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Safety is an important aim in designing safe-critical systems. To design 
such systems, many policy iterative algorithms are introduced to find 
safe optimal controllers. Due to the fact that in most practical systems, 
finding accurate information from the system is rather impossible, a 
new online training method is presented in this paper to perform an 
iterative reinforcement learning based algorithm using real data instead 
of identifying system dynamics. Also, in this paper the impact of model 
uncertainty is examined on control Lyapunov functions (CLF) and control 
barrier functions (CBF) dynamic limitations. The Sum of Square program 
is used to iteratively find an optimal safe control solution. The simulation 
results which are applied on a quarter car model show the efficiency of the 
proposed method in the fields of optimality and robustness.
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1. Introduction

Safety is an integral part and a central requirement for 
any safe-critical system such as power systems, automatic 
devices, industrial robots, and chemical reactors. Consid-
ering the increasing demand for safe systems in the future 
generation of industrial systems, and also the importance 
of an interaction with systems surroundings and uncertain-
ties, there is a real need for the development of safe con-
trollers, which can meet the already-mentioned demand. 
In the absence or violation of these safety conditions, the 

system is likely to suffer from some faults, including the 
system stabilization problem and its simultaneous survival 
in the given safety system, which lead to the rise of mul-
tiple serious challenges to designing controllers. The op-
timal control design, as well as the safe control design for 
the feedback state, is discussed separately in the literature 
review. Developing such safe controllers to optimize the 
performance of dynamic systems with uncertainties, pri-
marily resulted from lack of safe optimal controllers with 
uncertainty conditions. 
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1.1 Related Works

The official design for the stabilization of non-linear 
dynamic systems is often obtained by employing the Con-
trol Lyapunov Functions (CLFs). The optimal feedback 
controllers necessary for general non-linear systems can 
be designed by solving Hamilton-Jacobi-Bellman equa-
tions (HJB), which have been done approximately by 
through the use of Galerkin method [1] and neural networks 
method [2-8]. However, due to the lack of robustness and 
computational infeasibility for online performance, the 
open-loop form of calculating these solutions seems prob-
lematic. Consequently, in this paper the optimal control 
of constrained systems equipped with penalty functions in 
the performance function [9]. However, the application of 
these methods is only limited to linear state constraints. 

Today real-time safety in dynamic systems has gained 
large attention, followed by the introduction of the barri-
er functions, through which the risk of the system states 
entering the given non-safety zones can be removed [10-15]. 
Also, control methods using CLF and CBF have been con-
sidered as successful methods to achieve safety-stability 
control. Some researchers have shown that for the perfor-
mance of movement tasks (manipulation and locomotion), 
CLF-based quadratic programs (CLF-QP) with constraints 
can be solved online [16,17]. They have also combined CBFs 
with CLF-QP to effectively for the effective management 
of safety constraints in real time. By the by, an itemized 
information on the system model is expected for every 
one of these CLF-based and CBF-based techniques.

Taylor et al. addressed how a minimization method for 
experimental risk can lead to the uncertainties in CLF and 
CBF constraints [18,19]. Westernbroek et al. have addition-
ally proposed a reinforcement learning-based method to 
learn model uncertainty compensation for the input-output 
linearization control [20]. Learning-based control is also 
obtained in dynamic systems with high uncertainty in 
spite of safety constraints [21,22]. Moreover, probabilistic 
models such as Gaussian process can be used to learn 
about model uncertainties [23,24]. Using these methods, 
the comprehensive investigation of the learned model or 
policy is permitted; however, they can scale inadequately 
with state dimension and involving them in high-ordered 
systems won’t be simple. 

1.2 Contributions and Outline 

Prajna et al. introduced a policy iteration algorithm as a 
way to build the safe optimal controller for a class of cer-
tain nonlinear systems [25]. However, due to the difficulty 
of practically obtaining accurate system information, an 
online training method is presented in this study to replace 

identifying system dynamics with an iterative algorithm 
featured with real data. In this paper, the effect of model 
uncertainty is, also, investigated on CLF and CBF dy-
namic constraints. For each of them, the purpose of the 
RL agent and the policy to be learned will be defined. The 
Sum-of-Square program is utilized to iteratively discover 
an optimal safe control solution. Finally, in order for the 
efficiency of the proposed method to be validated, a simu-
lation example is employed. 

The remaining part of the present paper is organized as 
follows: Section 2 formulates the problem and presents a 
new safe optimal control framework. Section 3 presents 
reinforcement learning for optimal safe control under un-
certain dynamics, and Section 4 provides the numerical 
examples to validate the efficiency of the proposed method.

1.3 Notations

The term 1C  denotes the set of all continuous differ-
ential functions. Then, P denotes the set of all existing 
functions in 1C  that are positive, definite and proper. The 
polynomial ( )p x  is Sum-of-Squares (SOS) (i.e., P( ) SOSp x ∈  
in which PSOS is a set of SOS polynomials, 2

1
( ) ( )m

ip x p x=∑  
where P( ) 1,...,ip x i m∈ =   ) . Function n nK : → Rnn n→ Rn is an extend-
ed class K function and ( )0 0K = . V∇ Alludes to the gradi-
ent of the V function: Rnn n→ Rn.The Li derivative of func-

tion h  with respect to f is defined as ( ) ( )f
hL V x f x
x
∂

=
∂

.  

For any positive integer t1 and t2 where t2≥t1, n̅t1,t2(x) 
is the vector of all distinct monic monomial sets 

2 1

2 1

1
1

m
t t

t m t+ + −   
−   −   

 in R nx∈  with minimum degree of 
1t  

and maximum degree of 2t . Moreover, [ ]
1 2,

R
t t

x  represents 

a set of all polynomials in R nx∈  with degrees less than 
2t  and greater than 1t .

2. Problem Formulation and Details

In this part, we talk about safety, stability and optimi-
zation of the control systems. The initial results of each 
are also mentioned. Then the formulas of the optimal safe 
control design will be performed.

2.1 Optimal Control of Dynamical Systems

Consider the following nonlinear system: 
( ) ( )x f x g x u= +  (1)

In which nx R∈ is the system state vector, mu R∈  is 
the control input vector, n nf : R R→  and n n mg : R R ×→  are 
both locally Lipschitz continuous with ( )0 0f = . We ex-
pect the system as a stabilizable one.

The main goal of standard optimal control design is to 
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find a control policy to minimize the predefined perfor-
mance index over the system trajectories (1) defined as 
follows:

0 0
( , ) ( ( ), ( ))J x u r x t u t dt

∞
= ∫  (2)

In relation (2), ( ) ( ), Tr x u q x u Ru= + , ( )q x  and ( )R x  
can be considered as reward function, positive definite 
function and positive definite matrix, respectively. The 
reward function ( ),  r x u  is defined such that optimizing 
(2) guarantees the achievement of control objectives (e.g., 
minimizing the control effort to achieve the desired tran-
sient response) as well as system stability.

The presence of an optimal stabilizing solution is en-
sured under mild assumptions about the reward function 
and system dynamics [26].

Assumption 1. Considering system (1), there exists a 
Lyapunov function V∈ and a feedback control policy u 
which satisfies the following inequality:

( )L( , ) ( ( ) ( ) ) , 0 R n
f gV u L V x L V x u r x u x= − + − ≥ ∈  (3)

The system stability conditions are guaranteed by this 
assumption, implying that the cost 0 0( , ),nx R J x u∈∀  is Fi-
nite.

Theorem 1. Theorem 10.1.2 [26] considers system (1) 
with performance function (2), there must be a positive 
semi-definite function ( )* 1V x C∈  satisfying the Hamil-
ton-Jacobi-Belman (HJB) equation as follows:

( )*H 0V =

In which

11H( )= ( ) ( ) ( ) ( )( ( )) 0,    (0) 0
4

T
f g gV q x L V x L V x R x L V x V−+ − = =  (4)

Therefore, the following feedback control 

1 *1*( ) ( )( ) (x)
2

T
gu x R x L V−=  (5)

Optimizes the performance index (2) and results in the 
achievement of asymptotic stability of the equilibrium 

  0x = . Also, the optimal value function is given as fol-
lows:

( ) ( ) ( )*
0 0 0

*
0min , , , n

u
V x J x u J x u x= = ∀ ∈

0 R nx∀ ∈  (6)

Assumption 1 appears that it is vital to solve the HJB 
Equation (4) to find an optimal control solution.

Assumption 2: There are proper mappings 0 : R RnV →  
and u : R Rn m→ , such that [ ]0 2,2

R P
r

V x∈ ∩  and L( )0 ,V u  are 
SOS.

2.2 About Control Barrier Functions and Its 
Relation with Safe Control of Dynamical Systems 

In a safety-critical system, it is important to prevent 

its state starting from any initial conditions in X0 set to 
enter some special unsafe regions like Xuu ∈ X. To design a 
safe controller, control barrier functions (CBF), inspired 
by Control Lyapunov Function (CLF), can be employed. 
Now Equation (1) and the function : nh R R→  can be con-
sidered as follows:

( )
( )

0x 0, X ,

x 0, Xu

h x

h x

≥ ∀ ∈

< ∀ ∈
 (7)

The following function is also defined as:

( )L {x X | x 0}h= ∈ ≥  (8)

Having ZCBF ( ) ,h x  the admissible control space 
( ) S x  is defined as follows:

( ) ( ) ( ) ( )( ){ }| 0 ,f g bh h XS x u U L x L x u K h x x= ∈ + + ≥ ∈  (9)

The following theorem demonstrates the way a control-
ler is designed using the ZCBF concept to ensure that the 
forward invariance of the safe set and system stability.

Theorem 2. For L nR⊂  given in (8) and a ZCBF de-
fined by h in (9), each controller ( )u S x∈ for the system (1) 
presents a safe set L forward invariant. 

The barrier functions for exponential controls are intro-
duced. They are improved in a work by Ams et al. [27,28]. 

This translates to the thr  time-derivative of ( )h x  
( ) ( ) ( ) ( )1.r r r

f g fh x u L h x L L h x u−= +

The authors expanded the CBFs having an arbitrary rel-
ative degree 1r ≥  to ( )h x  functions. To do so, we define 

( ) ( ) ( ) ( )( )2 1, , ,..., r
f f fcol h x L h x L h x L h xz −= . As well, we  

assume that u can be selected so that ( ) ( )1r r
f g fL h x L L h x u µ−+ = 

( ) ( )1r r
f g fL h x L L h x u µ−+ =  for U µµ ∈ ⊂ R which is a slack input. We have:

( ) ( )
( ) ( )

b b

b

z x f z x g
h x p z x

µ= +
=



Where, , ,b b bf g p  are,

[ ]

0 1 0 0 0
0 0 1 0 0

, , 1 0 0
0 0 0 1 0
0 0 0 0 1

b b bf g p

   
   
   
   = = =
   
   
      





     





If a set L nR⊂  is defined as the super level set for an 
r-times functions which are continuously differentiable, 
then h is considered as an exponential control barrier 
function (ECBF) for the control system (1). Therefore, the 
acceptable space SE(x) (if R rKα ∈ exists) is defined as 
follows,
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[ ( )] 0supSE A K z x
u U

α= + ≥
∈

Where, 1( ) ( )r r
f g fA L h x L L h x u−= +

As Assumption 3, the admissible control space S (x) 
can be considered not empty.

3. Reinforcement Learning for Safe Optimal 
Control under Uncertain Dynamics

In this part, the potential inconformity between the 
model and the plant elements is examined, while there 
is paucity of accurate knowledge of the true plant vector 
fields g , f . Moreover, its effects on the dynamics of CLF 
and CBF will be examined.

Allow the substantial model utilized in the controller to 
be characterized as follows:

( ) ( )x x xf g u= +




  (10)

Assume that the vectors 
 

n n n n,: R R : R Rf g→ →  are 
Lipschitz continuous and Where, 

Problem 1. (Safe Optimal Control under uncertainty 
dynamics): Find a controller that solves the following 
equation:

( )

* 2
δu arg min Vdx+k δ

st. H

0?(

V

)

δ

Â K z xα

Ω

+

=

≤

≥

∫
 (11)

In relation (11), Ω  is an area in which the system per-
formance is expected to be improved,  is the design 
parameter that acts as a trade-off between the system ag-
gressiveness toward performance and safety, and δ  is the 
Stability relaxation factor. Note that δ can be defined as 
the Aspiration level for a performance that shows the level 
of performance sacrificed as a result of failure in satisfy-
ing safety and performance. However, this parameter is 
minimized to achieve the highest possible performance.

First, the relaxed optimal control problem for system (1) 
with performance (2) is examined as follows:

( )
( )

min

0
V

V x dx

H V
V

Ω

≤

∈

∫

P

 (12)

In which )(H V  is defined by Equation (4) and  
is an ideal compact set containing the origin [29]. Problem 
1 actually solves a relaxed version of HJB (4) in which the 
HJB equation is relaxed with the HJB inequality. Ames 
et al. have shown that the solution of problem 1 is unique 
and if *V  is a solution for (9), then

1 *1( ) ( )( ) (x)
2

opt T
gu x R x L V−= −  (13)

The stability of the system is guaranteed and *V  plays 
the role of an upper bound or an overestimate for the ac-
tual cost. The superscript opt  is used here to indicate that 

optu  is a performance-oriented controller. However, with 
a safe control policy ui, Vi and δi are determined to tackle 
the following optimization subject.

This control policy doesn’t confirm system safety.

( )

2

1

V ,

0

min V dx +k

( , ) ,

i i

i
i

i i i i i i
g

i

n
f i

i

V u V

V V

L L V u r x u x

δ
δ

δ

δ
−

Ω

= − − − ≥

−

∀ ∈

≥

−

∫
 ( )L( , ) , Ri i i i i i n

f g iV u L V L V u r x u xδ= − − − − ≥ ∀ ∈  (14)

In SOS framework, this optimization problem is de-
fined as follows:

1

2

V ,
min V dx +k

( , ) is SOS

is SOS

i i

i
ih

i i
i

i i

nV u

V

x

V

δδ

δ
Ω

−

+ ∀ ∈

−

∫
 L( , ) is SOS Ri i n

iV u xδ+ ∀ ∈

Based on Assumption 1, there is a safe control policy u. 
Now we can write the control policy as opt safeu u u= +  in 

which 1 *1 ( )( ) (x)
2

opt T
gu R x L V−=  is a part of the controller that 

is applied to optimize performance regardless of safety 
and safeu  has been added to optu  in order to guarantee 
safety.

3.1 Deriving optu  under Uncertainty Situation

Lemma 1: Consider system (10). Suppose that u  is a 
global safe control policy and 1iV − ∈P is also existed. Then 
the system (11) is feed forward.

Proof: According to the assumptions 1 and 2, 1iV − ∈P. 
Then by sum of squares, we conclude that

( )1

2 2 2 2

1

2
T TT opt safe opt opt opt safe

i

opt safe safe safe safe
iR R R R

V f gu gu u Ru u Ru

u u u u u V

−

−

+ + ≤ − −

= − + + ≤ ≤ +
 (15)

According to Result 2.11 [24], system (11) is feed for-
ward:

There is a fixed matrix tm n
iW ×∈  in which 1t

m t
m

t
 

= − 
 

+
 

such that ( )1,t
opt

i n xu W=


. It is also assumed that there is 

a fixed vector R tnp∈  in which 1t

m t
m m

t
 

= − − 
 

+
 so that 

( )2,2
T

tV p xn=


. Then, the following terms can be defined 
along with the solutions of the system (11):
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( ) ( )
( ) ( ) ( )1

( ( ) ( ) ) ( )

, L , ( )

, L ,

opt safe
f g g

opt opt safe
g

Topt opt T safe

V L V x L V x u L V x u

r x u V u L V x u

r x u V u R g V Ru−

= + +

= − − +

= − − + ∇



Note that two terms L( ), optV u  and 1 TR g V− ∇ , depend 
on f

 and


g . Since there is uncertainty in these terms, we 
should solve them without recognizing f

  and 


g . 
For a similar abovementioned pair ( ), optV u , we can 

find a fixed vector 2R tn
pb ∈ , in which 2

2
1

2tm
n t

m
t
+ 

= − − 
 

 

and R tm n
pW ×∈  is a fixed matrix, such that

L( ) ( )2,2, opt T
tpV u b xn=



  (16)

( )1
1,

1
2

T
tpR g V W xn−− ∇ =



 (17)

Therefore, ( )L , optV u  and 1 TR g V− ∇  are calculated to 
find pb  and pW  By substituting Equations (16) and (17) in 
Equation (15), we have:

2,2 1,( , ) ( ) 2 ( )
Topt T T

t tp pV r x u b n x n x W= − − −
 

  (18)

By integrating (18) into the time interval [t, t + δt]:

( )( ) ( )( )
( ) ( ) ( )( )

2,2 2,2

2,2 1,, 2

T
t t

t t TT T safe
t di p pt

p x t x t t

r x u b x n x W Ru dt

n n

n
δ

δ
+

 − + = 

+ +∫


 

  (19)

Now, pb  and pW  can be calculated without having ac-
curate information about f

  and 


g  by using real online 
data.

1) Initial value:
Find the pair ( )0 ,V u  that satisfies Assumption 1. Con-

sider a fixed vector 0p  such that ( )0 0 2,2
T

tV p m x=


, and 1i = .
2) Online data collection:
First, apply opt safeu u u= +  to the system and then find 

an optimal solution ( )1,i ip W +  for the following SOS pro-
gram.

( )

( )
( ) ( )

2
2,2

,

2,2

2,21

min
p

T
t ip W

T
tp

T
ti i

n x dx p K

b n x isSOS

p p n x isSOS

δδΩ

−

+

−

∫






 (20)

So, we have ( )2,2
i T

tiV p xn=


. Then, we can derive the val-

ue of ( )1,
opt

tp n xu W=


 and proceed to step 2) where 1i i← + .

3.2 Reinforcement Learning for CBFs

The control rule for the computed input-output lineari-
zation has the following form based on the f

  and 


g :

( ) ( )   ( )( ) 1*
x,μ x L L x μg fu u h

−
= +

 

 (21)

In which μ is also an auxiliary input.
Under the uncertainty situation, it can be written:

 (22)

Where α and β are

Terms obtained from the mismatch existing between 
model and plant. It should also be noted that if α, β are 
zero, we have the same equation as (22). 

Using an estimator made of A  that in the form 


A A α βµ= + + .
RL’s goal is to learn ,α β  policies so that A  is close to 

A  as much as possible. Thereby, using RL, the uncertain-
ty terms for CBF can be estimated. Therefore, there is a 
need for designing the reward function to minimize policy 
estimation errors. Therefore, it can be defined as follows:

ˆl A A= −

The RL factor embraces a policy that considers the un-
certainty terms in CBF, which are summed with the SOS 
constraints as they are extracted from the nominal model, 
resulting in accurate estimates. One can consider the focal 
RL problem with the considered reward for a given state 
x  as the summation of the negative objective functions 
plus an arbitrary penalty (s) selected by the user 

,
1

( , )
b

i i
i

rl x w l sθθ
=

= − −∑  (23)

Where b is the number of CBFs. One can solve RL, us-
ing common algorithms.

4. Applications

The reason of this part is to demonstrate that our pro-
posed system can make possible the critical safe control, 
even in the presence of uncertain conditions. Two simu-
lation examples are presented in this section in order to 
approve the efficiency of the proposed model.

Example 1:
Consider the car quarter suspension model shown in 

Figure 1. Its non-linear dynamic is defined as follows. 
However, it is worth mentioning that while the training 
experiences or the simulations are operating, the car quar-
ter suspension model is assumed to be under the proper 
dynamics (given its uncertainties) [30].

( ) ( ) ( )
1 2

3
2 1 3 1 3 2 4

3 4

1
n

b
a a

x x

x k cx x k x x x x u

x x
M

=

 = − − + − − + 

=

+







( ) ( ) ( )3
4 1 3 1 3 2 4 3

1
n t

us
a ax k x x k x x x x k x u

M
c = − + − − + − +

 (24)
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Where, 1x , 2x , and bM  are the car position, velocity, 
and its mass, respectively. 3x , 4x , and usM  are also the 
wheel position, velocity, and their total mass. tK , aK , nK ,  
and aC  shows the tire hardness, the system of linear pen-
dency, the non-linear suspension hardness, and the damp-
ing rate of the pendency system, respectively.

Figure 1. Quarter car model

The uncertainty for the significant model in this experi-
ment is introduced by weighing all the components with a 
weighing coefficient of 2. During the training (process) of 
the RL agent, we only know the nominal model. 

Let, [ ]b 250,350M ∈ , [ ]55,65usM ∈ , [ ]450,550ac ∈ , [ ]7500,8500ak ∈ 
[ ]7500,8500ak ∈ ,  [ ]750,850nk ∈ ,  [ ]tk 90000,10000∈ .  T h e n ,  
it can be easily observed that the system establish-
ment has been done in a global level asymptotically, 
with an absence of input control. The purpose of the 
proposed method is to design an active suspension 
control system which lessens the performance index, 
while retains the global asymptote stability, simultane-
ously. As well, reducing the disorder effects in the set 

 can im-
prove the system performance. 

The reinforcement learning factor is taught using a 
Deep Deterministic Policy Gradient algorithm (DDPG, 
Silver et al. [31]). The 4 observed state variables, and the 
CBF component of the simulation constitute the inputs for 
the actor neural network. The output dimension is equal to 
which corresponds to 4 1 B

θα× , and 1 1 B
θβ× .

There exist hidden layers as wide as 200 and 300 in 
both the actor and the critic neural networks in example 1. 
This agent is trained by simulation in the interval between 

0t = , and 80t = .
A time step of   1Ts =  is employed (in this regard). 

The simulations have been carried out on a 6-core laptop 
with Intel Core™ i7-9400 (2.7 GHz) processor and 4 GB 
RAM.

Use SOSTOOLS to obtain an initial cost function, V0 
for the simulated system having non-determined parame-
ters [32]. 

Then, we apply the proposed method in which u1=0. 
The primary condition has been selected randomly. To do 

the training, we apply the noise from 0t = to 80t =  till the 
convergence is obtained after 8 repetitions. 

The obtained control policy is as follows,
3 2 2 2 2

8 1 1 2 1 3 1 3 4 1 1 2 1 2 3
2 2 8

1 2 4 1 3 1 4 1 4
3 2 2 2

1 2 2 3 2

2
1

4 2 3 2 3

2 1 2 3

4 2

1.76 5.33 7.7 3.22 12.1 4.43 .87

0.594 4.61 6.3 6.19 0.174 2.81 10

18.1 0.73 0.006 2.26 4.07 1.71 4.5

0

5

u x x x x x x x x x x x x x x

x x x x x x x x x x x x x

x x x x x x x x

x

x x x x

= − − + + − +

+ − − − − ×

− − + + − + −

+

−

3
2 2 2 2

2 4 2 4 3 4 3 3 4
8 2 3 3 2

3 4 3 3 3 4 4 4

1.35 4.94 2.8 4.47 0.241

2.62 10 11.1 .62 6.39 0.33 4.61 11 01 .4

x

x x x x x x x x x

x x x x x x x x

− − + +

+ × + +++−+

−
 (25)

To test the trained controller, we choose the road disor-
der as a single-impact as follows,

0.003(2 cos(2 )) 60
0

t t
otherwise

π



− =
 (26)

In addition, as an indication of a car carrying a load, an 
overweight of 260 kg is applied to the vehicle assembly.

So that, the departure of position is relative to the ori-
gin. The proposed control policy performance is compared 
to the primary system performance without any control, as 
shown in Figure 2. In Figure 3, these two performances of 
the costs are compared by the constraint wheel position, 
wheel velocity when they are zero. As can be seen, V8 has 
been reduced significantly compared to V0.

Figure 2. Comparison of performance car position and car 
velocity

Figure 3. Comparison of performance wheel position and 
wheel velocity
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Figure 4. Comparison of learned value functions

Example 2:
Now consider the following system equations:

2 2
1 11 1 2 1 2

2 2 11 2

0
2

x x x x x x
u

x x x
α

α α
 + −   

= +    −    





 (27)

In which [ ]1 2, 0.25,1α α ∈  are uncertain parameters, and 
[ ]1 2,  x x x=  and u  are mode and system control, respec-

tively. The unsafe space was coded with a polynomial 
inequality { }2 | ( ) 0, 1, 2,3u iX x R bf x i= ∈ < =  

With the following details:
2 2

1 1 2
2 2

2 1 2
2 2

3 1 2

0.5 ( 1) ( 2) 0

0.5 ( 1.5) ( 1.5) 0

0.5 ( 1.5) ( 1) 0

bf x x
bf x x
bf x x

= − + + + + <

= − + + + − <

= − + − + − <

Using SOS strategies, the system (27) can stabilize, at 
the source level globally and asymptotically by the fol-
lowing robust control policy [33].

1
1 21

1 1
1 22

1.192 3.568
1.7 2.905

opt x xu
u

x xu
+   

= =   −  
 (28)

However, the optimality of the closed-loop system has 
not been fully addressed.

The primary goal of the control is to find more im-
proved safeguard policies under uncertainty using the 
iterative safeguard policy algorithm. Then, with the help 
of solving the feasibility study and SOS-TOOLS, we will 
reach Equation (29) [34]:

( ) [ ]1 1 2L , , , 0.25,1optV u isSOS α α∀ ∈  (29)

The V function is obtained as follows:
2 2 3 2

1 1 1 2 2 1 1 2
2 4 3 2 2 4

1 2 1 1 2 1 2 2

V 7.6626x 4.264x x 6.5588x 0.1142x 1.7303x x

1.0845x x 3.4848x 0.361x x 4.6522x x 1.9459x

= − + − +

− − + +

If we put α1=0.5 and α2=0.5 the initial condition is arbi-
trarily set to x1(0)=1 and x2(0)=-1.

6 3 2 2
1 1 1 2 1 1 2

3
1 2 2

6 3 2 2 2
2 1 1 2 1 1 2

3 2
1 2 1 2 2 2

0.04 0.67 0.0747 0.0469

0.986 0.067 2.698

u 0.067x 0.09x x 0.201x 0.025x x

0.187x x 1.436x 0.1396x 0.345x 2.27x

u x x x x x x
x x x

= − − − + −

− −

= − − − + −

− − − −

 (30)

The V  function is as follows: 
2 2 3

6 1 1 2 2 1
2 2 3 3
1 2 1 2 2 1 2
2 2 3 4
1 2 1 2 2

1.4878 0.8709 4.4963 0.0131

0.2491 0.0782 0.0639 0.0012

0.0111 0.0123 0.0314

V x x x x x

x x x x x x x
x x x x x

= + + + +

− + + +

− +

The indefinite cost function and the initial cost function 
are compared in Figure 5.

Figure 5. Comparison of learned value functions

Both operator and critical neural networks in example 
2 have hidden layers with a width of 100 and 200. The 
training environment using the learning environment was 
the same as the previous example, the proposed method 
was learning took 2 seconds per episode. Control policy 
Obtained after 5 episodes.

In addition, the safe set is equal to:

{ }2R | ( ) 0x h x= ∈ ≥

In which:
2 2
1 1 2 1 2 2( ) 0.452 0.0023 0.0382 0.014 0.0067 0.0077h x x x x x x x= − − − − −  (31)

Note that it is necessary for the safe set to be a mem-
ber of the complementary set of the unsafe set, as well as 
being invariable in a way that it never leaves the set in the 
future. The safe set is obtained using CBF ( ) h x . Be at-
tention that barrier certificate is bounded to a second-order 
polynomial. In Figure 6, the estimated safe sets for both 
the initial control policy and the optimal control policy are 
shown.
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Figure 6. Safe area estimation by the proposed optimal 
safe controller despite the uncertainty

5. Conclusions

A safe optimization is proposed for the control of dy-
namics systems under model uncertainty. In order for the 
performance and safety to be guaranteed, a Hamilton-Jac-
obi-Bellman (HJB) inequality replaces the HJB equality; 
besides, a safe policy iteration algorithm is presented 
certifying the safety of the improved policy and finding a 
value function corresponding to it. Also, the RL factor was 
also presented in the proposed method to reduce model 
uncertainty. The effectiveness of the proposed method is 
illustrated through two simulation examples. 
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