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The k-Nearest Neighbor method is one of the most popular techniques 
for both classification and regression purposes. Because of its operation, 
the application of this classification may be limited to problems with a 
certain number of instances, particularly, when run time is a consideration. 
However, the classification of large amounts of data has become a 
fundamental task in many real-world applications. It is logical to scale the 
k-Nearest Neighbor method to large scale datasets. This paper proposes a 
new k-Nearest Neighbor classification method (KNN-CCL) which uses a 
parallel centroid-based and hierarchical clustering algorithm to separate 
the sample of training dataset into multiple parts. The introduced clustering 
algorithm uses four stages of successive refinements and generates high 
quality clusters. The k-Nearest Neighbor approach subsequently makes 
use of them to predict the test datasets. Finally, sets of experiments are 
conducted on the UCI datasets. The experimental results confirm that the 
proposed k-Nearest Neighbor classification method performs well with 
regard to classification accuracy and performance.
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1. Introduction

Due to developments in technology, information gath-
ering has become an ongoing and relatively economical 
activity. That has led to such an exponential increase in 
the available data rate. Social networks, sensor networks, 
mobile phones, and tablets are examples of applications 
that generate tons of data every day [1-3]. The large volume 
of data can be useful if the correct knowledge extraction 
methods could leverage it. There is a major challenge for 

researchers and industry that standard machine learning 
methods can not address the volume, diversity, and com-
plexity of the vast data collection [4]. Hence, the current 
learning methods need to be improved and scaled to lever-
age such a volume of data.

The k-Nearest Neighbor method is one of the most 
popular techniques for both classification and regression 
purposes [5]. Because of the simplicity, clarity, and high 
performance of the k-Nearest Neighbor algorithm, it is one 
of the ten most popular data mining methods [6]. It is also a 
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non- parametric lazy learning technique. Non-parametric 
implies that the k-Nearest Neighbor approach makes no 
assumptions about data distribution. Lazy learning rep-
resents that this technique prevents model generation be-
fore a query is generated, as opposed to other methods of 
creating a model based on the training data. Therefore, the 
method requires the storage of all the training data. Next, 
it selects the k nearest training data for each test data item. 
Then, it measures the distance or similarity of all training 
data and every element of test data. This pairwise calcu-
lation must be repeated against the entire training data for 
all of the test data items [7,8]. The approach is impractical 
in big data. Hence, a parallel and distributed computing 
environment must be used to produce results in a reason-
able period of time.

Recent programming models provide ideal environ-
ments to cope with these problems by providing all the 
computational and memory resources we need. Ma-
pReduce framework [9,10] is a programming model for dis-
tributed computations and large-scale data processing on 
clusters. Its architecture offers the appropriate scalability 
and fault tolerance. Hadoop [11] is one of the first imple-
mentations of this framework and is also an open-source 
implementation. This is an effective method for handling 
data-intensive applications based on data locality [12,13]. 
This technology is commonly used in diverse fields such 
as web search, log analysis and data mining. This, with 
its unquestionable developments, has some limits. One of 
the major disadvantages of Hadoop is the retrieval of data 
from a distributed file system. Therefore, it is inefficient 
for applications like iterative algorithms or multi-step of 
data. 

Spark [14] was designed to overcome the limitations of 
the Hadoop. It is also an open-source of the MapReduce 
framework providing in-memory computation. Spark 
introduces Resilient Distributed Datasets (RDDs) that 
are read-only datasets with data items distributed over 
the computing nodes. RDDs are creating an appropriate 
kind of distributed shared memory to implement iterative 
algorithms. This in-memory computation results in a sig-
nificant improvement in efficiency. The most significant 
use of in-memory data is in machine learning scenarios [15]. 
Spark has been highlighted for its ease of use as an effec-
tive tool and has been used in many scenarios [16-22].

This paper proposes a new k-Nearest Neighbor classi-
fication method which uses a parallel centroid-based and 
hierarchical clustering algorithm (KNN-CCL) to reduce 
and obtain the appropriate training dataset. This method 
is a two-phases approach based on MapReduce, imple-
mented within the Spark framework. In the first phase, a 
parallel centroid-based clustering algorithm has been used 

to separate the sample of the training dataset into multiple 
clusters. In the second phase, the cluster nearest to each 
test data item was chosen as the training dataset. Then, 
for each test data item, the k-Nearest Neighbor classifi-
cation was applied to predict this in the training dataset. 
The experimental results on real datasets confirm that 
the proposed k-Nearest Neighbor classification method 
performs well with regard to classification accuracy and 
performance compared with the conventional classifica-
tion k-Nearest Neighbor and similar previous method. The 
main contributions of this paper can be summarized as 
follows:
● A new model is proposed to improve k-Nearest Neigh-

bor classification method by using a two-phases ap-
proach based on MapReduce, implemented within the 
Spark framework.

● A parallel centroid-based and hierarchical clustering 
algorithm is applied to separate the sample of training 
dataset into multiple parts.

● The appropriate cluster for each test data item is deter-
mined as new training dataset to reduce the calculation 
of the k-Nearest Neighbor approach.

● Sets of experiments are conducted on the UCI datasets. 
The experimental results confirm that the proposed 
k-Nearest Neighbor classification method performs 
well in terms of classification accuracy and perfor-
mance.
The rest of the paper is structured according to this. 

The related works are briefly reviewed in Section 2. Sec-
tion 3 deals with the overall system and proposed work-
flow process for the k-Nearest Neighbor classification. 
The training process is discussed briefly in Section 4 that 
consists of the clustering method and its parallelization. 
Then, Section 5 explains the testing process. The experi-
mental results are summarized in Section 6. Finally, Sec-
tion 7 concludes the paper. 

2. Related Work

Research into the Nearest Neighbor technique has at-
tracted considerable attention because of its simplicity and 
effectiveness since it was proposed in 1967 [23]. This meth-
od has been widely used in various applications including 
recommendation systems, databases, pattern recognition, 
data compression, DNA sequencing, etc. 

The Nearest Neighbor search is an optimization prob-
lem to find a minimum distance or maximum similarity 
instance set [5,8]. A famous generation of Nearest Neighbor 
searches is k-Nearest Neighbor. The search for k-Nearest 
Neighbor finds k instances that minimize distance func-
tion. This approach has two different implementations: ex-
act k-Nearest Neighbor search, and approximate k-Nearest 
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Neighbor search. The former performs a pair-wise com-
parison in all instances. It is obvious that the k-Nearest 
Neighbor has high computational cost. Although, there are 
some techniques for indexing the feature space and reduc-
ing computational complexity. The second one does not 
strive to implement a precise k-Nearest Neighbor. It uses 
subsets of the training data to minimize calculations [24,25]. 

By applying sophisticated data structures and pruning 
techniques, the traditional k-Nearest Neighbor methods in 
big data have attempted to solve the problem in a single 
machine [26-30]. However, we are just interested in distributed 
and parallel approaches. Triguero et al. proposed an evolu-
tionary method for classification based on sampling [31]. It 
uses two phases of MapReduce: In the first phase, after 
sampling, a decision tree is established in each map. The 
test set is classified into the second phase by applying the 
set of trees. This uses a partial k-Nearest Neighbor over 
the subsets of training data. Du et al. described a cluster-
ing of density peaks dependent on k-Nearest Neighbor for 
large datasets [32]. This represents the key component anal-
ysis for processing large-dimensional data. This method is 
sensitive to the parameters of density estimation.

Deng et al. suggested a novel approach by using two 
different steps to cluster big data [33]. In the first step, 
k-means clustering is performed to separate the entire 
training dataset. Thus, this step creates k clusters and clus-
ter centers. In the second step, the nearest cluster center is 
found for each test data item and the corresponding clus-
ter is used as the training dataset for it. Then, a k-Nearest 
Neighbor is applied for the classification of the test data. 
Although distributed solutions are not included in this ap-
proach, it works relatively well in terms of accuracy and 
efficiency. 

There are several studies conducting k-Nearest Neigh-
bor join queries in the MapReduce [34,35]. The method 
described by Moutafis et al. applies five phases of the 
MapReduce [34]. The data space is subdivided into a grid 
of cells of equal size. The number of training data is deter-
mined per cell at first phase. In the second phase, an initial 
k-Nearest Neighbor list is generated for each test data, 
based on the training data in the same cell. In the third 
phase, the lists from the previous phase are verified by 
collecting more training data from neighboring cells. For 
each item of test data, plane-sweep technique is applied 
when required. The lists of k-Nearest Neighbor are joined 
into the final lists in the fourth phase. In the final phase, 
the classification of each test data item is performed based 
on the class of its neighbors. In this approach, load bal-
ancing is improved by the implementation of an adaptive 
partitioning scheme based on Quadtrees. 

Chatzimilioudis et al. have introduced a batch-oriented 

algorithm called Spitfire [36]. This algorithm has its own 
distributed procedure and does not follow a MapReduce 
model. It employs three steps: split, refine, and replicate. 
At first, the data space is partitioned into disjoint sub-are-
as. Then, at each split, the k-Nearest Neighbors are calcu-
lated and replicated in splits. The final result is determined 
in the last step. This algorithm is implemented using the 
distributed file system Tachyon and Parallel Java Library 
for MPI.

Sun et al. proposed a method to classify facial images 
using Hadoop and k-Nearest Neighbor [37]. It splits the 
training dataset into several disjoint parts using the Map 
phase. This method uses three MapReduce processes for 
scanning the images, extracting facial features, and rec-
ognition for every single item of test data. This method 
conducts the MapReduce iteratively for each test data 
item resulting in very time-consuming operations. The ex-
act implementation of the k-Nearest Neighbor algorithm 
is shown by Maillo et al. [38]. It uses a MapReduce process 
to classify the test dataset against the training dataset. The 
training dataset is divided into a certain number of disjoint 
partitions during the Map phase. The whole test dataset 
is sent to all maps. Hence, the test dataset is read line by 
line from the HDFS. The distance of each test data item 
is measured against the training dataset in each map. The 
class label and distance of k nearest neighbors are saved 
for each test data item. Each map sends its result to a sin-
gle reduce task when its processing is complete. Then, the 
reduce task determines final neighbors for every test data 
item from the lists obtained during the map phase. Maillo 
et al. extended this method by the use of multiple reducers 
and in-memory solutions [39]. These methods have some 
limitations: first, these techniques add an enormous num-
ber of parameters. Second, the test data are inefficiently 
iterated on the driver. However, this paper introduces an 
approximate k-Nearest Neighbor algorithm, it has rela-
tively good classification accuracy. In addition, the pro-
posed method reduces the time complexity of the k-Nearest 
Neighbor classification compared to other distributed 
k-Nearest Neighbor methods.

3. System Overview

k-Nearest Neighbor algorithm calculates the distance 
in the training dataset between each test data item and 
all training data items and returns k nearest items. Linear 
time complexity is required to find the exact k nearest 
neighbors. Let n be the number of the training dataset 
and d be the number of dimensions, O(nd) is the compu-
tational complexity for each test item [40]. Thus, it is very 
expensive for big data. This paper presents a new training 
process for the k-Nearest Neighbor classification. The 
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proposed method does not perform an exact k-Nearest 
Neighbor but it obtains high accuracy in classification. 

Figure 1 shows proposed workflow process for k-Near-
est Neighbor classification. Before the test process, a 
proposed clustering method will partition a sample of the 
training dataset into several clusters. The training data are 
more similar in each cluster than in other clusters. Then, 
the cluster centers are determined for all of the clusters 
obtained. The next step shall be to select the nearest 
cluster center to each test item. For each test item, its 
corresponding cluster is applied as a new training dataset. 
k-Nearest Neighbor classification is used to predict class 
of test items. 

Figure 1. The proposed workflow process for the k-Near-
est Neighbor classification.

The proposed algorithm consists of two main process-
es: training and testing. The training process is designed 
to partition a sample of the training dataset into appropri-
ate clusters. A proper method of clustering is required for 
this process. The testing process is organized to find the 
cluster that is nearest to each test item. Then, the selected 
cluster is used as the training dataset to classify the test 
item. The k-Nearest Neighbor algorithm is applied in this 
process. 

4. Training Process

Cluster analysis is one of the fundamental and widely 
used knowledge-discovery techniques. Clustering algo-
rithms can be used in various applications for data mining 
such as recommendation systems, data compression, and 
data preprocessing. As described earlier, clustering is the 
task of grouping a set of data in such a way that data in 
the same group are more similar to each other than data 
in other groups. In other words, data have high similarity 
within a cluster and low similarity between clusters. An 
example of the clustering is shown in Figure 2.

The most common methods of clustering can be di-

vided into four main categories: density-based clustering, 
grid-based clustering, partition-based clustering, and hier-
archical clustering. The density-based clustering methods 
are unsupervised learning techniques [41,42]. Their principal 
idea is that a cluster is determined by an adjacent area of 
high data density. Low-density areas are the dividing parts 
and data in those parts are considered outliers. 

The second category of clustering algorithms is the 
grid-based clustering method [43,44]. A set of grid cells is 
defined within data space. Then, each data item is allocat-
ed to a suitable grid cell. The density of each cell shall be 
calculated in the next step. In the end, the adjacent groups 
of dense cells establish clusters.

The partition-based clustering methods establish ini-
tial partitions of a dataset into a set of clusters of a given 
number [45]. Then, they iterate refinements to maximize 
intra-cluster similarity and inter-cluster dissimilarity. The 
partition-based clustering approach is also called objec-
tive function clustering. The explanation for this is that a 
certain objective function is minimized. For instance, the 
k-means algorithm [46] minimizes the mean square error of 
each data item in a cluster as regards its cluster centroid. 
This method is simple, fast, and effective. It is widely 
used in practical applications. However, it depends on se-
lecting the k initial points.

Figure 2. An example of clustering.

The hierarchical clustering algorithms [47] form a hi-
erarchy for clusters. They have two strategies for data 
decomposition: agglomerative and divisive methods. An 
agglomerative method is a bottom-up approach. At first, 
every item in the data is in a cluster. Then, an appropri-
ate criterion merges pairs of clusters as one. A divisive 
method is a top-down approach. First, all items in the 
data are in one cluster. Next, the cluster is separated until 
each item of the data is a separate cluster. These methods 
reflect the proper accuracy of clustering. For instance, 
BIRCH [48] is an accurate method that does not rely on ini-
tial parameters for its results and can not be influenced by 
outliers. However, it is not as fast as the k-means method. 
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The hierarchical clustering methods lose performance and 
scalability, as they try to form clusters of high quality.

However all studies define unsupervised learning as 
the most important clustering feature, all major methods 
require some user information. For instance, the k-means 
method requires the number of clusters to be obtained and 
the hierarchical clustering methods usually need to get 
the termination condition. A new clustering using a bina-
ry splitting method is proposed by Mazzeo et al., called 
CLUBS+, to resolve this major limitation [49]. It is a cen-
troid-based and hierarchical clustering method profiting 
from the combination of divisive and agglomerative algo-
rithms. First, Masciari et al. demonstrated the idea of divi-
sive and agglomerative corporate behavior [50], and then its 
functionality defined [51]. CLUBS+ has improved its prede-
cessor approach with two refinements. It surpasses the de-
tection of outliers for the recognition of high-density out-
liers from low-density clusters areas. It also creates ideal 
ellipsoid clusters around the centroids. Lanni et al. repre-
sented a parallel version of CLUBS+ called CLUBS-p [52].  
It scales linearly with respect to dataset size. These char-
acteristics make it a very powerful algorithm for cluster-
ing large quantities of data. Because of the listed features, 
this paper uses a parallel version of CLUBS+ to cluster the 
training dataset.

4.1 Clustering Using Binary Splitting

CLUBS+ is introduced as a parameter-free clustering 
algorithm that uses the binary splitting to partition data 
space. It is also a centroid-based and fast hierarchical 
clustering algorithm collaborating with the advantages of 
the divisive and agglomerative techniques. This algorithm 
consists of four phases: (1) divisive (2) intermediate re-
finement (3) agglomerative and (4) final refinement. The 
input dataset is split into several rectangular blocks by a 
divisive algorithm in the first phase. Then, a refinement 
process is performed on these blocks. That leads to the 
formation of new clusters of points. Some points are intro-
duced as outliers and classified into one cluster. It uses an 
agglomerative algorithm in the third phase to merge some 
clusters into one cluster. Finally, clusters from the preced-
ing phase and outliers from the second phase are refined 
and the final clusters and final set of outliers are obtained 
in this phase. Figure 3 represents the CLUBS+ algorithm 
operations. 

Figure 3. The four phases of the CLUBS+ algorithm.

4.1.1 Problem Definition

By default, a dataset D={p1, p2, ..., pn} is considered 
where pi is a d-dimensional point. The aim is to obtain a 
cluster set CS={C1, C2, ..., Ck} for the points in D such that 
points in the same cluster are the most similar, and points 
in the different clusters are the least similar. It is notable 
that each point pi is assigned only one cluster. In this pa-
per, the Euclidean distance will be used as a measure of 
similarity between pairs of points. It means that the lower 
distance between pairs of points represents the greater 
similarity. 

Assume p  D is a d-dimensional point and pi is indicat-
ing its i-th coordinate. The Euclidean distance of point p 
to point q is given in Equation (1):

  (1)

The following defines several concepts and analytical 
characteristics that will be used in the CLUBS+ algorithm. 

Suppose that C ={p1, p2, ..., pm} is a common cluster 
that includes m d-dimensional points. Let pij denotes j-th 
coordinate of pi. The point  is the 
centroid point of C such that  is the average of the j-th 
coordinates of all points in C. The formula  is given in 
Equation (2): 

  (2)

For this algorithm, a further measurement called WCSS 
(Within Cluster Sum of Squares) is used. For each cluster 
the WCSS is defined as follows: 

 (3)

This measure can be determined effectively using some 
computed aggregate information for each cluster. 
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Theorem 1

Assume C is an individual cluster with a set of m d-di-
mensional points. Then,

 (4)

where,  is the sum of the j-th coordinates and 
 is the sum of the squares of the j-th coordi-

nates of the points in cluster C [49]. 
Suppose CS={C1, C2, ..., Ck} is a set of clusters over 

a dataset, D = {p1, p2, ..., pn}, and each Ci cluster has mi 
points. The definition of WCSS(CS) is in Equation (5):

 (5)

Let  be the centroid point on dataset D. The BCSS 
(Between Clusters Sum of Squares) of the cluster set CS 
is calculated by Equation (6):

 (6)

Assume dataset D is a single cluster, and calculate 
WCSS(D) on the basis of Equation (4). For each arbitrary 
set of clusters CS over D, we get it [49]:

 (7)
It implies for every partition of D, the sum of WCSS 

and BCSS is constant. This method employs another theo-
rem that is used to merge and split clusters.

Theorem 2 

Let CS={C1, C2, ..., Ck} be a set of clusters over the 
dataset D and let Ci and Cj be two clusters in CS. Suppose 
CSij is obtained from the cluster set CS by exchanging 
clusters Ci and Cj with their union . Therefore,

 (8)

The  can be calculated by Equation (9):

 (9)

where, mi and mj denote the number of points in Ci and Cj 

and  and  represent the centroid points of Ci and Cj 

respectively [49]. This equation is replaceable as follows: 

 (10)

where, Si,k (Sj,k) is the sum of all points in cluster Ci (Cj) in 
k-th dimension. This equation is applied in the divisive 
phase. When a cluster is divided into two clusters, this re-
sults in a reduction of the WCSS. On the other hand, when 
two clusters are merged into one cluster, this causes the 

WCSS to grow. This decrease and increase can be deter-
mined by Equation (10). These definitions and theorems 
determine the main strategy of the CLUBS+ method.

4.1.2 The Divisive Phase

In this phase, a top-down partitioning of the dataset is 
performed to gain rectangular blocks of points. Each block 
contains points similar to each other, as much as possi-
ble. This means this algorithm is attempting to reduce the 
WCSS. This purpose is also followed by other clustering 
algorithms such as k-means. 

Identifying a partition that minimizes the WCSS even 
for two-dimensional points is an NP-hard problem [53]. A 
greedy algorithm is applied in the CLUBS+ method. In 
each step, each block is divided into a pair of blocks to 
improve the specific clustering criteria.

Given D as an input dataset of n d-dimensional points. 
D is regarded as a single block, entered into a priority 
queue, Q. A block is removed from Q and split into a pair 
of blocks, while Q is not empty. The new blocks replace 
the previous one in Q if the partition is successful, other-
wise, the block will be identified as the final block. 

Blocks in Q are sorted by their WCSS in descending 
order because blocks with larger WCSS have higher split-
ting priorities. Furfaro et al. demonstrated that as a greedy 
algorithm is used for hierarchical clustering to minimize 
the overall variance with a limited number of clusters, the 
selection of the cluster with the largest variance leads to 
the best results for each iteration [54]. Therefore, the block 
with the largest WCSS is evaluated for splitting at each 
step. Two critical points should be considered for produc-
ing efficient splits: (1) calculating the best split and (2) 
assessing the efficiency of the split. 

The calculating of the best split

To find the best split for a block, WCSS should be min-
imized. In other words, the aim is to partition a block into 
a pair of blocks to maximize the ∆WCSS (Equation (9)). 
Blocks are partitioned using hyperplanes that are orthog-
onal to some dimension. Each split is identified by a pair 
<dim, value> where the separating dimension is dim and 
the separating position is value. The points of block B are 
partitioned into a pair of blocks {B1, B2} by split <dim, 
value>, where B1 contains the points of B whose dim-th 
coordinate is less than or equal to the value and B2 con-
tains the remaining points.

It is essential to measure cumulative marginal distribu-
tions on each dimension before splitting a block. Assume 
B = {p1, p2, ..., pn} is a set of n d-dimensional points and 
pij is j-th coordinate of pi. The marginal sum of the j-th di-
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mension of B is defined as Equation (11):

 (11)

The marginal count of the j-th dimension of B can be 
calculated by Equation (12):

 (12)

Therefore, the cumulative marginal distribution at coor-
dinate v of dimension i is the sum (count) of points whose 
coordinates in the i-th dimension are less than or equal to v:

, (13)

and

  (14)

These functions can be represented as arrays and deter-
mined by a linear scanning of the data in B. It is possible 
to calculate ∆WCSS in constant time as the cumulative 
marginals are precomputed. To determine the best split, 
it is important to find a pair <dim, value> that will maxi-
mize ∆WCSS.

Evaluating of the effectiveness of the split

One essential problem in any divisive algorithm is 
deciding when to prevent the further division of the cur-
rent clusters. The reason is that the additional division 
may not improve the overall quality of the current cluster 
set. There are many criteria in the literature that estimate 
the quality of the current cluster set [55]. In this paper, the 
CH-index is identified as the most appropriate criterion [56].

The CH-index for a set of k clusters CS={C1, C2, ..., Ck} 
over a dataset D, with |D|=n is defined as Equation (15):

  (15)

The new CH-index is calculated after each step. If the 
split increases the new CH-index, the split is effective and 
the divisive phase continues. Otherwise, a “local” criteri-
on is checked according to the existence of a “valley” in 
the marginal distribution. Even though a split could not 
increase the CH-index, a very large local discontinuity 
could justify the split of a block anyway. The divisive 
phase is shown in Algorithm 1. The algorithm for this 
phase consists of two sub-algorithms that determine the 
best split and effectiveness of the split.

Algorithm 1 Divisive Phase

Input: D = {p1, p2, …, pn}, a dataset and a set of n   
d-dimensional points.
Output: B = {B1, B2, ..., Bt}, a partitioning of D into t blocks.
1: Let Q=∅ be a priority queue and B=∅. 
2: Let D be a single block and is entered into Q.
3: Set t=1, max_CH=0;
4: Set wcss= WCSS(D);
5: Set bcss= 0;
6: while (Q!=NULL)
7:   S ß Q.deleteQueue(); 
8:   Compute (dim, value, ∆WCSS) for the best split of S. 
     //The dim is the splitting dimension and the value is the  
       splitting position 
     // Compute ∆WCSS based on Equation(10) 
9:   If split is effective then
10:    {S1, S2} ß make split (S);
11:     Q.addQueue(S1); 
12:     Q.addQueue(S2);
13:     wcss= wcss - ∆WCSS;
14:     bcss= bcss + ∆WCSS;
15:     t=t+1;

16:    ;
17:    If CH > max_CH then
18:      max_CH = CH;
19:    end if 
20:  else
21:    B ß B ∪ { S }; 
22:  end if
23: end while
24: return B

4.1.3 The Intermediate Refinement Phase

The overall dataset was partitioned in several blocks in 
the previous phase. However, some blocks contain outli-
ers or noise points. The aim of the intermediate refinement 
phase is (1) to recognize and separate blocks containing 
only noise points, and (2) to create well-rounded clusters 
for the remaining blocks.

The main idea is the low density of blocks including 
only outliers. Additionally, due to the random nature of 
the outliers, the density of these blocks is uniform. First, 
the blocks are sorted by their densities in ascending or-
der (As shown in Algorithm 2). Then, changes in density 
between adjacent blocks are observed and the first jump 
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determines the candidates for outlier-blocks. In the next 
step, the blocks that are considered to be outlier should be 
examined. For this reason, each candidate block is consid-
ered to have a small hypercube around the centroid point. 
When the hypercube has significantly less density than the 
whole block, the candidate block is identified as an outlier 
block otherwise it is known as a cluster block.

Following the determination of the cluster blocks and 
outlier blocks, the second target of this phase is pursued. 
To this end, the blocks near every block Bi in the set are 
found. Suppose Ck is a cluster identified from cluster set 
with the centroid point . The distance 
between each point pi = {pi1, pi2, ..., pid} and each cluster 
block Ck is calculated by Equation (16): 

  (16)

where ri is the radius of the cluster along the i-th dimen-
sion that can be estimated by Equation (17): 

  (17)

such that n is the number of points in the cluster block 
Ck and WCSSi(Ck) is calculated by Equation (4) only for 
i-th coordinates of the points in Ck 

[57]. It is notable that if 
dist(pi, Ck)=1, there is an ellipsoid whose center is the cen-
troid point of Ck and whose radius on the i-th dimension is 
ri. Consequently, each point pi is allocated to cluster RCk 
with the lowest dist(pi, Ck), and the minimum distance is 
less than or equal to 1. Otherwise, pi is classified as an 
outlier in RC0.

Hence, ellipsoids are used in this method instead of 
spheres. It causes some dimensions to stretch or shrink to 
the previous phase. However, some blocks contain outli-
ers or noise points. The aim of the intermediate adjust the 
data in hypercubes. The step could increase the effective-
ness of the algorithm. Therefore, each point is assigned 
to the cluster to minimize its distance from the cluster’s 
centroid relative to the radius of the cluster.

Algorithm 2 Intermediate Refinement Phase

Input: B = {B1, B2, ..., Bt}, a partitioning of D into t blocks.
Output: RC={RC0, RC1, ..., RCu}, a clustering of the points 
where RC0 is the only block that contains outliers .  
1: Let density = {d1, d2, ..., dt} be the densities of blocks in B. 
2: Let centroid_density={cd1, cd2, ..., cdt} be the densities of 
small hypercubes around the centroid points of blocks. 
3: density1 ß Sort (density) // in ascending order.
4: for i=1; i ≤ t-1; i++ do
5:  Jump[i]= density1[i+1]/ density1[i]; 
6: end for
7: Set sum=0;

Algorithm 2 Intermediate Refinement Phase

8: for i=1; i ≤ t-1; i++ do
9:   sum= sum + Jump[i]; 
10: end for
11: avg= sum / (t-1);
12: Set sw= 0;
13: for i=1; i ≤ t-1 && sw==0; i++ do    
14:   If Jump[i] > avg then
15:    MDO= density1[i];  // maximum density of the outlier  
          block  
16:    sw= 1;
17:   end if   
18: end for   
19: for i=1; i ≤ t; i++ do
20:  If density[i] ≤ MDO && 
       centroid_density[i] < 2* density[i] then 
21:    outlier ß outlier ∪ { Bi };  
22:  else   
23:    cluster ß cluster ∪ { Bi };  
24:  end if
25: end for
26: for each Bi ϵ B do 

27:  NB ß near_blocks(Bi, cluster)  // find indexes of near
                              // blocks to Bi in cluster.
28:  for each pj ϵ Bi do 

29:   Set c=0, dmin=1;
30:   for each k ϵ NB do
31:    If dist(pj, Ck) ≤ dmin then
32:      dmin= dist(pj, Ck); 
33:      c=k; 
34:    end if
35:   end for
36:   RCc ß RCc ∪ { pj };  
37:  end for
38: end for
39: return RC

4.1.4 The Agglomerative Phase

The main goal of this phase is to enhance the overall 
quality of the clustering. Some clusters that were created 
in the previous phase are merged in this phase. A pair 
of clusters are evaluated for merging at each stage. The 
process of merging is conducted provided it leads to the 
growth of the CH-index and the least increase of WCSS. 
This means that they will be replaced by the union of the 
two clusters. If the merge of these two clusters leads to a 
decrease in the CH-index, the merge is not done. 

There is no limit to selecting which clusters to merge, 
as opposed to the divisive phase. In the divisive phase, 
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each rectangular block is divided into two rectangular 
parts. In the agglomerative phase, there is no constraint on 
the shape of the resulting cluster from the merging pro-
cess. This phase is very quick, as it is precomputed based 
on prior information and does not require data access. 

4.1.5 The Final Refinement Phase

Some clusters have an irregular shape that is produced 
in the previous phase. On the other side, the final outliers 
must be identified. The main goal of the final refinement 
phase is to enhance the quality of the clusters and identify 
the final outliers. The final refinement phase is close to the 
end part of the intermediate refinement phase. Algorithm 3 
shows the final refinement phase that the final set of clus-
ters and the final outliers are its output. The complexity of 
the CLUBS+ algorithm is O(n × k) where n is the number 
of the points and k is the number of clusters that were 
found following the divisive phase [52].

Algorithm 3 Final Refinement Phase

Input: RC={RC0, RC1, ..., RCu}, a clustering of the points 
where RC0 is the only cluster that contains outliers.  
Output: C={C0, C1, ..., Cu}, a clustering of the points where 
C0 is the only cluster containing outliers.  
1: cluster ß{RC1, RC2, ..., RCu}; 
2: for each Bi ϵ RC do 

3:  NB ß near_blocks(Bi, cluster);  // find indexes of near 
clusters to Bi in cluster. 
4:  for each pj ϵ Bi do 

5:   Set c=0, dmin=1;
6:   for each k ϵ NB do
7:    If dist(pj, Ck) ≤ dmin then
8:      dmin= dist(pj, Ck); 
9:      c=k; 
10:    end if
11:   end for
12:   Cc ß Cc ∪ { pj };  
13:  end for
14: end for
15: return C

4.2 The Parallelization of CLUBS+

As stated earlier, the MapReduce framework is used 
to parallelize our algorithms. The basic idea is to split the 
dataset on a large scale into small datasets. The small data 
sets are then distributed to the nodes (workers) for calcu-
lations. The nodes (workers) are coordinated by a master 
node. The datasets are processed by Map function and 
Reduce function, and the final results are then obtained. 

Analysis of the CLUBS+ method steps is essential to 

parallel its execution. Some operations require entire ac-
cess to the data. Therefore, the most important operations 
are checked to parallel them in the four phases of the 
method.

4.2.1 The Parallelization of Divisive Phase

The divisive phase consists of two sub-algorithms that 
find the best split and evaluate the effectiveness of the 
split. For these objectives, the measurement of the cumu-
lative marginals is required in this phase. This calculation 
requires access to the entire dataset. Assume input dataset 
D is loaded into a distributed file system (HDFS) by the 
data fragments called splits. Each split Si is sent to a map-
per for processing. Therefore, data set D{S1, S2, ..., St} is 
sent to the mappers. For each dimension, the vectors ms 
and mc (Equation (11) and Equation (12)) can be calcu-
lated independently and in parallel on each split Si. Then, 
the final vectors ms and mc can be acquired by summing 
and counting the obtained vectors on all Si. The reducers 
are getting the final results according to the MapReduce 
paradigm. Other operations can be handled by the master 
node.

4.2.2 The Parallelization of the Refinement Phases

The density of the blocks has to be measured in the 
intermediate phase to assess the outlier blocks. After the 
divisive phase, the master node obtains a list of the blocks 
with their range and density. Furthermore, the density of 
each block around the centroid is required to find out the 
outlier blocks. For this purpose, a small range is deemed 
for each block around the centroid. Then, the number of 
points that fall in each of these specified areas is counted 
in parallel. The only mathematical operation involved in 
these phases is the sum, which is completely paralleliza-
ble. For every part of a block’s data, the number of points 
falling within a specified range can be counted inde-
pendently. Then, the total count is obtained by the sum of 
partial counts. As described before, this count permits the 
master node to identify the outlier blocks.

Another important operation performed during both re-
finement phases is the assignment of points to the clusters, 
which can be performed independently on each worker 
node. Cluster information is in the master node that has to 
be sent to all the worker nodes. Then, each worker node 
will measure the distance between points and clusters and 
allocate points to the appropriate cluster. After the assign-
ment of the points, some information must be updated by 
the master node. To this end, each worker node computes 
certain information for the master node, such as the new 
centroid, the number of points, and the new radius. The 
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master node would then get updated information about 
clusters by aggregating all the values from the worker 
nodes.

4.2.3 The Parallelization of the Agglomerative Phase

In this phase, some clusters are merged to improve the 
overall effectiveness of the clustering. For this purpose, 
some precomputed prior information about clusters is re-
quired and does not require access to the entire data. The 
master node has the required information and the opera-
tion can be performed by a worker node.

Four phases of the CLUBS+ method have been re-
viewed for parallelization. The parallelization of this 
method is used to cluster the training dataset for the next 
step of the proposed k-Nearest Neighbor classification. 

5. Testing Process 

Assume that the parallel CLUBS+ algorithm produces 
u clusters and cluster centers, then the cluster with the 
nearest cluster center is found for each test item. The clus-
ter found is being used as the new training dataset for the 
test data item. The k-Nearest Neighbor algorithm is used 
to classify the test data item into the new training dataset. 
Due to the selection of a cluster with high similarity to the 
test data item, the proposed approach also has relatively 
high classification accuracy. The proposed method (KNN-
CCL) is represented in the Algorithm 4.

Algorithm 4 KNN-CCL algorithm

Input: X={x1, x2, ..., xn}, the training dataset.
      Y={y1, y2, ..., ym}, the test dataset.
Output: CL={cl1, cl2, ..., clm}, the class label of each test data 
item.  
1: Produce u clusters by Algorithm 1 to Algorithm 3.
2:  C={C1, C2, ..., Cu}; 
3: for each yi ϵ Y do 

4:  Set min=0, dmin=M; // M is a very big value
5:  for each Cj ϵ C do
4:    Compute distance dist (yi, Cj) between yi and the cluster 
center of Cj.
5:    If dist(yi, Cj) ≤ dmin then
6:      dmin= dist(yi, Cj);
       min=j; 
5:    end if
6:  end for  
6:  Use Cmin as new training dataset for yi.
7:  Find k-nearest neighbor for yi in Cmin. 
8:  knni ={nn1, nn2, ..., nnk}; 

Algorithm 4 KNN-CCL algorithm

8:  Predict the class label cli for yi based on knni.    
9:  CL ß CL ∪ {cli};      
10: end for 
11: return CL

The size of the new training dataset in this method is 
much smaller than the size of the original training dataset. 
Hence, the calculation of the k-Nearest Neighbor algo-
rithm is reduced, and the KNN-CCL algorithm improves 
the classification quality. Furthermore, some previous 
methods require the number of clusters or the termination 
condition to be obtained. The CLUBS+ algorithm requires 
none of them and the aforementioned issues can not affect 
the overhead of clustering and classification accuracy.

6. Experiments

This section describes the factors and points related 
to the experimental study. It also analyzes the results ob-
tained from various experimenal studies.

6.1 Experimental Framework

The following measures are considered in this paper 
for evaluating the performance of the method proposed:
●	 Classification accuracy: this represents the number of 

correct classification with respect to the total number of 
instances. 

●	 Execution time: the total execution time spent by clas-
sifiers in the classification of a given test set against a 
training dataset shall be collected. It includes reading 
and distributing all data and all computations carried 
out using comparative methods.
As described in previous sections, the proposed meth-

od KNN-CCL uses the parallel CLUBS+ algorithm to 
partition the training dataset. Then, it will provide the ap-
propriate cluster for each test data item as a new training 
dataset. Ultimately, it uses the k-Nearest Neighbor classi-
fication to predict each test data item in the new training 
dataset. The whole training dataset is not used in experi-
ments. A random sampling method [21] is applied to sample 
20% of the training dataset. We took the classification of 
k-Nearest Neighbor (KNN) as a baseline to demonstrate 
the effectiveness of the KNN-CCL algorithm and made a 
comparison between KNN, KNN-CCL, and LC-KNN [33]. 
LC-KNN uses k-means clustering to separate the training 
dataset. We used a similar random sampling approach be-
fore the clustering process to sample 20% of the training 
dataset. We also repeat the k-means algorithm 10 times 
and use the cluster centers afterward. Each experimental 
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group is repeated three times, and the average values are 
reported for a more reliable result. 

Three real datasets will be used for the experimental 
study. Pendigits, Letter, and Satimage are extracted from 
the UCI machine learning repository [58]. The Pendigits is a 
dataset about pen-based recognition of handwritten digits. 
This includes 10992 instances, 16 features, and 10 classes. 
The Letter is a letter recognition dataset. It contains a total 
of 20000 instances, 16 features, and 26 separate classes 
(capital letters in the English alphabet). The Satimage is a 
dataset of satellite images. This involves 6435 instances, 
36 features, and 7 classes.

All experiments were carried out on the same environ-
ment, an Intel Xeon E5-2680v2 with a total of 10 cores (20 
threads) and 128 GB of memory. The experiments were 
executed using Spark 1.6.1 and Scala 2.10.5.

6.2 Experimental Results

This section describes and discusses the experimen-
tal results. First, we consider the number of clusters as a 
cluster to compare the performance of the algorithms in 
terms of classification. Therefore, we set k=1 and make 
use of classification accuracy and execution time as 
evaluations of the classification tasks. Our experimental 
results are reported in Table 1. Table 1 demonstrates that 
the proposed KNN-CCL method has improved 5~9 times 
over the KNN, and 2~4 times over the LC-KNN in terms 
of execution time. This means that the proposed distrib-
uted solution reduces the execution time of the proposed 
algorithm compared to the other two algorithms. In clas-
sification accuracy evaluation, the KNN-CCL and LC-
KNN are 4%~10% lower and 2%~11% lower than KNN. 
Although LC-KNN uses a serial algorithm and algorithm 
KNN-CCL uses a parallel algorithm and distributes data 
between clusters, algorithm KNN-CCL can be equivalent 
or even better than algorithm LC-KNN in terms of accu-
racy evalution. Therefore, the KNN-CCL performs well in 
terms of classification accuracy and execution time with 
k=1 according to experimental results.

A group of experiments on three datasets is performed 
by selecting different k values for KNN, KNN-CCL, and 

LC-KNN. For this group of experiments, for particular, 
three methods were conducted on the datasets with k=1, 5, 
10, 15, and 20, respectively. Comparison of the execution 
time of three algorithms KNN, KNN-CCL, and LC-KNN 
with different k values is shown in Figure 4. 

From Figure 4, we observed that the execution times 
for three algorithms are linear with varying k values. In 
other words, for three algorithms, greater k values slightly 
increase the execution time over different datasets. As 
concluded from Figure 4, despite the increase in the num-
ber of clusters, the execution times of the algorithms will 
not differ much. The proposed algorithm KNN-CCL re-
quires less execution time in all cases. The reason for this 
is that the KNN-CCL uses a parallel centroid-based and 
hierarchical clustering method to provide the appropriate 
training dataset for each test data item. The LC-KNN 
method uses the k-means algorithm which requires it to 
repeat the k-means algorithm by 10 times to obtain the 
appropriate training dataset. Thus, The LC-KNN method 
takes more execution time than the KNN-CCL method. 
On the other hand, this strategy (KNN-CCL) takes advan-
tage of parallel execution to speed up computation.

Figure 5 illustrates the classification accuracy evalu-
ation of the three algorithms KNN, KNN-CCL, and LC-
KNN over three datasets with various k values. In Figure 
5(a), the classification accuracy of KNN-CCL for the 
Pendigits dataset is 5%~12% lower than KNN and the 
classification accuracy of LC-KNN is 2%~10% lower 
than KNN. KNN-CCL and LC-KNN got almost the same 
results in most situations. The classification accuracy of 
three methods over the Letter dataset is shown in Figure 
5(b). The KNN-CCL is 9%~22% lower than the KNN and 
LC-KNN is 11%~29% lower than the KNN. Obviously, 
the KNN-CCL algorithm provides better results than the 
LC-KNN. In Figure 5(c), the classification accuracy of 
both KNN-CCL and LC-KNN is 2%~9% lower than KNN 
over the Satimage dataset. KNN-CCL and LC-KNN ob-
tained almost the same outcomes for the majority of cases. 
We observed, from Figure 5, that the classification accura-
cy of the proposed method KNN-CCL and LC-KNN were 
approximately equivalent.

Table 1. classification accuracy and execution time (seconds) of three algorithms on three datasets.
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In the end, we are going to study the classification 
accuracy of two KNN-CCL and LC-KNN algorithms to 
classification accuracy of two algorithms over three data-
sets to k=1, 5, 10, 15, and 20. As the value of k increases, 
the overall accuracy of classification decreases. This is be-
cause the smaller the training dataset would be, the greater 
the classification accuracy. Therefore, the difference be-
tween the samples is important, and the accuracy of clas-
sification will be reduced. In this case, it can be concluded 
that an acceptable k value should be selected. As shown 

in Figure 6, when two algorithms are more accurate, the k 
value should be set as small as possible. According to this 
analysis, if higher accuracy is required, a smaller number 
of clusters should be selected. 

Therefore, according to experimental results, we can 
infer that the KNN-CCL and LC-KNN algorithms per-
form well with small values of k in terms of classification 
accuracy, and the proposed method KNN-CCL performs 
very well in terms of execution time.

(a)

(b) (c)

Figure 4. Execution time on three datasets at different values of k: a Pendigits b Letter c Satimage.

(a) (b) (c)

Figure 5. Classification accuracy on three datasets with varying k values: a Pendigits b Letter c Satimage.
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7. Conclusions

In this paper, an efficient parallel processing of the 
k-Nearest Neighbor classification method was presented 
and evaluated. The proposed method is denominated as 
KNN-CCL uses a parallel centroid-based and hierarchical 
clustering algorithm to split the sample set of training da-
taset into several clusters. The introduced clustering algo-
rithm uses four stages of successive refinements and gen-
erates high quality clusters. And the suitable cluster was 
selected as new training dataset for each test data item to 
decrease the calculation of classification. The k-Nearest 
Neighbor classification was used for each test data item to 
predict it in the new training dataset.

The KNN approach was considered the baseline, and 
a group of comparative experiments was performed by 

KNN, LC-KNN, and KNN-CCL. The experimental results 
carried out revealed that the proposed method can handle 
large dataset and performs well in terms of accuracy and 
performance in classification. 

Conflict of Interest

There is no conflict of interest.

Funding

The authors received no specific funding for this work.

Ethical approval

This article does not contain any studies with human 
participants or animals performed by any of the authors.

(a) Pendigits dataset.

(b) Letter dataset.

(c) Satimage dataset.

Figure 6. Classification accuracy of KNN-CCL and LC-KNN on three datasets with different k.



39

Artificial Intelligence Advances | Volume 04 | Issue 01 | April 2022

References
[1] Alharthi, A., Krotov, V., Bowman, M., 2017. Ad-

dressing barriers to big data. Business Horizons. 
60(3), 285-292.

[2] Anagnostopoulos, I., Zeadally, S., Exposito, E., 2016. 
Handling big data: research challenges and future 
directions. The Journal of Supercomputing. 72(4), 
1494-1516.

[3] Akoka, J., Comyn-Wattiau, I., Laoufi, N., 2017. Re-
search on Big Data – A systematic mapping study. 
Computer Standards & Interfaces. 54, 105-115.

[4] Minelli, M., Chambers, M., Dhiraj, A., 2013. Big 
data, big analytics: emerging business intelligence 
and analytic trends for today's businesses. John Wi-
ley & Sons. 578.

[5] Cover, T., Hart, P., 1967. Nearest neighbor pattern 
classification. IEEE transactions on information the-
ory. 13(1), 21-27.

[6] Wu, X., Kumar, V., 2009. The top ten algorithms in 
data mining. CRC press.

[7] Chen, Y.H., Garcia, E.K., Gupta, M.R., et al., 2009. 
Similarity-based classification: Concepts and algo-
rithms. Journal of Machine Learning Research. 10, 
747-776.

[8] Weinberger, K.Q., Saul, L.K., 2009. Distance metric 
learning for large margin nearest neighbor classifica-
tion. Journal of Machine Learning Research. 10, 207-
244.

[9] Li, J., Liu, Y., Pan, J., et al., 2020. Map-Balance-
Reduce: An improved parallel programming model 
for load balancing of MapReduce. Future Generation 
Computer Systems. 105, 993-1001.

[10] Dean, J., Ghemawat, S., 2008. MapReduce: simpli-
fied data processing on large clusters. Communica-
tions of the Acm. 51(1), 107-113.

[11] White, T., 2012. Hadoop: The definitive guide. 
O’Reilly Media, Inc.

[12] Chen, C.P., Zhang, C.Y., 2014. Data-intensive appli-
cations, challenges, techniques and technologies: A 
survey on Big Data. Information Sciences. 275, 314-
347.

[13] Guo, Z., Fox, G., Zhou, M., 2012. Investigation of 
data locality in mapreduce. Proceedings of the 2012 
12th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing (ccgrid 2012). 419-
426. IEEE.

[14] Zaharia, M., Chowdhury, M., Das, T., et al., 2012. 
Resilient distributed datasets: A fault-tolerant ab-

straction for in-memory cluster computing. Proceed-
ings of the 9th USENIX conference on Networked 
Systems Design and Implementation (NSDI 12). 15-
28.

[15] Bei, Zh.D., Yu, Zh.B., Luo, N., et al., 2018. Config-
uring in-memory cluster computing using random 
forest. Future Generation Computer Systems. 79, 
1-15.

[16] Tang, Zh., Zhang, X.Sh., Li, K.L., et al., 2018. An 
intermediate data placement algorithm for load 
balancing in Spark computing environment. Future 
Generation Computer Systems. 78, 287-301.

[17] Gonzalez-Lopez, J., Cano, A., Ventura, S., 2017. 
Large-scale multi-label ensemble learning on Spark. 
2017 IEEE Trustcom/BigDataSE/ICESS, 893-900. 

 DOI: https://doi.org/10.1109/Trustcom/BigDataSE/
ICESS.2017.328

[18] Harnie, D., Saey, M., Vapirev, A.E., et al., 2017. 
Scaling machine learning for target prediction in drug 
discovery using Apache Spark. Future Generation 
Computer Systems. 67, 409-417.

[19] Hernández, Á.B., Perez, M.S., Gupta, S., et al., 2018. 
Using machine learning to optimize parallelism in 
big data applications. Future Generation Computer 
Systems. 86, 1076-1092.

[20] Singh, H., Bawa, S., 2017. A MapReduce-based scal-
able discovery and indexing of structured big data. 
Future generation computer systems. 73, 32-43.

[21] Gavagsaz, E., Rezaee, A., Javadi, H.H.S., 2018. Load 
balancing in reducers for skewed data in MapReduce 
systems by using scalable simple random sampling. 
The Journal of Supercomputing. 74(7), 3415-3440.

[22] Gavagsaz, E., Rezaee, A., Javadi, H.H.S., 2019. Load 
balancing in join algorithms for skewed data in Ma-
pReduce systems. The Journal of Supercomputing. 
75(1), 228-254.

[23] Bhatia, N., 2010. Survey of nearest neighbor tech-
niques. arXiv preprint arXiv:1007.0085.

[24] Zhu, X., Zhang, L., Huang, Z., 2014. A sparse em-
bedding and least variance encoding approach to 
hashing. IEEE transactions on image processing. 
23(9), 3737-3750.

[25] Zhu, X., Zhang, S., Zhi, J., et al., 2010. Missing 
value estimation for mixed-attribute data sets. IEEE 
Transactions on Knowledge and Data Engineering. 
23(1), 110-121.

[26] Connor, M., Kumar, P., 2010. Fast construction of 
k-nearest neighbor graphs for point clouds. IEEE 

https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.328
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.328


40

Artificial Intelligence Advances | Volume 04 | Issue 01 | April 2022

transactions on visualization and computer graphics. 
16(4), 599-608.

[27] Liu, T., Moore, A.W., Gray, A., et al., 2004. An in-
vestigation of practical approximate nearest neighbor 
algorithms. Advances in neural information process-
ing systems. 17.

[28] Raginsky, M., Lazebnik, S., 2009. Locality-sensitive 
binary codes from shift-invariant kernels. Advances 
in neural information processing systems. 22.

[29] Silpa-Anan, C., Hartley, R., 2008. Optimised KD-
trees for fast image descriptor matching. 2008 IEEE 
Conference on Computer Vision and Pattern Recog-
nition. 1-8. IEEE.

[30] Zhu, X.F., Huang, Z., Cheng, H., et al., 2013. Sparse 
hashing for fast multimedia search. ACM Transac-
tions on Information Systems (TOIS). 31(2), 9.

[31] Triguero, I., Peralta, D., Bacardit, J., et al., 2015. 
MRPR: A MapReduce solution for prototype reduc-
tion in big data classification. neurocomputing. 150, 
331-345.

[32] Du, M., Ding, S., Jia, H., 2016. Study on density 
peaks clustering based on k-nearest neighbors and 
principal component analysis. Knowledge-Based 
Systems. 99, 135-145.

[33] Deng, Zh.Y., Zhu, X.Sh., Cheng, D.B., et al., 2016. 
Efficient kNN classification algorithm for big data. 
Neurocomputing. 195, 143-148.

[34] Moutafis, P., Mavrommatis, G., Vassilakopoulos, M., 
et al., 2019. Efficient processing of all-k-nearest-
neighbor queries in the MapReduce programming 
framework. Data & Knowledge Engineering. 121, 
42-70.

[35] Zhang, C., Li, F., Jestes, J., 2012. Efficient parallel 
kNN joins for large data in MapReduce. Proceedings 
of the 15th international conference on extending da-
tabase technology. 38-49.

[36] Chatzimilioudis, G., Costa, C., Zeinalipour-Yazti, 
D., et al., 2015. Distributed in-memory processing of 
all k nearest neighbor queries. IEEE Transactions on 
Knowledge and Data Engineering. 28(4), 925-938.

[37] Sun, K., Kang, H., Park, H.H., 2015. Tagging and 
classifying facial images in cloud environments 
based on KNN using MapReduce. Optik. 126(21), 
3227-3233.

[38] Maillo, J., Triguero, I., Herrera, F., 2015. A ma-
preduce-based k-nearest neighbor approach for big 
data classification. 2015 IEEE Trustcom/BigDataSE/
ISPA. 2, 167-172. IEEE.

[39] Maillo, J., Ramírez, S., Triguero, I., et al., 2017. 

kNN-IS: An Iterative Spark-based design of the 
k-Nearest Neighbors classifier for big data. Knowl-
edge-Based Systems. 117, 3-15.

[40] Wu, X., Zhang, C., Zhang, S., 2005. Database classi-
fication for multi-database mining. Information Sys-
tems. 30(1), 71-88.

[41] Ester, M., Kriegel, H.P., Sander, J., et al., 1996. A 
density-based algorithm for discovering clusters in 
large spatial databases with noise. Kdd. 96(24),226-
231.

[42] Sander, J., 2010. Density-Based Clustering, in Ency-
clopedia of Machine Learning, C. Sammut and G.I. 
Webb, Editors. Springer US: Boston, MA. pp. 270-
273.

[43] Amini, A., Wah, T.Y., Saybani, M.R., et al., 2011. 
A study of density-grid based clustering algorithms 
on data streams. 2011 Eighth International Confer-
ence on Fuzzy Systems and Knowledge Discovery 
(FSKD). 3, 1652-1656. IEEE.

[44] Wang, W., Yang, J., Muntz, R., 1997. STING: A sta-
tistical information grid approach to spatial data min-
ing. Vldb. 97, 186-195.

[45] Gerlhof, C.A., Kemper, A., 1993. Partition-based 
clustering in object bases: From theory to practice. 
International Conference on Foundations of Data 
Organization and Algorithms. Springer, Berlin, Hei-
delberg. 301-316. 

[46] MacQueen, J., 1967. Some methods for classification 
and analysis of multivariate observations. Proceed-
ings of the fifth Berkeley symposium on mathemati-
cal statistics and probability. 1(14), 281-297.

[47] Johnson, S.C., 1967. Hierarchical clustering schemes. 
Psychometrika. 32(3), 241-254.

[48] Zhang, T., Ramakrishnan, R., Livny, M., 1996. 
BIRCH: an efficient data clustering method for very 
large databases. ACM sigmod record, 25(2), 103-
114.

[49] Mazzeo, G.M., Masciari, E., Zaniolo, C., 2017. A fast 
and accurate algorithm for unsupervised clustering 
around centroids. Information Sciences. 400, 63-90.

[50] Masciari, E., Mazzeo, G.M., Zaniolo, C., 2013. Pa-
cific-asia conference on knowledge discovery and 
data mining. Springer, Berlin, Heidelberg. 111-122. 

[51] Masciari, E., Mazzeo, G.M., Zaniolo, C., 2014. An-
alysing microarray expression data through effective 
clustering. Information Sciences. 262, 32-45.

[52] Ianni, M., Masciari, E., Mazzeo, G.M., et al., 2020. 
Fast and effective Big Data exploration by clustering. 
Future Generation Computer Systems. 102, 84-94.



41

Artificial Intelligence Advances | Volume 04 | Issue 01 | April 2022

[53] Muthukrishnan, S., Poosala, V., Suel, T., 1999. On 
rectangular partitionings in two dimensions: Algo-
rithms, complexity and applications. International 
Conference on Database Theory. Springer, Berlin, 
Heidelberg. 236-256. 

[54] Furfaro, F., Mazzeo, G.M., Saccà, D., et al., 2008. 
Compressed hierarchical binary histograms for sum-
marizing multi-dimensional data. Knowledge and 
Information Systems. 15(3), 335-380.

[55] Arbelaitz, O., Gurrutxaga, I., Muguerza, J., et al., 
2013. An extensive comparative study of cluster va-
lidity indices. Pattern Recognition. 46(1), 243-256.

[56] Caliński, T., Harabasz, J., 1974. A dendrite method 
for cluster analysis. Communications in Statis-
tics-theory and Methods. 3(1), 1-27.

[57] Zhang, T., Ramakrishnan, R., Livny, M. ,1996. 
BIRCH: an efficient data clustering method for very 
large databases. ACM sigmod record, 25(2), 103-
114.

[58] Dua, D., Graff, C., 2017. Machine learning reposito-
ry. University of California, Irvine, School of Infor-
mation and Computer Sciences. Available online at: 
http://archive. ics. uci. edu/ml.

http://archive. ics. uci. edu/ml.

