the TS approx-
imation error. The result of creation and optimization of 
KB rules is presented in the form of a neural network in 
Figure 17. The first layer shows the number of input vari-
ables, the second-the number of membership functions for 
each variable, the third - the production rules of KB, the 
fourth - the values of the gain. 

Figure 18 shows the relationship between the training 
signal obtained using a mathematical model and the gain 
of the fuzzy controller.

The regulators were designed to function in a typical 
control situation. To compare the robustness of the devel-
oped control systems, we use an unexpected control situa-
tion. The situation is modeled by the presence of noise in 
the coefficient of friction of the wheel on the surface and 
in the control action. As such noise in the experiment a 
special coating is used, and the corresponding parameter 
values were set for the models. 

Consider the behavior of PID and fuzzy controllers in a 
typical and unexpected control situation. In Figure 19-22 
the results of modeling and experiments in a typical con-
trol situation are presented.

Table 3 presents a comparison of the KB by the number 
of rules, the number of functions belonging to the linguis-
tic variable and the method of optimization in the software 
tools of the KB.

Table 3. Comparison of KB

Knowledge Number of 
rules

Number of 
fuzzy sets

Optimization 
method

Knowledge base from 
model 1 245 8х6х6 simulation

Knowledge base from 
model 2 276 8х9х6 simulation

Knowledge base from 
robot 1 288 9х9х6 Approximation 

of TS
Knowledge base from 

robot 1 270 5х8х8 Approximation 
of TS

Research of quality of control of the PID-regulator and 
fuzzy regulators on the basis of software tools of SCO 
was carried out with use of mathematical model and real 
CO. The regulators were designed to function in a typical 
control situation. The parameters of the mathematical 
model used for modeling are presented in Table 4.

Table 4. Control situations, parameters of mathematical 
models

Typical situation (С1) Unforeseen situation 
(С2)

Initial angle 0гр 0гр
Initial velocity 1гр/с 1гр/с

Weight of the cart 0.56 кг 0.56 кг
Mass of the  
pendulum 0.63 кг 0.63кг

Length of the  
pendulum 0.07 м 0.07 м

Friction in  
fastening

2.75 + normalized noise 
with intensity 0.01 and an 

amplitude of 0.35

3.55 + normalized 
noise with intensity 

0.01 and an amplitude 
of 0.35

Friction of the 
wheels 3.63 + Gaussian noise 15% 2.53 + Gaussian noise 

15%
Elastic force 5.54Н/м 7.54Н/м

Noise in the control 
system

Uniform [-2.15 2.15], the 
intensity of 0.48

Uniform [-2.15 2.15], 
the intensity of 0.48

Noise in the  
measurement  

system

Gaussian noise, amplitude 
0.22, intensity 0.01

Gaussian noise,  
amplitude 0.42, inten-

sity 0.01
Delay on feedback 

control loop 0.01 с 0.01 с

To compare the robustness of the developed control 
systems, we use an unexpected control situation. The situ-
ation is modeled by the presence of noise in the coefficient 
of friction of the wheel on the surface and in the control 
action. As such noise in the experiment a special coating 
is used, and the corresponding parameter values were set 
for the models. 

In Figure 10 the structure of the modeling system is 
presented. Consider the behavior of PIDs and fuzzy con-
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Figure 15. On the left TS from the layout (GA-PID controller), the right gain FC.

Figure 16. Membership functions for input values of linguistic variables BS1, BS2, BS3, BS4.
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Figure 17. Knowledge bases in the form of neural networks (TS with model and layout)

Figure 18. TS from models and FC output gains.
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trollers in a typical and unexpected control situation. In 
Figure 19-22 the results of modeling and experiments in a 
typical control situation are presented.

We will analyze the quality of control of FC and PID 
regulators. To do this, we use the following indicators of 

the transition process (Figure 23):

Figure 19. Left error control, on the right the integral square error. Typical control situation. Modeling

Figure 20. Left error control, on the right the integral square error. Typical control situation. Experiment

Figure 21. Left error control, on the right the integral square error. Unforeseen control situation. Modeling
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Figure 22. Control error. Unforeseen control situation. 
Experiment

Figure 23. Control quality indicators.

Overshoot characterizes the oscillatory property of the 
transition process and is calculated according to the fol-
lowing expression:

1
1 11 ;   ( ) ;m

m

OO O const O
O

= − ≥ � (5)

Figure 24 shows a diagram of the level of over-regu-
lation of control systems. A fuzzy controller developed 
on the basis of a verified mathematical model has a lower 
overshoot rate, which characterizes the operation of such 
a controller as more efficient.

Stability of transition process of regulators (Figure 25) 
is calculated as:

2
2 21 ; ( .) ;m

m

OO O const O
O

= − ≥ � (6)

Figure 24. Over-regulation of control systems in a typical 
situation. Simulation and experiment

Figure 25. Stability of control systems in a typical situa-
tion. Simulation and experiment

The quality of control characterizes the ability of the 
control system to effectively consume the energy and 
technical resource of the system. In the case of complex 
control, equipment wears and energy costs will be high. 

The complexity of ICS control (Figure 26) is calculated 
in the form:
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∫
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The evaluation of the complexity of the control showed 
that fuzzy controllers developed using SCO provide the 
system with simpler control, which ultimately has a posi-
tive effect on the life of the equipment, reducing wear and 
increasing reliability.
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Figure 26. Complexity of control in a typical situation. 
Simulation and experiment

The results of the simulation and experiment in an un-
expected situation are presented graphically in Figure 21-
22. From the graphs (Figure 19-22) it can be seen that the 
PID controller does not have the necessary robustness, 
which in an unforeseen control situation leads to a loss of 
stability of the system.

Thus, the result of using the tools at the first stage of 
the ICS design process is the required type of universal 
approximator in the form of FC with an optimal KB struc-
ture (see, Figure 1, Step 1).

The technologies for remote configuration and trans-
mission of knowledge bases allow the control object (CO) 
to accept the KB from the SCO block, or from other CO, 
which makes it possible to control structurally new ob-
jects such as robot teams, multi-agent systems, complex 
automated production facilities, etc. In addition, this tech-
nology allows the CO to update and adapt the KB for a 
specific control situation, including an abnormal situation.

5. Technology of Remote-control Object  
Setting 

Remote control setting allows to adapt fuzzy control 
system to a specific (unexpected) control situation re-
gardless of the time and location of the CO. This kind of 
self-organizing ICS with remote design of KB is impor-
tant for elimination of consequences of accidents at the 
nuclear power plant, at analysis of blockages at earth-
quakes, train crash, for work in the polluted and radioac-
tive environment, etc. 

Let's consider the remote connection module of the 
SCO and the real CO for setting up the KB. A USB con-
nection or a Bluetooth radio channel are used for data 
transfer. The information is shared between the control 
system and the SCO to form a KB (Figure 27).

Figure 27. Connection diagram of a configurable device 
and knowledge base optimizer

Remote KB optimization is carried out at the fourth 
stage of FC design. The implementation of the physical 
connection environment involves the use of additional 
equipment for receiving and transmitting data, for exam-
ple, a Bluetooth radio channel, WiFi or cable connection, 
for example, USB. 

It is assumed that the exchange of information between 
the control system and the SCO for the formation of KB 
(Figure 27). The detailed process of setting up the func-
tioning of such a system is presented in (Figure 28). 

Figure 28. The algorithm works remote configuration

The control system gets the readings from the sensors 
and sends them to the computer for further processing. 
By assuming input values, SCO evaluates the previous 
solution (KB FC) in the GA function and makes a fuzzy 
conclusion for verifying the next solution (KB FC). The 
result of the fuzzy conclusion is sent to the remote device. 
After that, the control system, having processed the input 
values, generates a control action. Thus, the configuration 
of the KB FC is realized on line. The connection profile 
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uses the serial port. The transmission speed in this case 
is 115200 bps. In the process of functioning, numbers are 
transmitted through the COM-port in the symbolic form. 
Connection to the SCO is carried out through the devel-
oped plug-in (Figure 29).

Figure 29. Remote configuration module for REVIEW

The remote KB transmission is the next step in the de-
velopment of the wireless connection of the CO with the 
SCO. In this case, it is not control actions that are trans-
ferred from the SCO, but the KBs, that is, information and 
knowledge of a higher level is shared. The implementa-
tion of the connection environment involves the use of the 
IEEE 802.11 (Wi-Fi) standard and the TCP / IP protocol 
for data reception-transmission. Information is shared be-
tween the control system and the SCO to form and trans-
fer KB. Structurally, from the point of view of the soft-
ware engineering, the KB is implemented by a structural 
type of data and its size depends on the number of input 
and output variables, the number of membership functions 
of the linguistic variables and the number of production 
rules. At the speed of 1 Mbit / s, the transmission of a 10 
KB with internal delays takes no more than 100 ms, which 
allows to qualitatively rebuild the ICS for a given task in 
the on-line mode.

As a data transmission medium consider the possibility 
to use the radio module presented in Figure 30 to wire-
lessly tune the KB of a dynamically unstable object. 

Figure 30. Bluetooth radio module.

Let's set the maximum time delay limit for receiving 
and transmitting data in a communication environment. 
The time delay is 40 MS, which is critical for typical con-
trol systems discussed earlier. Based on this, the control 
situation with such a delay value can be considered ex-
treme. 

To solve the control problem, we change the law of 
formation of the control action (1). The reference signal of 
the stabilization system will depend on the integral error 
(8), this will allow the system to function at a critical time 
delay: 

ref a edt= − ⋅ ∫ , � (8)

where a is an experimentally matched parameter equal 
to 0.25. In expression (8), the angle of the reference signal 
depends on the accumulated integral error. It is important 
to note that in addition to the value of the setting signal 
was imposed restriction, and its value should not go be-
yond the aisles of the range[ ]16,16− . 

The result of the TS approximation is the constructed 
KB for FC, including an optimal finite set of rules and 
optimally generated parameters of the membership func-
tion of the input and output variables of the FC. Thus, the 
result of designing is a required type of the universal ap-
proximator in the form of FC with an optimal structure of 
the KB.

Let's compare the PID controller (PID) with the FC 
(FC1), optimized with the help of the remote setting 
to control object. Figure 31 (a) represents the angle of 
deviation of the controllers being compared, and Figure 
31 (b) shows an integral estimation of the deviation an-
gle in a typical situation. Figure 32 (a) shows the level 
of the left and right wheel departure from the launch 
point, and Figure 32 (b) represents an integral assess-
ment of departure.

Figures 31 and 32 show that the FC error level is below 
the PID controller, both in terms of the deviation angle 
and the departure from the launch point.

Practice and simulation results have shown that in 
conditions of uncertainty or inaccuracy of initial informa-
tion, unforeseen situations or information risk, the tradi-
tional (using the principle of global negative feedback) 
and widely used in the industry PID regulator often fails 
to cope with the task of control. At the same time, the 
solution of the problem of global robustness of the PID 
controller is still unknown, despite the relevance of this 
problem. 

The use of fuzzy controllers (FC) in conjunction with 
the PID controller led to the creation of hybrid fuzzy Issus 
with different levels of intelligence depending on the com-
pleteness and correctness of the designed knowledge base 
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(KB). The use of soft computing technology (based on ge-
netic algorithms and fuzzy neural networks) has expanded 
the effective application of FC by adding new functions in 
the form of learning and adaptation. However, in the Gen-
eral case of abnormal control situations, it is very difficult 
to design a globally "good" and robust ICS structure. 
This limitation is especially typical for unforeseen control 
situations when the CO operates in sharply changing con-
ditions (sensor failure or noise in the measuring system, 
the presence of a delay time of control or measurement 
signals, a sharp change in the structure of the CO or its 
parameters, etc.). The solution of such problems can be 
found on the basis of the introduction of the principle 
of self-organization of KB in the design process of FC, 
which is implemented and programmatically supported 
by the developed model of QFI using the methodology of 
quantum soft computing and system engineering-System 
of System Engineering (synergetic principle of self-organ-
ization) [20].

Figure 31. The deviation angle of an inverted pendulum 
(а), the integral estimation of the deviation angle (b)

Figure 32. The departure of the right and left wheels from 
a start point (a), integrated assessment of departure from 

the start point

The proposed model uses private QFI individual KB 
FC, each of which is obtained with the help of the knowl-
edge base optimizer (SCO) for the corresponding condi-
tions of operation of the OC and fixed control situations in 
an external random environment. The process of design-
ing private individual KB FC using software tools SCO 
for given control situations is carried out in accordance 
with the design technology and is discussed in detail in [23].

6. Structure and Basic Functions of Quantum 
Fuzzy Inference

The purpose of applying quantum computing and cre-
ating a self-organizing quantum controller is to combine 
the intelligent controllers of various sensors obtained in 
the first stage into a self-organizing connected multi-agent 
network based on a quantum controller and cognitive-in-
formational interaction between knowledge (KB) (Figure 
1, Step 2). Structural implementation of the process of 
self-organization in the QFI model [19] presented in Figure 
33.

The basic idea is to find the possibility to use the 
classical states of various regulators (sliding, fuzzy, clas-
sical) for aching goal of control in unforeseen situation. 
Quantum fuzzy inference (QFI) technology ensures the 
required level of robustness, without changing the lower 
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level of control, only through the use of software level. 

Figure 33. Structural implementation of the process of 
self-organization in the QFI model:

In this case, the robustness property (by its physical 
nature) is an integral part of self-organization, and the 
required level of robustness of the ICS is achieved by ful-
filling the principle of minimum production of generalized 
entropy noted above. The principle of minimum entropy 
production in the CO and control system serves as the 
physical principle of optimal functioning with a minimum 
consumption of useful work and is the basis for the devel-
opment of a robust ICS.

Reliable functioning of natural self-organizing systems 
is provided by using their individual properties, a combi-
nation of these approaches and algorithmic formation of 
a complex of properties in changing or unforeseen con-
ditions. The process of designing robust KB corresponds 
to the abovementioned process of optimal support of the 
introduced thermodynamic relationship between the noted 
fundamental qualities of control (thermodynamics con-
trol quality trade-off, obtained as a physical criterion of 
self-organization). 

Let us emphasize that the effect of self-organization of 
KB in the ICS is based on the virtual process of extract-
ing additional (hidden) quantum information from the 
reaction (to an unforeseen situation) of classical control 
signals at the output of KB, designed in the learning envi-
ronment, and is physically implemented [2,20] by software 
tools based on QFI.

In Figure 34 (as the realization of the structure in Fig-
ure 33) the functional structure of the simplified QFI mod-
el is shown.

Figure 34. The functional structure of a QFI in real time

The following steps are implemented in the SC model 
for QFI: 

1) the fuzzy output results of each independent individ-
ual FC are processed; 

2) choose the type of quantum correlation; 
3) a superposition is formed for the selected quantum 

correlation; 
4) the valuable quantum information hidden in inde-

pendent individual KB is extracted (on the principle of 
minimum entropy in the extracted quantum knowledge – 
maximum amplitude of probabilities of "intelligent state") 
on the basis of methods of the quantum theory of informa-
tion; 

5) in real time, a generalized output robust control sig-
nal is projected on a set of KB in the form of FC reactions 
to a new control error.

QFI was realized with the help of software tools – 
quantum optimizer (QSCOptKBTM). QFI itself is a new 
quantum search algorithm that realizes the search in 
dissimilar spaces of solutions embedded in KB. QFI, as 
a special case of the quantum algorithm, includes super-
position and quantum oracle operators. In addition, which 
makes the algorithm unique, are used quantum correla-
tions matrix as a source of additional information latent 
in classical information states, (tensor multiplication with 
the extraction of additional hidden information embedded 
in classical signal states.

In this case, the output signal of the QFI in real time 
represents the optimal control signal for changing the gain 
coefficients of the fuzzy PID controller in the ICS of a 
specific robot control task. The signal includes the nec-
essary (best) quality characteristics of the control output 
signals of each FC, thus realizing the principle of self-or-
ganization. Qualitative features of the synergistic effect 
of self-organization are taken into account in the selected 
type and type of quantum correlation.
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At the physical level of interaction of robotic systems, 
the effect of self-organization introduced in accordance 
with the information-thermodynamic criteria, provides 
the system with a minimum loss of useful resource even 
in unforeseen control situations, such as the delay of the 
control action. At the same time, the minimum of initial 
information about the system, without destroying the 
lower executive level of the system control and without 
adding additional sensors, allows for the solution of new 
control problems manifested in the interaction of groups 
of robots.

Consider the possibilities of the organization Synerget-
ic Effects of Information-Cognitive Interaction in Intelli-
gent Socio-Cyber-Physical Robotic Systems with Remote 
Knowledge Exchange and for starters Using the classic 
control theory problem as an “cart – pole system (inverted 
pendulum)” as an example, consider the design process of 
an intelligent robust control system using soft and quan-
tum computing. 

The main task solved by the QFI is the formation of 
KB with an increased level of robustness from a finite set 
of KB for FC, formed with the use of soft computing tech-
nology. Let us briefly consider the functional structure and 
operation of the main blocks of QFI. As an example, with-
out losing the generality of the result, we will discuss the 
processes of extraction of hidden quantum information, 
data processing and the formation of robust KB FC, using 
the KB of two FC, designed for fixed (different from each 
other) control situations. 

Using a standard decoding procedure (the internal 
product of vectors in Hilbert space) and selecting scaling 
coefficients for the output values of the projected gain 
(Figure 34, block 6), the iterative work of the SC QFI is 
carried out. The possibility of remote connection of the 
CO to a stationary computer system opens the possibility 
of remote configuration, formation and self-organization 
of BP FC in on line.

7. Quantum Computing on a Classical Pro-
cessor: Application in Robust Control of an 
Unstable CO

Designing a control system based on QFI is carried out 
using the developed software tools "Quantum optimizer" 
[19]. The technology of application of QFI allows to unite 
in uniform control system of several KB, and thus, allow-
ing fuzzy neural networks to work in parallel (Figure 35). 

Let us consider the possibility of using QFI to combine 
the KB obtained on the basis of a training signal from a 
physical object (GA-PID controller) and a verified math-
ematical model (Figure 36). Before proceeding to the cre-

ation of quantum FC, it is necessary to obtain histograms 
of the distribution of the output signals (gain) of fuzzy 
controllers (Figure 36). 

Figure 35. Intelligent control system of inverted pendu-
lum, manipulator and mobile platform with QFI

To do this, a series of experiments and simulations 
are carried out, in a typical control situation. Using the 
obtained values of the gain coefficients in the model and 
layout, an array of data is formed to construct histograms 
of the gain coefficients of the PID regulators (Figure 36). 

Figure 36. Histograms of output values of fuzzy controllers

Histograms are built automatically when data is loaded 
into the quantum optimizer. In the future, they are used 
in the QFI algorithm for the formation of virtual States. 
Gain histograms obtained experimentally are used in the 
formation of QFI for the robot (in a physical experiment), 
gain histograms obtained using a mathematical model are 
used in the formation of QFI for modeling. After loading 
the data, the type of quantum correlation between the gain 
factors is selected. The formation of entangled States is 
carried out on the basis of the selected correlation matrix, 
which is set in the working window of the optimizer.

In the next step, the corresponding maximum and min-
imum values for the input and output signals of the QFI 
are set and the scaling coefficients are adjusted (block 6, 
Figure 34). It is assumed to use a mathematical model or 
remote connection to the control object, that is, additional 
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equipment for receiving and transmitting data, for exam-
ple, a Bluetooth radio channel, WiFi or cable connection, 
for example, USB. The exchange of information between 
the CO and the quantum optimizer (QO) is assumed to 
search for scaling coefficients (block 6, Figure 34) the 
quantum of the regulator. As a result of the design, the 
output signal from the QFI unit is used to control the gain 
of the PID controller in the case of modeling a mathemat-
ical model, and for a robot in a physical experiment, an 
exported file with the extension "* " is used. after.»

8. The Results of Simulation and Experiment 
in Unforeseen Control Situation

We consider the application of the developed model of 
QFI for the formation of control processes of gain fuzzy 
PID controller. To do this, we will conduct a computer 
simulation for two control situations: 

• in the first (typical) situation (C1) the delay of the 
control signal is standard-0.01 sec; 

• in the second Unforeseen (C 2), the control signal de-
lay is 0.04 sec (quadrupled). 

Table 5 presents the parameters of the mathematical 
model for C1 and C2.

Table 5. Control situations and parameters of mathemati-
cal models

Typical situation 
(С1)

Unforeseen situation 
(С2)

Initial angle 0dg 0dg

Initial velocity 1dg/с 1dg/с

Weight of the cart 0.56 kg 0.56 kg

Mass of the pendulum 0.63 kg 0.63 kg

Length of the pendulum 0.05 m 0.07 m

Friction in fastening

3.55 + normalized 
noise with intensity 
0.01 andamplitude 

0.35

3.73 + normalized 
noise with intensity 

0.01 andamplitude 0.35

Friction of the wheels
3.63 + Gaussian 
noise, Amplitude 

15%

3.63 + Gaussian noise, 
Amplitude 15%

Elastic force 5.54Н/м 5.54Н/м

Noise in the control 
system

Uniform noise [-2.15 
2.15], intensity 0.48

Uniform noise [-2.15 
2.15], intensity 0.48

Noise in the measure-
ment system

Gaussian noise, 
Amplitude 0.22, 

intensity 0.01

Gaussian noise, Am-
plitude 0.32, intensity 

0.01
Delay on feedback con-

trol loop 0.01 с 0.04 с

In Figure 37 the structure of the modeling system is 
presented:

The results of modeling regulators in a typical control 
situation are illustrated in Figures 38 and 39.

Figure 37. The structure of the modeling system in Mat-
Lab/Simulink. The diagram shows: two fuzzy controllers; 
QFI block; PID controller; control object; noise generators

Figure 38. The angle of deviation of the mathematical 
model. Typical control situation (C 1). Modeling
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Figure 39. Integral of square error. Typical control situa-
tion (C 1). Modeling
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Consider the relationship between input and output QFI 
values on the example of proportional gain. Figure 40 pre-
sents the input values of QFI and the output value of the 
proportional coefficient of QFI spatial correlation.

Figure 40. The gain Kp. The input and output values of 
QFI. Modeling in a typical control situation

In Figure 41 results of the angle of deviation (the case 
of the mathematical model) in unforeseen control situation 
demonstrated. 

Figure 41. The angle of deviation of the mathematical 
model. Unforeseen control situation. Modeling

In Figure 42 the general diagram of the integral of 
square error of modeling is presented.

Note that in Figure 42 the value of the integral error of 
the quantum fuzzy controller is located between the corre-
sponding graphs of the controllers that formed the QFI. 

Consider the results of the experiment in a typical con-
trol situation. For Figs 43-45 the results of experiments in 
a typical control situation are presented.

Figure 42. Integral of square error. Unforeseen and typical 
control situations. Modeling. FC1-FC4-fuzzy regulators, 
abbreviations Q-quantum, S (Space) - spatial, T(Time) – 
temporal, ST(Space-Time) – spatial-temporal correlations
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Figure 43. The angle of deviation of the layout. Typical 
control situation. Experiment
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Figure 44. The angle of deviation of the layout. Typical 
control situation. Experiment
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Figure 45. Integral of square error. Typical control situa-
tion. Experiment
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Consider the results of an experiment in an unexpect-
ed control situation (C 2). In Figure 46-48 the results of 
experiments in an unexpected control situation are pre-
sented.

Figure 46. The angle of deviation of the layout. Unfore-
seen control situation. Experiment
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Figure 47. The angle of deviation of the layout. Unfore-
seen control situation. Experiment

Figure 48. Integral of square error. Typical control situa-
tion. Experiment

The control evaluation showed that FC developed with 
the use of SCO provide the system with simpler control, 
which ultimately has a positive effect on the life of the 
equipment, reducing wear and power consumption. The 
developed methodology of combining control strategies 
allows to effectively cope with control tasks even in un-
foreseen situations, in which the task of control can't cope 
with the FC underlying the QFI. Thus, we have a new 
synergistic effect due to the quantum self-organization of 
knowledge: the intelligent controller designed on the ba-

sis of QFI copes with the task of control and has a robust 
KB, which is based on non-robust KB (see, Figures 43 
and 44). At the same time, the QFI-based control system 
inherits the best control quality characteristics from the 
KB of previously designed fuzzy controllers, adding the 
ability to self-organize in on line.

Consider the behavior of PID and fuzzy controllers in 
an unforeseen control situation. Figure 49 presents the re-
sults of modeling and experiments in a unforeseen control 
situation.

The experiment compares the different types of control, 
such as PID controller, Fuzzy controller, the Quantum 
controller. In unforeseen control situation, the classical 
PID and fuzzy controllers did not cope with the control 
task. One can see the limitations of the possibilities of the 
classical regulator. Also, modeling showed limitations of 
the use of a fuzzy controller

In the Figure 49, a new synergistic effect of imperfect 
knowledge self-organization demonstrated. Individual 
regulators fail to task of control in unforeseen situation, 
but their joint using in a system with a quantum inference 
cope with the control goal task, and control output occurs 
in on line, without delays. And Figure 49 shows the un-
stable response of two fuzzy controllers and the stable re-
sponse (of created from these fuzzy controllers) quantum 
controller to an unforeseen situation. 

Technologies for remote configuration and transmission 
of knowledge bases allow the control object to receive 
knowledge bases from the optimizer block or from other 
control objects, which allows to control structurally new 
objects such as robot groups, multi-agent systems, com-
plex automated production complexes. In addition, this 
technology allows the control object to update and adapt 
the knowledge base for a specific control situation using a 
real control object.

In the multi-agent system, there is a new synergetic in-
formation effect of self-organization of knowledge bases 
and formation of an additional information resource that 
arises in the exchange of information and knowledge be-
tween active agents (swarm synergetic information effect).

9. Modeling and an Interaction Experiment 
of a Group of Robots

The prototypes of a manipulator, an inverted pendulum 
and a mobile manipulator, act as mutual CO. The mobile 
manipulator equipped with an image recognition system 
based on the computer vision library OpenCV and such 
hardware as a Web camera, Kinect console and an infra-
red sensor. The decentralized and hierarchical variants of 
interaction of a group of robots are considered. An experi-
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Figure 49. Unforeseen control situation

ment is shown in the "master-slave" connection conducted 
on the basis of the recognition system of the mobile ma-
nipulator.

Let us consider an example of applying ICS: a prob-
lem is considered, in which a glass is placed on top of the 
inverted pendulum. The mobile manipulator is equipped 
with an infrared camera that determines the relative posi-
tion of the inverted pendulum and starts moving towards 
the recognized object. Also, the command to approach 
is sent to the inverted pendulum. After approaching, the 
mobile manipulator, using the recognition system and 
the Kinect camera, determines the location of the glass. 
The manipulator equipped with an ICS calculates the 
command to the engines in the links and moves the ma-
nipulator towards the glass. At first, the cart finds the in-
verted pendulum in the visibility zone and determines its 
position. If the pendulum is turned, then the command to 
swing is sent. If the pendulum is straight, then the mutual 
approach starts. When the distance becomes optimal for 
gripping the glass, the Kinect camera is turned on and the 
glass mounted on the pendulum is recognized. After rec-
ognizing the glass, the coordinates and the command to 
grip the glass are sent to the manipulator (Figure 50).

This interaction implements the hierarchical control in 
the master – slave combination. Thus, the inverted pendu-
lum acts as a slave and executes commands from the mo-
bile manipulator that has an additional sensor to determine 
the position of the pendulum. Such interaction is standard 
and possible to apply in a wide range of tasks. In addition 
to the obvious possibilities of automation of the cafes 
and bars, it is also possible to automate many production 
tasks, such as loading and unloading containers, sorting, 
etc.

The embedded level of computational intelligence in 
intelligent control systems of an inverted pendulum, a 
mobile trolley and a manipulator makes it possible to in-
crease the robustness of the complex interaction of several 
robotic systems and ensure the achievement of the control 
goal with a high level of reliability.

Example: Quantum intelligent control of robotic ma-
nipulator. For completeness of material presentation add-
ing that in the case of interaction of a group of robots, ICS 
were developed for each system separately. For example, 
using QFI allowed to manipulator:

• solving the problem of positioning in regular situa-
tions;
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• improving the results of the positioning task in con-
ditions of external unforeseen situations (under internal 
unforeseen situations the results do not change at best);

• increase in the criterion Performance by 5 times;
• improving the assessment of general management, the 

best result is achieved by using spatial correlation of all 
seven FC’s.

Figure 51 shows results simulation of manipulator con-
trol.

Figure 50. Mobile manipulator performs gripping of the 
glass with an inverted pendulum

Figure 51. The movement of manipulator in a standard 
control situation: under control of ICS based on SCO with 

soft computing (left); ICS based on SCO with quantum 
computing (right)

It should be noted that increasing the level of accura-
cy (more than 104 times) of manipulator control is a key 
factor to improve the reliability of achieving the goal of 
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quantum intelligent control in a complex task with the 
cognitive interaction of a group of robots. So, the opera-
tion of capturing the glass, which in turn is a dynamically 
unstable object, requires the control system to develop 
such a control action that would compensate for the inac-
curacy of the pendulum and the mobile cart.

10. Conclusions

The information technology of knowledge base remote 
design and transmission of the smart fuzzy controllers 
with the application of the "Soft / quantum computing op-
timizer" software toolkit developed.

The physical realization of SW/HW applications of the 
transmission and communication system between robots 
using remote connection the knowledge bases to the intel-
ligent controllers considered.

A comparison of the control quality between fuzzy con-
trollers and quantum fuzzy controller in various control 
modes demonstrate the quantum supremacy of quantum 
fuzzy controller.

Analysis of the experiments shows the possibility of 
the ensured achievement of the control goal of a group of 
robots using soft / quantum computing technologies in the 
design of knowledge bases of smart fuzzy controllers in 
quantum intelligent control systems.

The ability to connect and work with a physical model 
of control object without using than mathematical model 
demonstrated.
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