
8

Artificial Intelligence Advances | Volume 04 | Issue 02 | October 2022

Artificial Intelligence Advances
https://ojs.bilpublishing.com/index.php/aia

Copyright © 2022 by the author(s). Published by Bilingual Publishing Co. This is an open access article under the Creative Commons 
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License. (https://creativecommons.org/licenses/by-nc/4.0/).

*Corresponding Author:
Mohamed Emish,
Department of Informatics, University of California, Irvine, 92697, United States of America;
Email: memish@uci.edu

DOI: https://doi.org/10.30564/aia.v4i2.5316

ARTICLE  
On Monetizing Personal Wearable Devices Data: A Blockchain-
based Marketplace for Data Crowdsourcing and Federated Machine 
Learning in Healthcare

Mohamed Emish1*    Hari Kishore Chaparala1   Zeyad Kelani1,2   Sean D. Young1,3

1. Department of Informatics, University of California, Irvine, 92697, United States of America
2. Department of Political Science, Faculty of Economics and Political Science Cairo University, Egypt
3. Department of Emergency Medicine, University of California, Irvine, 92697, United States of America

ARTICLE INFO ABSTRACT

Article history
Received: 14 December 2022
Revised: 6 January 2023
Accepted: 9 January2023
Published Online: 2 February 2023

Machine learning advancements in healthcare have made data collected 
through smartphones and wearable devices a vital source of public health 
and medical insights. While wearable device data help to monitor, detect, 
and predict diseases and health conditions, some data owners hesitate to 
share such sensitive data with companies or researchers due to privacy 
concerns. Moreover, wearable devices have been recently available as 
commercial products; thus large, diverse, and representative datasets are 
not available to most researchers. In this article, the authors propose an 
open marketplace where wearable device users securely monetize their 
wearable device records by sharing data with consumers (e.g., researchers) 
to make wearable device data more available to healthcare researchers. To 
secure the data transactions in a privacy-preserving manner, the authors 
use a decentralized approach using Blockchain and Non-Fungible Tokens 
(NFTs). To ensure data originality and integrity with secure validation, 
the marketplace uses Trusted Execution Environments (TEE) in wearable 
devices to verify the correctness of health data. The marketplace also allows 
researchers to train models using Federated Learning with a TEE-backed 
secure aggregation of data users may not be willing to share. To ensure user 
participation, we model incentive mechanisms for the Federated Learning-
based and anonymized data-sharing approaches using NFTs. The authors 
also propose using payment channels and batching to reduce smart contact 
gas fees and optimize user profits. If widely adopted, it’s believed that TEE 
and Blockchain-based incentives will promote the ethical use of machine 
learning with validated wearable device data in healthcare and improve 
user participation due to incentives.
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1. Introduction

Big data analytics and the Medical Internet of Things 
(MIoT) are becoming integral to a proactive healthcare 
system [1]. One source of this information is wearable 
devices such as smartwatches that constantly track partic-
ipants’ vital signs. The wearable devices market is expect-
ed to soar around threefold (115.8 billion US dollars to 
380 billion US dollars) between 2021 and 2028 [2]. How-
ever, users of wearable devices have privacy concerns re-
garding sharing data about vital signs and their location [3].  
We have identified three reasons data owners are hesitant 
to share their wearable devices’ data. First, some data 
owners fear being watched by “digital big brother” and 
the potential threat to their data privacy rights [4]. Some 
data owners also have major concerns about confidenti-
ality. They desire control over what the data can be used 
to infer about them, especially when combined with data 
from other platforms [5]. Moreover, the value of data in 
the information economy has made it a target of attacks, 
leading to data breaches and personal data theft outside of 
trusted organizations [6]. Second, even when data owners 
share their data, some data consumers don’t know if they 
can trust it, as it may be malicious. For example, automat-
ed bots can generate low-quality sets by creating fake re-
cords that simulate real user behavior [7]. Third, many data 
owners may feel they are not fairly compensated for their 
data. In contrast, data brokers accumulate large amounts 
of data and use it to create products for surveillance and 
marketing [8]. In addition to privacy, creating machine 
learning models that work effectively for individuals from 
different backgrounds is inhibited by the inaccessibility of 
inclusive datasets to researchers [9].

Previous studies have explored use cases for ma-
chine learning models and wearable device data. They 
have shown significant promise for such an approach in 
detecting health conditions. For example, accelerome-
ter sensor data from smartwatches were used to detect 
sleep apnea and sleep classification, respectively [10,11].  
Another study used biosensor data in armbands to mon-
itor skin temperature, respiratory rate, blood pressure, 
pulse rate, and blood oxygen saturation. It used this data 
to create an early detection model for COVID-19 [12].  
Wearable device data from wristbands were also used 
to continuously monitor the physiological parameters 
of patients in urgent care and train machine learn-
ing models that detect clinical deterioration [13]. Other 
studies have collected data from emerging wearable 
devices such as headbands [14] or Respiratory Belts 
(RB) [15] to detect seizures [16-18], monitor emotions [19,20]  
and track rehabilitation tasks [21-23], as well as detect-

ing and monitoring heart diseases (arrhythmia [24-26],  
hypertension [27], and strokes [28,29]).

We propose a decentralized, fully automated market-
place to capture these insights by securely sharing data 
from wearable devices between data owners and consum-
ers. Our marketplace uses several advances in cryptogra-
phy techniques and Federated Machine Learning (ML) to 
respond to the challenges of using wearable devices and 
ML in Healthcare. First, we propose Trusted Execution 
Environments (TEE) to verify data records’ validity and 
ensure that they are not stolen or produced by bots. The 
marketplace then offers a platform for data owners to list 
their wearable device records as NonFungible Tokens 
(NFTs). Federated learning will train local models without 
copying or moving the data owners’ sensitive data records 
from their devices. Alternatively, data owners can choose 
to sell their wearable device records to data consumers 
by transferring ownership of NFTs. Data owners will be 
rewarded for selling data or contributing to training ML 
models requested by the data consumers. We also use 
security measures to blacklist malicious data owners or 
consumers who try to break the system’s rules. Our novel 
design for a fair and secure marketplace would collect 
genuine data that can be used for the accurate detection 
and prevention of diseases and reward users willing to 
share data with the broader research community. The 
design decisions of this marketplace aim to support the 
trustless trading of clean data with strong integrity checks, 
thwart malicious data owners and consumers, and an in-
centive mechanism for promoting fair user participation. 
While several existing studies and models [30-33], most 
focus on the privacy-preserving nature of trading sensi-
tive data. They don’t guarantee strong data validations 
and mechanisms to prevent malicious data sellers. On the 
other hand, our approach provides a privacy-preserving 
platform for trading data with strong integrity checks.

The main contributions of this paper are:
• Rewarding wearable device data sharing using 

NFTs in a scalable and cost-effective manner.
• Verifying the integrity of data records using TEE to 

thwart malicious data sellers.
• Applying a pay-per-usage model based on federated 

learning and secure aggregation using TEE.

2. Literature Review

2.1 Existing Marketplaces

Alan et al. [30] proposed a marketplace where the users 
define data-sharing policies translated into smart con-
tracts. In their model, the wearable device users generate 
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the data stored in Data Custodian or wearable device 
manufacturer’s cloud storage. The users also set policies 
on how their data can be accessed in Blockchain. A data 
broker entity matches users and data consumers based on 
their preferences. Once a match is made, based on a set 
of policies, a smart contract for trading the data is created 
and the data transaction takes place. The authors point 
out that since data come from the device manufacturer’s 
cloud storage, data integrity is preserved. However, it’s 
not shown exactly how the device manufacturer preserves 
the data integrity. Moreover, it requires data consumers 
to trust the device manufacturer. In contrast, our model 
uses TEEs in user devices that generate attested data from 
attested wearable device software. In addition, we also 
prevent data duplication attacks using sequence numbers. 
Also, there are several centralized and trusted components 
in their proposed architecture, like Data Anonymizer and 
Data Custodian’s cloud, which can be compromised by a 
malicious entity, thus creating data privacy and integrity 
concerns. Our model addresses privacy concerns using 
federated learning with a TEE-backed secure aggregation 
and NFT transactions. In addition, the data anonymizer re-
sides within secure enclaves that ensure a consistent data 
format.

Sterling [31] is another privacy-preserving data market-
place. It uses a TEE to perform secure machine learning 
using the policies set in the data provider and consumer 
smart contract. The authors suggest using machine learn-
ing model parameters to check whether the data are fake. 
But a malicious user can always generate duplicate data 
or corrupt the model in several steps, ensuring that at each 
step of the training, the model parameters don’t deviate 
enough creating a red flag. Also, there are no mechanisms 
proposed to blacklist a malicious data provider. Our mod-
el uses the TEE identity to blacklist users. Using a TEE 
identity-based blacklisting, users can’t arbitrarily create 
fake identities, and purchasing a new wearable device to 
bypass a blacklist will most likely cause negative incen-
tives.

Gonzalo et al. [32] performed a systematic literature 
review on IoT data markets’ privacy-enhancing technol-
ogies. Some surveyed papers employed Truth Discovery 
and reputation-based systems for data integrity checks. 
However, these approaches are not practical for wearable 
device data, where we treat every user as an anonymous 
entity. Most of the studies [32] were more inclined to pre-
serve data generators’ privacy rather than ensure data 
integrity. On the other hand, our model is privacy-preserv-
ing and ensures strong data integrity.

Primal [33] is a cloud-based privacy-preserving market-
place. It is not decentralized, and if the cloud is compro-

mised, consumer and producer data are at risk. Primal’s 
proposed data validation protocol requires the consumers 
to estimate the data quality based on the trained machine 
learning model. Our model does not require any effort 
from the consumer’s end, as the TEE attests to the data.

One study proposed a design for a decentralized data 
marketplace on the Blockchain that uses arbitration to set-
tle disputes between data owners and data consumers [34]. 
In the authors’ design, untrustworthy data buyers or sellers 
are detected using an arbitrators alliance that both parties 
in the transaction nominate. The arbitrator’s decision will 
be executed using secure smart contracts; however, this 
design still requires the intervention of external actors, 
which can take time and might not lead to accurate reso-
lutions. Zhang et al. [35] proposed a data marketplace with 
a network storage service verification mechanism. But it 
lacks the performance needed for scalability. Makhdoom 
et al. [36] designed a framework for rewarding data sharing 
from IoT devices in smart cities based on smart contracts 
and digital tokens (PrivyCoin). While data security and re-
wards are available for data owners, creating a customized 
coin to distribute rewards requires a large blockchain in-
frastructure. This can be avoided by using all-propose to-
kens widely traded between cryptocurrency owners, such 
as Ethereum, Solana, and Binance. Li et al. [37] proposed 
a rewarding system for sharing IoT data based on Mone-
ro Technology to ensure anonymous data exchange and 
multi-sharing. All these models lack strong data validation 
techniques, which are especially important for healthcare 
data as a minor trained machine learning model corruption 
might cause serious consequences.

2.2 Detecting Malicious Actors

Some applications of integrating federated learning 
with Blockchain have been proposed in industry and aca-
demia. A privacy-preserving blockchain-based federated 
learning study [38] shows how home appliance manufac-
turers can gather information from users to improve smart 
home systems. In the author’s model, first, the users train 
a publicly available model on the Blockchain, then the 
Blockchain acts as the aggregator of models from differ-
ent users. Blockchain prevented prevent malicious manu-
facturers or users. In the second stage, the smart contract 
performed a crowdsourcing task that aggregated and com-
puted the average model. Incentives were also awarded 
to the miner in the crowdsourcing task. The authors also 
used a Differential Privacy Preserving algorithm for data 
privacy. However, manufacturers are not considered ma-
licious to corrupt the model as they are the model owners. 
Another study used homomorphic encryption to encode 
the gradients of ML models to preserve user privacy and 
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prevent possible inference attacks [39] but this may not be 
feasible for types of machine learning models.

3. System Design

3.1 Architecture Overview

This section introduces our proposed system design for 
the wearable devices data marketplace. Our marketplace 
has two groups of stakeholders: Data consumers and data 
owners. Data consumers employ a crowdsourcing mod-
el based on federated learning, with the initial models 
running on user devices. Data owners list their data as a 
Non-Fungible Token (NFT) in health data marketplaces. 
We utilize TEE to ensure data integrity, addressing threats 
from malicious users (data owners) and malicious data 
consumers trying to compromise data privacy. Our model 
consists of a wearable device with TEE, a user-owned 
mobile device for performing federated model training, a 
secure aggregator using TEE for preserving user privacy, 
a smart contract hosting a federated learning model, and 
an ERC-721-based [40] NFT contract that verifies the final 
model output and NFT data. ERC-721 tokens are used to 
incentivize users in the federated learning-based and NFT-
based data-selling approaches.

Figure 1. Health data attestation.

3.2 Verification of Data Records

Malicious data owners could try to fake the data or 
copy existing data to resell in our health data marketplace. 
Moreover, a group of malicious users could collaborative-
ly try to corrupt the machine learning models using inva-
lid data. Using hashing algorithms to ensure data integrity 
is insufficient because a malicious user can modify data 
to generate a unique record. For this reason, we propose 
using TEE in wearable devices. The TEE can attest that a 
valid workflow genuinely generates the data. In the case 
of a wearable device, data records represent a physical 
activity or other monitored vital signs. Within a TEE, the 
code and data loaded are immune from modification and 
eavesdropping, thus ensuring data privacy and integrity. 
TEE has dedicated, private regions of memory called 
“enclaves.” The isolated memory runs a private Operating 
System (OS). ARM TrustZone [41], Intel Software Guard 
Extensions [42], and AMD Platform Security Processor [43] 

are popular examples of private OS’s that run in enclaves. 
In our design, we use an ARM Cortex-M23 series proces-
sor [44] using TrustZone-M, which has been widely used 
in IoT devices [45] and is currently listed as a small and 
energy-efficient processor suitable for wearable devices. 
Data owners’ activities are processed within the TEE, 
and the data are attested using the TEE’s private key ρ = 
SIG(data,pktee) where SIG is the signing function and ρ is 
the attestation. The private key pktee associated with the 
TEE is unique and only known within the TEE. A public 
key pubtee can be used to verify the attestation. For a user 
to list the health data, a hash h is generated on the data re-
cord using a one-way hashing algorithm H(data). The user 
can optionally save the data in an InterPlanetary File Sys-
tem (IPFS) like Pinata [46]. To mint an NFT corresponding 
to a health record, the smart contract uses pubtee to verify 
a health record hash. To prevent duplication and reselling 
of the same health records, every record is associated with 
a stepwise increasing sequence number, verified at smart 
contract. Figure 1 shows the overview of health data attes-
tation using a smart contract and a TEE.

Figure 2. Federated Learning with users.

3.3 Federated Learning

Federated learning [38,47,48] is used to train an ML model 
in a distributed manner while data stays on-premises—in 
our case, on the data owners’ devices. After locally train-
ing models on multiple devices, they are gathered and ag-
gregated by the data consumer. In our design, as shown in 
Figure 2, the user data from wearable devices are collated 
into a mobile device that pulls a local model for federated 
learning from the blockchain. As the model is present on 
the blockchain, it reduces the chances of the model being 
malicious. Once the local model is trained, it is sent to a 
secure aggregator based on a trusted execution environ-
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ment. We use Intel SGX OS to handle secure enclaves on 
the external aggregation server. The aggregation server 
enclaves collect and aggregate the ML model’s gradients 
from all users. The final model output is signed by the 
TEE and sent to the data consumer. We are not sending 
individual gradients to the organization but rather the ag-
gregated model. This ensures that user information cannot 
be inferred from the gradients. The gradient transfer is en-
crypted to prevent the eavesdropping of gradients by the 
system encompassing the TEE, and the security keys can 
be transmitted using the RSA algorithm [49].

The gradients generated by the users have signed 
SIG(gradient,pkuser) using user private keys, and the final 
gradient is also signed by the TEE SIG(final _output,pktee). 
This protects organizations from model corruption.

3.4 User Incentives from Federated Learning

Data owners can earn incentives from locally training 
ML models and publishing the gradients to data consum-
ers. The secure aggregator collects the TEE-signed gra-
dients from users, which determines the number of ERC-
20 tokens to be sent to the data owner as an incentive. 
A signed message SIG(gradient,pktee user,wallet id,data 
size,hash) is sent to the secure aggregator from all users. 
pktee user is the private TEE key used in the user’s wearable 
device to sign the message. Data size is the size of the 
new data used to train the federated learning model. Data 
owners will be rewarded with Ethereum tokens based 
on the number of new data records they contribute to the 
local ML model. Then, we acquire a unique hash for H(-
data), on the data records used for training. The secure 
aggregator uses the hash to tackle replay attacks in which 
the user can try to send the same training output again to 
get incentives. The secure aggregator maintains a hash 
table of records and prevents data owners from using the 
same data more than once. As we are using a TEE for 
storing these hashes, any downtime in the enclave could 
lead to the loss of the hash table. The hash data can be 
periodically synced with external encrypted storage (or an 
IPFS) that the TEE can only modify to prevent this loss. 
Once the signed local model outputs reach the secure ag-
gregator, it can verify the signatures signed by pktee user and 
the hash information. The appropriate award to the data 
owner is then calculated based on the amount of data they 
contributed. A signed message from the secure aggregator 
SIG([[u1,p1],[u2,p2],...],hash,pksg) is sent to the smart con-
tract for the award payment. The smart contract verifies 
the signature and the hash. A hash table is also maintained 
in the smart contract to prevent replay attacks. A daily 
quota on the transfer is set on the data consumers’ wallets 
for safety. Incentives are transferred from the data con-

sumers’ wallets to the data owners’ wallets while the quota 
lasts. Algorithm 1 shows the smart contract logic to send 
incentives to data owners. As the payments are usually 
small, a low-gas fee network like Polygon [50] or Payment 
Channels [51] will reduce the fees required to complete the 
transactions between the two parties (data owner and data 
consumer). Algorithm 1 shows how the payments flow in 
the smart contract, and Figure 3 details the overview of 
user incentives with federated learning.
Algorithm 1 User payments in Smart Contact

fn pay users(ρ = SIG([[u1,p1],[u1,p1],...],hash,pksg))
 VERIFY(ρ,pubsg) if hash not in Hash Table then
payments ← [[u1,p1],[u1,p1],...] balance ← Remaining 

Organization daily quota for all pi,ui in payments do
 if pi − balance ≥ 0 then transfer(pi, ui)
  balance ← pi − balance
  Update remaining quota end if
end for end if

Figure 3. User Incentives.

Figure 4. Minting health data as NFT.

3.5 Minting Wearable Device Data as NFTs

In some cases, federated learning might not work accu-
rately for all health data-related machine learning applica-
tions. Also, data owners may be comfortable with sharing 
health data from wearable devices. To surmount these bar-
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riers, we propose extending our framework to allow data 
owners to mint health records from wearable devices as 
NFTs. As a result, data consumers can directly train their 
ML models on the data. We use the same TEE architecture 
to attest the data records, and each record is associated 
with a sequence number as described in subsection III-B. 
While listing the NFT, the data owners’ personal and sen-
sitive information is removed from the records. For this 
purpose, the TEE in the data owners’ devices only uses 
the publicly visible, verified codebase on the blockchain. 
This codebase is responsible for encapsulating the data 
from the wearable device without any sensitive informa-
tion. The codebase will also generate metadata helpful 
for data consumers filtering the data. Before minting the 
data records as NFTs, they are made visible to the data 
owners for review. When a data owner decides to list their 
health record, they can create an IPFS record with the 
metadata. Since minting NFT requires gas fees, wearable 
device data will be minted in batches large enough for the 
data owner to receive incentives. A call is then made to 
the smart contract signed by the TEE with token url, data 
hash for integrity verification, and seq num to prevent 
reselling the data. The minting process is shown in Figure 
4. In the smart contract, we keep track of the user id and  
tee _id mapping and the seq _num associated with the 
user. During the minting process, we verify the TEE 
attestation, user signature, and whether seq num ≥ last 
sequence number from the user is present in the mapping. 
Upon passing all checks, we mint the NFT. It is possible 
to perform lazy minting [52] to delay the payment of the 
gas fee until the NFT is sold. Data consumers can now 
buy the listed NFTs on the marketplace.

Currently, the original data only resides with the user. 
Unlike artwork NFTs, if the wearable device data is 
public, organizations could access the records without 
purchasing NFT; thus, users will not be rewarded. If a 
user denies sending the data to a data consumer, they can 
be blacklisted by the consumer using the teeid. Creating 
new user profiles cannot escape from the blacklist, as the 
teeid is embedded with the device. Given that a wearable 
device with TEE support is likely more valued than the 
user data, a malicious user has no incentive to reject data 
share requests by the organization. Once the data is shared 
with the data consumer, its integrity can be verified using 
the checksum in the smart contract’s NFT data. To list 
and purchase NFT and perform atomic transactions with 
ERC-20 tokens and NFT tokens, we recommend using 
the Wyvern protocol [51], as popular marketplaces like 
OpenSea currently use it [53]. If data owners lack storage 
for all their listed data records, they can use the XRC-721 
standard offered by XDC-Network and store the encrypt-

ed NFT information in IPFS. Using this standard, it is 
possible to encrypt NFT data so that only the NFT owner 
can access the encryption key to decrypt the NFT data. 
But this requires switching to a different blockchain.

4. Discussion

ML and wearable device data records have great poten-
tial to improve well-being and advance scientific health-
care research. Clean and trusted data can create accurate 
ML models and reach this potential. Our novel wearable 
device data marketplace design utilizes Federated Learn-
ing, TEE, and blockchain to provide a privacy-preserving 
way for the owners to share health data and guarantee 
strong data validations. Our marketplace allows users to 
participate in the data-sharing workflow using Federated 
learning or NFT-based data record sales. Our data mar-
ketplace stores the metadata of records, making data that 
belong to populations of interest findable by scientists 
and data consumers. The marketplace is open to all data 
owners and consumers with the appropriate wearable 
device with TEE support. Our design consists of secure 
and fair incentive mechanisms for the users selling the 
data records as NFTs or participating in crowdsourced 
federated learning. Our security model tackles malicious 
sellers, data consumers, and external third parties. This 
makes our marketplace a Findable, Accessible, Interoper-
able, and Reusable (FAIR) data source [55]. Our approach 
is also practical if major wearable device manufacturers 
start supporting TEE-based data attestation. Also, since 
federated learning is distributed and the initial models run 
on user devices, it may help small organizations save in-
frastructure costs associated with model training and data 
storage.

The main limitations of our approach are, unlike 
software patches for any discovered vulnerabilities, any 
wearable device vulnerabilities in the TEE might require 
device replacement or withdrawal from marketplace 
participation. It may not be possible to onboard existing 
wearable devices onto our marketplace. Also, federated 
learning might only be best suited for training some types 
of models.
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