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1. Introduction: Role of Quantum Synergetic 
Effects in AI and Intelligent Control Models

R. Feynman and Yu. Manin, independently, 
suggested and correctly shown that quantum 
computing can be effectively applied for simu-

lation and searching of solutions of classically intractable 
quantum systems problems using quantum programmable 
computer (as physical devices). Recent research shows 
successful engineering application of end-to-end quantum 
computing information technologies (as quantum sophisti-
cated algorithms and quantum programming) in searching 
of solutions of algorithmic unsolved problems in classical 
dynamic intelligent control systems, artificial intelligence, 

intelligent cognitive robotics etc. 
Concrete developments are the cognitive “man-robot” 

interactions in collective multi-agent systems, “brain-com-
puter-device” interface of autism children supporting with 
robots for service use, and so on. These applications are 
examples successful result applications of efficient clas-
sical simulation of quantum control algorithms in the al-
gorithmic unsolved problems of classical control systems 
robustness in unpredicted control situations. 

Related works. Many interesting results are published 
as fundamentals and applications of quantum / classical 
hybrid approach to design of different smart classical or 
quantum dynamic systems. For example, an error mitiga-
tion technique and classical post-processing can be con-
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veniently applied, thus offering a hybrid quantum-clas-
sical algorithm for currently available noisy quantum 
processors [1] or Quantum Triple Annealing Minimization 
(QTAM) algorithm utilizes the framework of simulated 
annealing, which is a stochastic point-to-point search 
method: The quantum gates that act on the quantum states 
formulate a quantum circuit with a given circuit height 
and depth [2]. A new local fixed-point iteration plus global 
sequence acceleration optimization algorithm for general 
variational quantum circuit algorithms in [3] is described. 
The basic requirements for universal quantum computing 
have all been demonstrated with ions and quantum algo-
rithms using few-ion-qubit systems have been implement-
ed [4]. Quantum computing is finding a vital application 
in providing speed-ups for machine learning problems, 
critical in “big data” world. Machine learning already per-
meates many cutting-edge technologies, and may become 
instrumental in advanced quantum technologies. Aside 
from quantum speed-up in data analysis, or classical ma-
chine learning optimization used in quantum experiments, 
quantum enhancements have also been (theoretically) 
demonstrated for interactive learning tasks, highlighting 
the potential of quantum-enhanced learning agents [5]. In [6] 
the system PennyLane as a Python 3 software framework 
for optimization and machine learning of quantum and 
hybrid quantum / classical computations is introduced. A 
plugin system makes the framework compatible with any 
gate-based quantum simulator or hardware and provided 
plugins for Strawberry Fields, Rigetti Forest, Qiskit, and 
ProjectQ, allowing PennyLane optimizations to be run on 
publicly accessible quantum devices provided by Rigetti 
and IBM Q. On the classical front, PennyLane interfaces 
with accelerated machine learning libraries such as Ten-
sorFlow, PyTorch, and auto grad. PennyLane can be used 
for the optimization of variational quantum eigensolvers, 
quantum approximate optimization, quantum machine 
learning models, and many other applications. The first 
industry-based and societal relevant applications will be 
as a quantum accelerator. It is based on the idea that any 
end-application contains multiple parts and the properties 
of these parts are better executed by a particular acceler-
ator which can be either an FPGA, a GPU or a TPU. The 
quantum accelerator added as an additional coprocessor. 
The formal definition of an accelerator is indeed a co-pro-
cessor linked to the central processor and that executes 
much faster certain parts of the overall application [7]. 
Limited quantum memory is one of the most important 
constraints for near-term quantum devices. Understanding 
whether a small quantum computer can simulate a larger 
quantum system, or execute an algorithm requiring more 
qubits than available, is both of theoretical and practical 

importance and in [8] is discussed. One prominent platform 
for constructing a multi-qubit quantum processor involves 
superconducting qubits, in which information is stored 
in the quantum degrees of freedom of nanofabricated, 
anharmonic oscillators constructed from superconduct-
ing circuit elements. The requirements imposed by larger 
quantum processors have shifted of mindset within the 
community, from solely scientific discovery to the devel-
opment of new, foundational engineering abstractions as-
sociated with the design, control, and readout of multi-qu-
bit quantum systems. The result is the emergence of a 
new discipline termed quantum engineering, which serves 
to bridge the basic sciences, mathematics, and computer 
science with fields generally associated with traditional 
engineering [9, 10]. 

Moreover, new synergetic effects defined and extract-
ed from the measurement of quantum information (that 
hidden in classical control states of traditional controllers 
with time-dependent coefficient gain schedule) are the 
information resource for the increasing of the control sys-
tem robustness and guarantee the achievement of control 
goal in hazard situations. The background of this syner-
getic effect is the creation of new knowledge from exper-
imental response signals of imperfect knowledge bases 
on unpredicted situations using quantum algorithm of 
knowledge self-organization as quantum fuzzy inference. 
The background of developed information technology is 
the "Quantum / Soft Computing Optimizer" (QSCOptKB 
TM) software based on soft and quantum computational 
intelligence toolkit. 

Algorithmic constraints on mathematical models of 
data processing in classical form of computing (based on 
Church-Turing thesis and using background of classical 
physics laws) are dramatically differs from physical con-
straints on resources limitation in data information pro-
cessing models that based on quantum mechanical models 
such as information transmission, information bounds on 
the extraction of knowledge, amount of quantum acces-
sible experimental information, quantum Kolmogorov’s 
complexity, speed-up quantum limit of data processing, 
quantum channel capacity etc. Meaning exploring of the 
Landauer’s thesis as “Information is physical” has pre-
pared as result the background for changing, clarification 
and expanding the Church-Turing thesis, and introduce 
the R&D idea of quantum computing exploring and quan-
tum computer development for successful solving many 
classically algorithmic unsolved (intractable in classical 
mean) problems. 

The classification of quantum algorithms is demonstrat-
ed on Fig. 1.
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Figure 1. Classification of Quantum Algorithms and In-

terrelations with Quantum Fuzzy Control

Quantum algorithms are in general random: decision 
making quantum algorithms of Deutch-Jozsa and quan-
tum search algorithms (QSA) of Shor and Grover are ex-
amples of successful applications of quantum effects and 
constraints from introduction new classes computational 
basis quantum operators as superposition, entanglement 
and interference that are absent in classical computational 
models. These effects given the possibility to introduce 
new types of computation as quantum parallel massive 
computing using superposition operator, operator of en-
tanglement (super-correlation or quantum oracle) created 
the possibility of “good” (in general unknown) solution 
search and operator of quantum interference help extract 
searching “good” solutions with maximal amplitude 
probability . All of these operators are reversible, clas-
sical irreversible operator of measurement (as example, 
coin) extract the result of quantum algorithm computing. 
Note, that quantum effects that described above absent in 
classical models of computation and demonstrated the ef-
fectiveness of quantum constraints in classical models of 
computations. 

Figure 2 demonstrate the computing analogy between 
soft and quantum algorithms and its operators that are 
used in quantum soft computing information technology.
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Figure 2. Interrelations between Soft and Quantum Oper-
ators in Genetic and Quantum Algorithms

From quantum programming a quantum computer point 
view there no exist currently the general methodology of 
quantum computing and simulation of dynamic systems 
but it was developed many proposals of quantum simula-
tors (see, for example, the large list of quantum simulators 
available on [https://quantiki.org/wiki/list-qc-simulators]). 

Remark. The purpose of this article is concerned with 
the problem of discovering new QAs. Same as D-Wave, 
processor supercomputing processes in a quantum com-
puter can be described as a synergetic union of hybrid 
quantum / classical HW, and quantum SW with quantum 
soft support of quantum programming. 

Remark. To understand more clearly the fundamental 
capabilities and limitations of quantum computation we 
are to discover efficient QAs for interesting engineering 
problems as intelligent cognitive control systems. 

One the most important open problem in computer sci-
ence is to estimate the possibility of quantum speed-up for 
the search of computational problems solution. 

Oracular, or black-box, problems are the first exam-
ples of problems that can be solved faster with a quantum 
computer than with a classical computer. The computer in 
the black box model is given access to oracle (or a black 
box) that can be queried to acquire information about the 
problem. To find the solution to the problem using as few 
queries to the oracle as possible is the computation goal 
[11-13]. 

1.1 Goal and Problem Solving 

This article consider the design possibility a family of 
quantum decision-making and search algorithms (QA’s) 

DOI: https://doi.org/10.30564/aia.v1i1.619
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(see, Fig. 1) that it is the background of quantum com-
putational intelligence for solving the problems of Big & 
Mining data, deep quantum machine learning (based on 
quantum neural network), global optimization in intelli-
gent quantum control (using quantum genetic algorithms) 
etc. (see, in details Pt II). 

1.2 Method of Solution and Smart Toolkit

The presented method and relative hardware implements 
matrix and algorithmic forms of quantum operators that 
are used in a QA (entanglement or oracle operators, and 
interference operator as in second and third steps of QA 
implementation) that increasing computational speed-
up with respect to the corresponding SW realization of 
a traditional and a new QSA. A high level structure of 
a generic entanglement block that uses logic gates as 
analogy elements is described. Method for perform-
ing Grover interference without products is introduced 
[14,  15].  QUANTUM ALGORITHM ACCELATOR 
COMPUTING: SW / HW SUPPORT

A. General Structure of Quantum Algorithm 
The problem solved by a QA can be stated in the sym-

bolic form: 
Input A function f: {0,1}n →{0,1}m

Problem Find a certain property of function  f

A given function f  is the map of one logical state into 
another and QA estimate qualitative properties of function 
f . 

General description of QA on Fig. 3 is demonstrated 
(physically the type of operator FU  describes the qualita-
tive properties of the function f ).

Figure 4 shows the steps of QA that includes almost 
of described qualitative peculiarities of function f  and 
physical interpretation of applied quantum operators.

In the scheme diagram of Fig. 5 the structure of a QA 
is outlined. 
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As above mentioned QA estimates (without numerical 
computing) the qualitative properties of the function f . Thus 
with QAs we can study qualitative properties of function 
f  without quantitative estimation of function values. 

For example, Fig. 6 represents the general approach to 
Grover’ QAG design. 

Figure 6. Circuit and Quantum Gate Representation of 
Grover’s QSA

DOI: https://doi.org/10.30564/aia.v1i1.619
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As a termination condition criterion minimum-entropy 
based method is adopted [13]. 

The structure of a QAG in Fig. 3 in general form de-
fined as following:

( ) 1hn n m
FQAG Int I U H S

+
   = ⊗ ⋅ ⋅ ⊗        (1)

Where I is the identity operator; S is equal to I or H and 
dependent on the problem description. 

Fast algorithms design to simulate most of known QAs 
on classical computers [15-17] and computational intelli-
gence toolkit is following: 1) Matrix based approach; 2) 
Model representations of quantum operators in fast QAs; 
3) Algorithmic based approach, when matrix elements are 
calculated on “demand”; 4) Problem-oriented approach, 
where we succeeded to run Grover’s algorithm with up 
to 64 and more qubits with Shannon entropy calculation 
(up to 1024 without termination condition); 5) Quantum 
algorithms with reduced number of operators (entangle-
ment-free QA, and so on). 

Remark. In this article we describe briefly main blocks 
[13-17] in Fig. 6: i) unified operators; ii) problem-oriented 
operators; iii) Benchmarks of QA simulation on classical 
computers; and iv) quantum control algorithms based on 
quantum fuzzy inference (QFI) and quantum genetic al-
gorithm (QGA) as new types of QSA (see, more in details 
Part II of this article).

Let us consider matrix based and problem-oriented 
approaches to simulate most of known QAs on classical 
computers and small quantum computer.

I. Quantum operator’s description: SW&HW smart 
toolkit support 

We consider from simulation viewpoint the structure 
of quantum operators as superposition, entanglement and 
interference [14,16,18,19,23-26] in matrix based approach. 

Superposition operators of QA’s. 
The superposition operator consists in general form of 

the combination of the tensor products Hadamard H  op-
erators with identity operator I : 

1 1 1 01 ,
1 1 0 12

H I   
= =   −    .

The superposition operator of most QAs can be ex-
pressed (see Fig. 3 and Eq. (1)) as: 

1 1

n m

i i
Sp H S

= =

   = ⊗ ⊗ ⊗   
    ,

Where n  and m  are the numbers of inputs and of 
outputs respectively. Numbers of outputs m as well as 

structures of corresponding superposition and interference 
operators in [12, 13] for different QAs presented.

Elements of the Walsh-Hadamard operator could be 
obtained as following: 

( )
*

/ 2 / 2,

  1,     if  is even1 1
1,   if  is odd2 2

i j

n
n ni j

i j
H

i j
∗−   = =   − ∗      (2)

Where 0,1,..., 2 , 0,1,..., 2n ni j= = . Its elements could be 
obtained by the simple replication according to the rule 
presented in Eq. (2).

Interference operators of main QA’s
Interference operators for Grover’s algorithm [18, 19] writ-

ten as a block matrix:

/2,

/2 /2 /2

1
2

,1 1 11 ,
,2 2 2

Grover n
n ni j

n n n
i j i j

Int D I I I

I i j
I I

I i j= ≠

   = ⊗ = − ⊗ =    
− =   − + ⊗ ⊗ =     ≠     ,     (3)

where 0,..., 2 1, 0,..., 2 1n ni j= − = − , nD  refers to diffu-

sion operator: [ ]
1 ( )

/ 2,

( 1)
2

AND i j

n ni j
D

=−
=

 [4,8]. Note that with 
bigger number of qubits, gain coefficient will become 
smaller. 

Entanglement operators of main QA’s
Operators of entanglement in general form are the part 

of QA and the information about the function (being ana-
lyzed) is coded as “input-output” relation. In the general 
approach for coding binary functions into corresponding 
entanglement gates arbitrary binary function considered 
as: { } { }: 0,1 0,1 ,n mf →  such that 0 1 0 1( ,..., ) ( ,..., )n mf x x y y− −=
. Firstly irreversible function f  transfer into reversible 
function F , as following: { } { }: 0,1 0,1 ,m n m nF + +→ and 

( )0 1 0 1 0 1 0 1 0 1,..., , ,..., ( ,..., , ( ,..., ) ( ,..., ))n m n n mF x x y y x x f x x y y− − − − −= ⊕ ,

where ⊕  denotes addition modulo 2. This transfor-
mation create unitary quantum operator and performs the 
similar transformation. With reversible function F  it is 
possible design an entanglement operator matrix accord-
ing to the following rule:

[U iff F j i i jF ] i jB B,
= = ∈1  ( ) , ,  0,..,0;1,..,1;B B  

  


n m n m+ +


B denotes binary coding.

A diagonal block matrix of the form:
UF =

 
 
 
  
 

M

0

0



M

0

2 1n −  is 
actually resulted entanglement operator. 

Each block , 0,..., 2 1n
iM i = − , can be obtained as fol-

lowing 1

0

,   iff ( , ) 0
,  iff ( , ) 1

m

i k

I F i k
M

C F i k

−

=

=
= ⊗  =      (4)
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And consists of m  tensor products of I  or of C  op-
erators, where C  stays for NOT operator.

Note that entanglement operator (4) is a sparse matrix 
and according to this property, the simulation of entangle-
ment operation accelerated.

II. QA computing accelerator: SW&HW support 
Figure 7 shows the structure of intelligent quantum 

computing accelerator. 
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Figure 7. Intelligent Quantum Soft Computing Accelera-
tor Structure

HW of quantum computing accelerator is based on 
standard silicon element background. 

QA structure implementation for HW and MatLab is on 
Fig. 8 demonstrated (see, Fig. 23). 
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Different structures of QA can be realized as shown in 
Table 1 below.

Table 1. Quantum Gate Types for QA’s Structure Design

Title Type of Algorithm

Symbolic Form of QAG:

( )


1h

m n m
F

SuperpositionEntanglementInterference

Int I U H S

+
    ⊗ ⋅ ⋅ ⊗       





Deutsch-
Jozsa

(D. – J.)

m=1, S=H(x=1)
Int=nH

k=1 h=0
( ) ( ). . 1n D J n

FH I U H− +⊗ ⋅ ⋅

Simon
(Sim)

m=n,S=I
(x=0)Int=nH
k=O(n) h=0

( ) ( )n n Sim n n
FH I U H I⊗ ⋅ ⋅ ⊗

Shor
(Shr)

m=n, S=I
(x=0)Int=QFTn

k=O(Poly(n)) h=0
( ) ( )n Shr n n

n FQFT I U H I⊗ ⋅ ⋅ ⊗

Grover
(Gr)

m=1, S=H(x=1)
Int=Dn

k=1, h=O(2n/2) 
( ) ( )1Gr n

n FD I U H+⊗ ⋅ ⋅

1.3 Information Analysis of QA and Criterion for 
Solution of the QSA-termination Problem 

The communication capacity gives an index of efficiency 
of a quantum computation [19]. The measure of Shannon 
information entropy is used for optimization of the termi-
nation problem of Grover’s QSA. Information analysis of 
Grover’s QSA based on of Eq. (5), gives a lower bound on 
necessary amount of entanglement for searching of suc-
cess result and of computational time: any QSA that uses 

the quantum oracle calls { }sO  as 2I s s−  must call the 

oracle at least 
1 1

2 log
ePT N

Nπ π
 −

≥ + 
   times to achieve a 

probability of error eP  [20]. 
The information intelligent measure of QA as ( )T ψℑ  

of the state ψ  is [12, 21]:

( ) ( ) ( )
1 .

Sh VN
T T

T
S S

T
ψ ψ

ψ
−

ℑ = −
     (6)

With respect to the qubits in T and to the basis 
{ }1 nB i i= ⊗ ⊗

T h e  m e a s u r e  ( 6 )  i s  m i n i m a l  ( i . e . ,  0 )  w h e n 
( )Sh

TS T=y  and ( ) 0VN
TS =y ,  it  is maximal (i.e., 1) 

when ( ) ( )Sh VN
T TS S=y y . Thus the intelligence of the QA 

state is maximal if the gap between the Shannon and the 
von Neumann entropy for the chosen result qubit is mini-
mal. 

Information QA-intelligent measure (6) and interrela-
tions between information measures in Table 1 are used 
together with the step-by-step natural majorization princi-
ple for solution of QA-termination problem and interrela-
tions between information measures ( ) ( )Sh VN

T TS Sψ ψ≥  are 
used together with entropic relations of the step-by-step 
natural majorization principle for solution of QA-termi-
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nation problem [12]. From Eq. (6) we can see that (for pure 
states) 

( ) ( ) ( )
max 1 min

Sh VN
T T

T
S S

T
ψ ψ

ψ
 −
 ℑ −
 
 



( ) ( )min , 0Sh VN
T TS Sψ ψ = ,          (7)

i.e. from Eq. (6) the principle of Shannon entropy min-
imum is as follows. 

Figure 9 shows digital block of Shannon entropy min-
imum calculation and the main idea of the termination 
criterion based on this minimum of entropy [13, 14]. 
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Figure 9. Digital Block of Shannon Entropy Minimum 
Calculation (a) and MatLab (b) Implementations

Number of iterations of QA defined during the calcula-
tion process of minimum entropy search. 

The structure of HW implementation of main quantum 
operators.

Figure 10 shows the structure of superposition and in-
terference operator simulation. 
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The superpos i t ion  s ta te  i s  c rea ted  by  appl i -
ca t i on  o f  Hadamard  ma t r i x  t o  co lumn  vec to r 

as
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− = = + = −     − −      . According to 
this rule of quantum computing the superposition model-
ing circuit is developed [16]. 

Figure 11 shows the superposition modeling circuit. 

The first operations needed are H|0>, H|0> and 
H|1>. Neglecting the factor 1/20.5, it can be 
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Figure 11. Superposition (Qubit) Modeling Circuit

Qubits simulation circuits with tensor product on Fig. 
12 is shown. 

Note: no multipliers are introduced
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Figure 13 shows the computation of entanglement op-
erators. 
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Figure 13. The Computation of Entanglement Operators

Figure 14 shows the entanglement creation circuit. 

f(x)          0                        1                     0                        0

Idea: to avoid encoding steps by acting directly on 
entanglement output vector via function  f.

The output of entanglement  can be realized by using 
couples of XOR gates:

g1                       g2                        g3                       g4                   g5                        g6                         g7                     g8 

00                      01                       10      11

y1                  y2                         y3                     y4                          y5                        y6                         y7                         y8

Superposition  Output Entanglement Output

Figure 14. The Entanglement Creation Circuit

Thus it is possible to obtain output of entanglement 
G=UF ×Y without calculate matrix product and have only 
knowledge of corresponding row of diagonal UF matrix 
(see, Fig. 13).

Finally output vector G  can write as following (Fig. 
15):
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Figure 15: Equivalent form of Output Vector G

Figure 16 shows the entanglement circuit realization.
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Figure 16. Entanglement Circuit Realization

Figure 17 shows the circuit realization of interference 
operator according to the scheme in Fig. 10.
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Let us consider the output V of 
the entanglement block. 
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Figure 17. Interference Circuit Realization

Let us consider briefly applications of QAG design ap-
proach in highly structured QSA; and in AI, informatics, 
computer sciences and intelligent control problems (see 
Part II).

SIMULATION OF QA - COMPUTING ON CLAS-
SICAL COMPUTER

We discuss the general outline of the Grover’s QAs us-
ing the quantum gate (QAG) as 

( ) ( )1hG r n
n FQAG D I U H⊗ + = ⊗ ⋅ ⋅       (7)

General method design of QAGs in [13, 14] is developed 
and is briefly described. 

Figure 18a represents QAG of Grover’s algorithm (7) 
as control system, and Fig. 18b describe a general struc-
ture scheme of Grover's QSA (see, Fig. 1 and Table 1) [13].
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Figure 18. General Structure Scheme of Grover QSA

The Hadamard gates (Step 1) are the basic components 
for the superposition operation, the operator FU  (Step 2) 
performs entanglement operation and nD  (Step 3) is the 
diffusion matrix related to the interference operation. Our 
purpose is to realize some classical circuits (i.e. circuits 
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composed of classical gates AND, NAND, XOR etc.) that 
simulate the quantum operations of Grover QSA. To this 
aim all quantum operators must be expressed in terms 
of functions easily and efficiently described by classical 
components. When we try to make the HW components 
that perform this basic operations according to the classi-
cal scheme we encounter two main difficulties.

High-level gate design of Grover’s QSA (Model 
based approach)

In this section we present a new model based HW im-
plementing the functional steps of Grover’s QSA from 
a high-level gate design point of view. According to the 
high-level scheme in Eq. (7) introduced in Fig. 4, the pro-
posed circuit can be divided into two main parts.

Part I: (Analogue) Step-by-step calculation of output 
values. This part is divided into the following subparts:

I-a: Superposition; I-c: Pre-Interference (for vector’s approach);

I-b: Entanglement; I-d: Interference

Part II: (Digital) Entropy evaluation, vector storing for 
iterations and output visualization. This part also provides 
initial superposition of basis vectors 0  and 1 . 

Figure 19 shows a general structure scheme of the HW 
realization for the Grover’s QSA-circuits and itself can be 
considered as a classical prototype of intelligent control 
quantum system.

Figure 19. A General HW-scheme of the Grover’s QSA

Example. The most interesting novelty involves the 
structure of interference: in fact the generic element iv  
(interference output) can be written in function of ig  (en-
tanglement output) as the following 
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Figures 20a and 20b show the Simulink schematic de-
sign and circuit realization of superposition, entanglement 
and interference operator’s blocks of the Grover’s QAG. 
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Figure 20a. Simulink Scheme of 3-qubits Grover Search 
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Figure 20b. Pre Prototype Scheme Circuit of Grover’s 
QAG

Referring to Fig. 19, pre-interference operation evalu-
ates a weighted sum of odd (even) output elements of en-
tanglement, while interference itself uses this contribution 
in order to provide (by means of difference with ig ) the 
respective iv . This simple (but powerful) result in Eq. (8) 
has several consequences. 

Figure 21 shows experimental HW evolution of Gro-
ver’s quantum search algorithm for three qubits. 

Main Board

CPLD Board Entire Board

Figure 21. HW Realization of Grover QSA
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Remark. Regarding to speed-up of computation, a 
great improvement has been provided due to the smaller 
number of products (only one for each element of the out-
put vector) and more precisely 12n+  against 14n+  of the 
classical approach. Also additions are less than ( )2 2 1n n +  
instead of 14n+ ). But the most important fact is that all 
these operation can be easily implemented in HW with 
few operational amplifiers ( )2 2n + .

Example. Figure 22a - d shows the experimental 
probability evolution of finding each of the database’s 
elements (from Iteration #1 - to Iteration #4). At this step 
(Iteration #2) the probabilities of finding one of the 8 ele-
ments of the database are comparable. In the following 

Figure 22. Experimental Results of 3-qubits HW-imple-
mentation of Grover’s QSA

Figure 23 shows the result of entropy analysis for Gro-
ver’s QSA according to Eq. (6), case ( )07, 1.n f x= =  

Figure 23. Shannon Entropy Simulation of QSA with 7- 
inputs

In Fig. 22c the probability of finding the second ele-
ment of the database begins to increase with respect to the 
probabilities of finding the others elements. After some 
other iterations of the algorithm, the difference between 
the probability of finding the second element and the 
probabilities to find the others is increased. Finally the 
probability of extracting the second element of the data-
base is greater than the probabilities of finding any other 
elements. Figures 22b, 22c and 22d show the evolution 
of quantum searching using Grover’s QAG. It is a clear 
demonstration of how we can perform Grover’s algorithm 

by a classical computer. Similar approach can be used for 
the realization of quantum fuzzy computing [27]. 

Application of Grover’s QAG is classical efficient sim-
ulation process for realization of quantum search compu-
tation on classical computer (see in details [17]). 

QUANTUM ALGORITHM ACCELATOR COMPUT-
ING: SW SUPPORT: EXAMPLES (matrix approach)

The software system into two general sections is divid-
ed (see, Fig. 24). 
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Figure 24. Structure of QFMS and SW Toolkit

The first section involves common functions. The sec-
ond section involves algorithm-specific functions for real-
izing the concrete algorithms.

Figure 25 shows of quantum mechanical representation 
in SW of (bra – ket) vectors and calculation of quantum 
states as density matrices. 
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Figure 25. SW Representation of Density Matrix and 
Fidelity Calculation

Example: Quantum Shor’s Algorithm (Quantum facto-
rization promise). Figure 26 shows the factorization prob-
lem. Figure 27 shows the quantum Shor algorithm and its 
describing circuit (see Table 1). We can observe UF block 
that is a diagonal matrix of 2 22 2n n×  dimension. Final-
ly output of entanglement is processed by interference 
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block composed of Quantum Fourier Transform (QFT) 
and identity matrix I. The output of entire algorithm is 
therefore the vector obtained after application of opera-
tor n

nQFT I⊗ . 

1. Classical factorization
- 1024 bits: 105 years

- 2048 bits: 5x1015 years

- 4096 bits: 3x1029 years

2. Quantum factorization
•1024 bits: 4.5 min

•2048 bits: 36 min

•4096 bits: 4.8 hours

Fast integer numbers Factorization

Figure 26. Fast Factorization Problem and Its Solutions

Entanglement and interference 
operators UF,  QFT for Shor Algorithm








−

=
11

11
2

1    H

Figure 27. Quantum Shor’s Algorithm Circuit and Main 
Quantum Operators

Factorization time using matrix and vector approach 
are here reported (see, Fig. 28). 

Matrix approach

Vectorial approach

• 4 to 8 bits

• 8 to 11 bits

• 11 to 13 bits

≈8 sec

≈11 sec

≈ 5 min

• 4 to 6 bits

• 6 to 7 bits

• > 8 bits

≈7 min

≈16 min

Overflow

Simulation program  window

Figure 28. SW Simulation of Shor’s Quantum Factoriza-
tion Algorithm

Example: Command line simulation of the Grover’s 
quantum search algorithm The example of the Grover’s 
algorithm script is presented in Figs 29 and 30. 

Figure 29. Example of Grover Algorithm Simulation 
Script (Visualization of the Quantum Operators Sp, Ent, 

Int and G = (Int)(Ent)(Sp))

Figure 30. Example of Grover Algorithm Simulation 
Script (Visualization of the Input and of the Output Quan-

tum States)

In Fig. 29, the algorithm-related script is presented. It 
prepares the superposition (SP), entanglement (ENT) and 
interference (INT) operators of the Grover’s algorithm 
with 3 q-bits (including the measurement q-bit). Then it 
assembles operators into the quantum gate G. 

Then the script creates an input state 001in =  and 
calculates the output state out G in= × . The result of 
this algorithm in Matlab is an allocation of the operator 
matrices and of the state vectors in the memory. Code 
displays the operator matrices in Fig. 29 in 3D visualiza-
tion. In this case the vertical axis corresponds to the am-
plitudes of the corresponding matrix elements. Indexes of 
the elements are marked with the ket notation. Input |in> 
and the output |out> states are demonstrated in Fig. 25. In 
this case, the vertical axis corresponds to the probability 
amplitudes of the state vector components. The horizontal 
axis corresponds to the index of the state vector compo-
nent, marked using the ket notation. 

The title of the Fig. 30 contains the values of the Shan-
non and of the von Neumann entropies of the correspond-
ing visualized states.
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Other known QA can be formulated and executed using 
similar scripts, and by using the corresponding equations 
taken from the previous section.

Simulation of QAs as dynamic control system
In order to simulate behavior of the dynamic systems 

with quantum effects, it is possible to represent the QA as 
a dynamic system in the form of a block diagram and then 
simulate its behavior in time. Figure 31 is an example of a 
Simulink diagram of the quantum circuit for calculation of 
the fidelity a a  of the quantum state and for the calcula-
tion of the density matrix a a  of the quantum state. Bra 
and ket functions are taken from the common library. This 
example demonstrates the usage of the common functions 
for the simulation of the QA dynamics. 

In Fig. 31, input is provided to the ket function. The 
output of the ket function is provided to the first input of 
the matrix multiplier and as a second input of the matrix 
multiplier. Input is also provided to the bra function. The 
output of the bra function is provided to the second input 
of the matrix multiplier and as a first input of the matrix 
multiplier. Output of the multiplier is a density matrix of 
the input state. Output of the multiplier is the fidelity of 
the input state.

Figure 31. Simulink Diagram for the Simulation of the 
Arbitrary Quantum Algorithm

Figure 32 shows Simulink structure of an arbitrary 
QA. Such a structure can be used to simulate a number of 
quantum algorithms in Matlab / Simulink environment.

Figure 32. Simulink Diagram for the Simulation of the 
Arbitrary QA

Simulation result of Grover’s QSA on Fig. 33 is shown. 

Figure 33. Evolution of Grover’s Quantum Search Algo-
rithm: Quantum Simulator on Classical Computer (Matrix 

Approach)

Dynamic evolution of successful results of algorithm 
execution for the first iteration of Grover’s QAG for initial 
qubits state 0001  and different answer search is shown 
in Fig. 34. 

Figure 34. Grover’s QSA: Algorithm Execution [First 
Iteration]

Figure 35 shows algorithm execution results for Gro-
ver’s QSA with different number of iterations for success-
ful results with different searching answer number. 

Figure 35. Grover’s QA: Step 2. Algorithm Execution 
Results
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Figure 36 is a 3D dynamic representation of Grover’s 
QAG probabilities evolution (step 2 of Fig. 33) for differ-
ent cases of answer search. 

Figure 36. Grover’s QA: Step 2 [Algorithm Execution 3D 
Dynamics: Probabilities]

Algorithm execution results of Grover’s QAG (step 2 
of Fig. 33) with different stopping iteration for searching 
answers are shown in Fig. 35.

Example: Interpretation of measurement results in 
simulation of Grover’s QSA-QAG. 

In the case of Grover’s QSA this task is achieved 
(according to the results of this section) by preparing 
the ancillary qubit of the oracle of the transformation: 

( ): , ,fU x a x f x a⊕  in the state 
( )0

1 0 1
2

a = −
. 

The operator 0xI  is computationally equivalent to fU :

( ) ( ) ( )

( )


( )


0

0 0

1 10 1 0 1
2 2

1 10 1
2 2

f x

x x

Measurement MeasurementComputation Result Computation Result

U x I x

I x I x

   ⊗ − = ⊗ −    

   = ⊗ − ⊗   
 

and the operator fU  is constructed from a controlled 
0xI  and two one qubit Hadamard transformations. Fig-

ure 37 shows the interpretation of results of the Grover 
QAG. 

Figure 37. Grover’s QA: Step 2 [Result Interpretation]

Measured basis vector is computed from the tensor 
product between the computation qubit results and ancil-
lary measurement qubit. In Grover’s searching process the 
ancillary qubit does not change during the quantum com-
puting. 

As described above operator fU  is constructed from 
two Hadamard transformations and the Hadamard trans-

formation H (modeling the constructive interference) ap-
plied on the state of the standard computational basis can 
be seen as implementing a fair coin tossing. Thus, if the 

matrix 
1 11
1 12

H  
=  −   is applied to the states of the stan-

dard basis then 2 0 1H = − , 2 1 0H =  and therefore 
2H acts in measurement process of computational result 

as a NOT-operation up to the phase sign. In this case the 
measurement basis separated with the computational basis 
(according to tensor product). 

Figures 38 and 39 shows the measurement result and 
final results of entropy dynamic evolution interpretation 
of Grover’s QSA for search of successful results with 
different number of marked states (in computational basis 
{ }0 , 1 ). These results represent the possibility of the 
classical efficient simulation of Grover’s QSA. 

Figure 38. Interpretation of Measurement Results of QSA

Figure 39. Shannon Entropy Dynamics after 31 Steps of 
Grover’s QSA

Remark. Figure 38 (b) shows the results of computation 
on a classical computer and shows two possibilities:

 

0110 011 0
Result measurement qubit

 
 = ⊗ 
 
 and 
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                                     	 

 

0111 011 1
Result measurement qubit

 
 = ⊗ 
 
 .

Figure 38 (b) demonstrates also two searching marked 
states:

 

0110 011 0 1010 101 0
measurement qubit measurement qubit

or
 
 = ⊗ = ⊗ 
 
 

and
                                            

 

0111 011 1 1011 101 1
measurement qubit measurement qubit

or
 
 = ⊗ = ⊗ 
 
 

A similar situation is shown for two and three search-
ing marked states in Fig. 37 (b).

Using a random measurement strategy based on a fair 
coin tossing in the measurement basis { }0 , 1  one can 
independently receive with certainty the searched marked 
states from the measurement basis result. 

The measurement results based on a fair coin tossing 
measurement are shown in Fig. 38 (c) and shows accurate 
results of searching of corresponding marked states. Figure 38 
(c) shows also that for both possibilities in implementing 
a fair coin tossing type of measurement process the search 
for the answer is successful. 

Final results of interpretation for Grover’s algorithm 
are shown in Fig. 38. 

Let us describe briefly the main blocks in Fig. 2: i) uni-
fied operators; ii) problem-oriented operators; iii) Bench-
marks of QA simulation on classical computers; and iv) 
quantum control algorithms based on quantum fuzzy 
inference (QFI) and quantum genetic algorithm (QGA) as 
new types of QSA (see, Part II of this article).

Let us consider problem-oriented operators description.
Problem-oriented approach based on structural pattern of 

QA state vector with compressed vector allocation. 
Let n  be the input number of qubits. In the Grover 

algorithm (as mentioned above) half of all 12n+  elements 
of a vector making up its even components always take 
values symmetrical to appropriate odd components and, 
therefore, need not be computed. 

Odd 2n elements can be classified into two categories:
• The set of m elements corresponding to truth points of 

input function (or oracle); and
• The remaining 2n m−  elements.
The values of elements of the same category are always 

equal.
As discussed above, the Grover QA only requires two 

variables for storing values of the elements. Its limitation 
in this sense depends only on a computer representation of 
the floating-point numbers used for the state vector proba-
bility amplitudes. For a double-precision software realiza-
tion of the state vector representation algorithm, the upper 
reachable limit of q-bit number is approximately 1024 [13]. 

Figure 40 shows a state vector representation algorithm 
for the Grover QA. 

Figure 40. State Vector Representation Algorithm for 
Grover’ Quantum Search

Remark. In Fig. 40, i  is an element index, f is an input 
function, vx and va corresponds to the elements’ category, 
and v is a temporal variable. The number of variables used 
for representing the state variable is constant. A constant 
number of variables for state vector representation allow 
reconsideration of the traditional schema of quantum 
search simulation. 

Classical gates are used not for the simulation of ap-
propriate quantum operators with strict one-to-one corre-
spondence but for the simulation of a quantum step that 
changes the system state. Matrix product operations are 
replaced by arithmetic operations with a fixed number of 
parameters irrespective of qubit number. 

Figure 41 shows a generalized schema for efficient 
simulation of the Grover QA built upon three blocks, a 
superposition block H, a quantum step block UD and a 
termination block T. 

Figure 41. Generalized Schema of Simulation for Grover’ 
QSA

Figure 41 also shows an input block and an output 
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block. 
Remark. The UD block includes a U block and a D 

block. The input state from the input block is provided to 
the superposition block. A superposition of states from the 
superposition block is provided to the U block. An output 
from the U block is provided to the D block. An output 
from the D block is provided to the termination block. If 
the termination block terminates the iterations, then the 
state is passed to the output block; otherwise, the state 
vector is returned to the U block for iteration.

As shown in Fig. 42, the superposition block H for 
Grover QSA simulation changes the system state to the 
state obtained traditionally by using n + 1 times the tensor 
product of Walsh-Hadamard transformations. In the pro-
cess shown in Fig. 41, vx:= hc, va:= hc, and vi:= 0, where 
hc = 2 - (n+1) / 2 is a table value. 

Figure 42. Superposition Block for Grover’s QSA

The quantum step block UD that emulates the entan-
glement and interference operators is shown on Figs 43 (a 
- c). 

Figure 43 (a). Emulation of the Entanglement Operator 
Application of Grover’s QSA

Figure 44 (b). Emulation of Interference Operator Appli-
cation of Grover’s QSA

Figure 44 (c). Quantum Step Block for Grover’ Quantum 
Search

The UD block reduces the temporal complexity of the 
quantum algorithm simulation to linear dependence on the 
number of executed iterations. The UD block uses recal-
culated table values dc1 = 2n m−  and dc2 = 2 n-1. 

Remark. In the U block shown in Fig. 44 (a), vx:= - vx 
and vi:= vi + 1. In the D block shown in Fig. 44 (b), v:= 
m*vx+dc1*va, v:= v/dc2, vx:= v - vx, and va:= v - va in 
the UD block shown in Fig. 44 (c), v:= dc1*va = m*vx, 
v:=v/dc2, vx:=v + vx, va:= v - va, and vi:= vi + 1.

The termination block T is general for all QAs, in-
dependently of the operator matrix realization. Block T 
provides intelligent termination condition for the search 
process. Thus, the block T controls the number of itera-
tions through the block UD by providing enough itera-
tion to achieve a high probability of arriving at a correct 
answer to the search problem. The block T uses a rule 
based on observing the changing of the vector element 
values according to two classification categories. The T 
block during a number of iterations, watches for values 
of elements of the same category monotonically increase 
or decrease while values of elements of another category 
changed monotonically in reverse direction. If after some 
number of iteration the direction is changed, it means that 
an extremum point corresponding to a state with maxi-
mum or minimum uncertainty is passed. The process can 
using direct values of amplitudes instead of considering 
Shannon entropy value, thus, significantly reducing the 
required number of calculations for determining the mini-
mum uncertainty state that guarantees the high probability 
of a correct answer. 

The termination algorithm realized in the block T can 
be used one or more of five different termination models:

o Model 1: Stop after a predefined number of iterations;
o Model 2: Stop on the first local entropy minimum;
o Model 3: Stop on the lowest entropy within a pre-

defined number of iterations;
o Model 4: Stop on a predefined level of acceptable en-

tropy; and/or
o Model 5: Stop on the acceptable level or lowest 
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reachable entropy within the predefined number of itera-
tions.

Note that models 1 - 3 do not require the calculation of 
an entropy value. 

Figures 45 – 47 show the structure of the termination 
condition blocks T. 

Figure 45. Termination Block for Method 1

Figure 46. Component B for the Termination Block

Figure 47 (a). Component PUSH for the Termination 
Block

Figure 47 (b). Component POP for the Termination Block

Since time efficiency is one of the major demands on 
such termination condition algorithm, each part of the ter-
mination algorithm is represented by a separate module, 
and before the termination algorithm starts, links are built 
between the modules in correspondence to the selected 
termination model by initializing the appropriate func-
tions’ calls.

Table 2 shows components for the termination condi-
tion block T for the various models. Flow charts of the 
termination condition building blocks are provided in Figs 
45 – 50 

Table 2. Termination Block Construction

Model T B’ C’

1 A -- --

2 B PUSH --

3 C A B

4 D -- --

5 C A E

The entries A, B, PUSH, C, D, E, and PUSH in Table 2 
correspond to the flowcharts in Figs 40 – 45 respectively.

Figure 48. Component C for the Termination Block
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Figure 49. Component D for the Termination Block

Figure 50. Component E for the Termination Block

Remark: Peculiarities of QA termination models in 
model 1, only one test after each application of quantum 
step block UD is needed. This test is performed by block 
A. So, the initialization includes assuming A to be T, i.e., 
function calls to T are addressed to block A. Block A is 
shown in Fig. 45 and checks to see if the maximum num-
ber of iterations has been reached, if so, then the simula-
tion is terminated, otherwise, the simulation continues.

In model 2, the simulation is stopped when the direc-
tion of modification of categories’ values are changed. 
Model 2 uses the comparison of the current value of vx 
category with value mvx that represents this category val-
ue obtained in previous iteration:

(i) If vx is greater than mvx, its value is stored in mvx, 
the vi value is stored in mvi, and the termination block 
proceeding to the next quantum step;

(ii) If vx is less than mvx, it means that the vx maximum 
is passed and the process needs to set the current (final) 
value of vx: = mvx, vi := mvi, and stop the iteration pro-
cess. So, the process stores the maximum of vx in mvx and 
the appropriate iteration number vi in mvi. Here block B, 
shown in Fig. 46 is used as the main block of the termina-
tion process. 

The block PUSH, shown in the Fig. 47 (a) is used for 
performing the comparison and for storing the vx value in 
mvx (case a). A POP block, shown in Fig. 47 (b) is used 
for restoring the mvx value (case b). In the PUSH block 
of Fig. 47 (a), if |vx| > |mvx|, then mvx: = vx, mva: = va, 
mvi: = vi, and the block returns true; otherwise, the block 
returns . In the POP block of Fig. 47 (b), if |vx| <= |mvx|, 

then vx: = mvx, va:= mva, and vi:= mvi.
The model 3 termination block checks to see that a pre-

defined number of iterations do not exceed (using block A 
in Fig. 43):

• If the check is successful, then the termination block 
compares the current value of vx with mvx. If mvx is less 
than, it sets the value of mvx equal to vx and the value of 
mvi equal to vi. If mvx is less using the PUSH block, then 
perform the next quantum step;

• If the check operation fails, then (if needed) the final 
value of vx equal to mvx, vi equal to mvi (using the POP 
block) and the iterations are stopped.

The model 4, the termination block uses a single com-
ponent block D, shown in Fig. 48. The D block compares 
the current Shannon entropy value with a predefined ac-
ceptable level. If the current Shannon entropy is less than 
the acceptable level, then the iteration process is stopped; 
otherwise, the iterations continue.

The model 5 termination block uses the A block to 
check that a predefined number of iterations do not ex-
ceeded (see, Fig. 45). If the maximum number is exceed-
ed, then the iterations are stopped. Otherwise, the D block 
is then used to compare the current value of the Shannon 
entropy with the predefined acceptable level. If acceptable 
level is not attained, then the PUSH block is called and the 
iterations continue. If the last iteration was performed, the 
POP block is called to restore the vx category maximum 
and appropriate vi number and the iterations are ended.

Figure 51 shows measurement of the final amplitudes 
in the output state to determine the success or failure of 
the search. 

Figure 51. Final Measurement Emulation

If |vx| > |va|, then the search was successful; otherwise, 
the search was not successful. 

Table 3 lists results of testing the optimized version of 
Grover QSA simulator on personal computer with Penti-
um 4 processor at 2GHz.

Table 3 High Probability Answers for Grover QSA

Qbits Iterations Time

32 51471 0.007
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36 205887 0.018

40 823549 0.077

44 3294198 0.367

48 13176794 1.385

52 52707178 2.267

56 210828712 20.308

60 843314834 81.529

64 3373259064 328.274

Simulation results
The theoretical boundary of this approach is not the 

number of qubits, but the representation of the float-
ing-point numbers. The practical bound is limited by the 
front side bus frequency of the personal computer. Using 
the above algorithm, a simulation of a 1000 qubit Grover 
QSA requires only 96 seconds for 108 iterations.

Figure 52 shows the simulation result of Grover’s algo-
rithm [problem-oriented approach with compressed vector 
allocation] [14]. 

In less than 2 minutes

100 000 000 
Iterations

1000 qubit Grover’s algorithm simulation
(              elements in DB)10002

Figure 52. Simulation Results of Problem Oriented 
Grover’s QSA According to Approach 4 with 1000 Qubit 

(Simulator Window Snapshot)

The described method is differed from [23-44].
Let us discuss briefly the applications of QAG ap-

proach in design of new types of quantum search algo-
rithm as quantum genetic algorithm. 

Quantum fuzzy inference and quantum genetic algo-
rithm: Quantum simulator

Intelligent control systems (ICS) based on the use of 
soft computing, fuzzy logic, evolutionary algorithms and 
neural networks. Basis of management systems - propor-
tional–integral–derivative (PID) controller, which is used 
in 70% of the industrial automation, but often can`t cope 
with the task of managing and does not work well in un-
predicted control situations. The use of quantum comput-
ing and quantum search algorithms, as a special example, 
quantum fuzzy inference (QFI), allows increasing robust-

ness without the cost of a time resource - in on line. 
Figure 53 show an ICS with the integration of several 

fuzzy controllers and QFI which allows create a new qual-
ity in management – online self-organization of knowl-
edge base (KB) [45].

PID Control
object

m(t)

SCO + QCOQFC
off-line tuning

on-line tuning
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Figure 53. Structure of robust ICS based on QFI

In general, the structure of a quantum algorithmic gate 
(QAG) based on a quantum genetic algorithm (QGA) de-
scribed in (9) in the form:

( ) [ ]
1hn n m

FQAG Int I U QGA H S
+

   = ⊗ ⋅ ⋅ ⊗   .     (9)

Structure of corresponding QAG on Fig. 54 is shown. 

Figure 54. QAG Structure of QFI

The first part in designing Eq. (9) is the choice of the 
type of the entangled state of operator FU . The basic unit 
of such an ICS is the quantum genetic search algorithm 
(QGPA) (see, Fig. 55).

Figure 55. Intelligent Self-organizing Quantum Search 
Algorithm for Intelligent Control Systems
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Results of simulation show computing effectiveness of 
robust stability and controllability of (QFI + QGA)-con-
troller and new information synergetic effect: from two 
fuzzy controllers with imperfect knowledge bases can 
be created robust intelligent controller (extracted hidden 
quantum information from classical states is the source of 
value work for controller [45]). Intelligent control systems 
with embedding intelligent QFI-controller can be realized 
either on classical or on quantum processors (as an exam-
ple, on D-Wave processor type). 

Two classes of quantum evolution (9) are described: 
quantum genetic algorithm (QGA) and hybrid genetic 
algorithm (HGA). The QFI algorithm for determining 
new PID coefficient gain schedule factors K (see Fig.56) 
consists of such steps as normalization, the formation of a 
quantum bit, after which the optimal structure of a QAC is 
selected, the state with the maximum amplitude is select-
ed, decoding is performed and the output is a new param-
eter K. 

Figure 56. QFI Algorithm Structure on Line

At the input, the QFI obtains coefficients from the 
fuzzy controller knowledge bases formed in advance 
based on the KB optimizer on soft calculations.

The next step is carried out normalization of the re-
ceived signals [0, 1] by dividing the current values of con-
trol signals at their maximum values (max k), which are 
known in advance.

Formation of quantum bits. The probability density 
functions are determined. They are integrated and they 
make the probability distribution function. They allow de-
fining the virtual state of the control signals for generating 
a superposition via Hadamard transform of the current 
state of the entered control signals.

The law of probability is used: (| 0 ) (|1 ) 1〉 + 〉 = , where 
(| 0 )p 〉  is the probability of the current real state and 
(|1 )p 〉  is the probability of the current virtual state. The 

superposition of the quantum system "real state - virtual 

state" has the form:  ( ) ( )( )1 0 0 1 0 1
2

p pψ = + − .
The next step is selection of the type of quantum cor-

relation - constructing operation of entanglement. Three 

types of quantum correlation are considered: spatial, tem-
poral and spatial-temporal. Each of them contains valu-
able quantum information hidden in a KB.

Quantum correlation considered as a physical compu-
tational resource, which allows increasing the successful 
search for solutions of algorithmically unsolvable prob-
lems. In our case, the solution of the problem of ensuring 
global robustness of functioning of the control object 
under conditions of unexpected control situations by de-
signing the optimal structure and laws of changing the 
PID controller gain factors by classical control methods 
is an algorithmically unsolvable problem. The solution of 
this problem is possible based on quantum soft computing 
technologies [17]. The output parameters of the PID-reg-
ulators are considered as active information-interacting 
agents, from which the resulting controlling force of the 
control object is formed. In a multi-agent system, there 
is a new synergistic effect arising from the exchange of 
information and knowledge between active agents (swarm 
synergetic information effect) [17]. 

Types and operators of quantum genetic algorithms. 
There are several different types of quantum genetic algo-
rithms. All of them are built on a combination of quantum 
and classical calculations. Quantum computing includes 
quantum genetic operators performing genetic operations 
on quantum chromosomes. These operators are called in-
terference gates.

There are several update operators, but Q-gate inter-
ference (rotation) is the most popular [42-44]. The quantum 
interference operator is denoted as gate ( )U t : 

cos( ) sin( )
( )

sin( ) cos( )
j j

j j
U t

δθ δθ
δθ δθ

− 
=  

  .

Using this operator, the evolution of a population is the 
result of a process of unitary transformations. In particular, 
rotations, which approximate the state of chromosomes to 
the state of the optimal chromosome in the population. The 
gate enhances or reduces the amplitude of qubits or genes 
in accordance with the chromosome with the maximum 
fitness function: 1 2 3( , , ,..., )

i jf x x x x  (maximum). The best 
individuals determine the evolution of the quantum state. 
We considered the quantum genetic algorithm (QGA) [35, 36], 
the gate of rotations and a quantum gate of mutation and a 
crossover operator is added to the HGA between them. 

Remark. In the classical genetic algorithm (GA), the 
choice operator mimics Darwinian natural selection, im-
proving populations, promoting individuals with better 
fitness and “punishing” those who have the worst perfor-
mance. In the QGA, the choice is replaced by changing all 
individuals to the best. Therefore, when the rotation oper-
ator updates the population, the population converges, but 
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usually the CGA falls into local optima that undergo pre-
mature convergence. To avoid this, the QGA often include 
either a tape measure or an elite selection. For example, 
QGA with a selection step is used in an improved K-means 
clustering algorithm. There are even more extreme ap-
proaches, for example, when the QGA includes the selec-
tion and simulation algorithm for annealing, precluding 
premature convergence. In other cases, the selection step 
is enabled without resorting to the operators commonly 
used in GA. Such a case of a semiclassical GA (where the 
selection (choice) operator tends to maximize its suitabil-
ity through a quantum approach) for example using the 
Grover algorithm [14, 18].

Quantum mutation operator (inversion). In the GA 
simulation, there is also a quantum version of the classical 
mutation operator. The gate performs the inter qubit muta-
tion of the j-th qubit, replacing the amplitudes with Pauli's 
quantum gate.

Quantum mutation operator (insertion). This gate re-
sembles the biological mechanism for introducing chromo-
somes. Chromosome insertion means that a chromosome 
segment has been inserted into an unusual position on the 
same or a different chromosome. The quantum version of 
this genetic mechanism involves a permutation or exchange 
between two randomly selected qubits (left, right). For ex-
ample, suppose that, given the following chromosome, the 
first and third qubits are chosen randomly.

The quantum transition operator (classical). A quan-
tum crossover is modeled similar to the classic recombi-
nation algorithm used in GA, but it works with probability 
amplitudes. Although the quantum version of the mutation 
can be implemented on a quantum computer, there are 
theoretical reasons that prevent crossover. 

Quantum crossover operator (interference). This quan-
tum operator performs crossover by recombination in ac-
cordance with a criterion based on drawing diagonals. As 
a result, all individuals mix with each other, resulting in 
progeny. Both (QGA and HQGA) quantum algorithms are 
tested on example of the roots searching task of equation 

as:
5( ) | sin( ) |
2

f x x x= − + . 
QGA resulting performance indicates the following 

(see, Fig. 57). 
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Figure 57. Result of Quantum Genetic Algorithm

It can be seen that after about 30 populations, the value 
of the fitness function ceases to change. HGA shows the 
following results (see, Fig. 58).
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Figure 58. Result of Hybrid Genetic Algorithm

Remark. One of the interesting ideas was proposed in 
2004, taking the first steps in implementing the genetic al-
gorithm on a quantum computer [45]. The author proposed 
this quantum evolutionary algorithm, which can be called 
the reduced quantum genetic algorithm (RQGA). 

The algorithm consists of the following steps: 1) Initial-
ization of the superposition of all possible chromosomes; 
2) Evaluation of the fitness function by the operator F; 3) 
Using Grover's algorithm; 4) Quantum oracle; 5) Using 
of the diffusion operator Grover G; 6) Make an evaluation 
of the decision. The search for solutions in RQGA is per-
formed in one operation.

In this case the matrix form is the result of RQGA ac-
tion as following (see, Fig. 59)

Figure 59. The Result of the RQGA Algorithm
After action of GQA more than 1000 generation we can 

see on Fig. 60 that around 70% spatio-temporal correla-
tion have best probability choice. 
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Figure 60. The Result of the QGA
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Temporal and spatial correlations have similar quality. 
After 5000 generations probability value is not changing. 
QGA after 200 generations the probability choice of spa-
tio-temporal correlation decreases to 60% (see, Fig. 61). 

Q-S-T, 60
Q-T, 24

Q-S, 16

Figure 61. The Result of the Quantum Genetic Algorithm 
200 Times

The overall strategy for improving the quality of QGA 
is to use small improvements in the algorithm. For exam-
ple, including new operators: “quantum disaster”, distur-
bance, or other customized algorithms [17]. But in many 
cases, these operators are only useful in highly specific 
applications [47-53].

Simulator structure and examples of applications
The use of simulators has long been used in various in-

dustries: motor racing, aviation, surgery and many others. 
The development of virtual reality technology and aug-
mented reality adds the ability to create simulators with 
full immersion.

Remark. In the development of quantum genetic algo-
rithm in this article on the model of the inverted pendu-
lum (autonomous robot) was discovered a few problems. 
Firstly, testing a written algorithm on a robot takes a lot of 
time. Secondly, you may encounter an incorrectly working 
HW, and it is rather difficult to identify the malfunction 
itself. Thirdly, the GA is the selection of parameters that 
work best in a particular situation, but it’s quite common 
that these parameters were very bad, which makes it diffi-
cult to set up a dynamically unstable object.

Description of the problem. The main goal of the 
simulator development is SW testing, educational goals, 
and the ability to observe the pendulum's behavior when 
using various intelligent control algorithms with different 
parameters: using only the PID controller, adding a fuzzy 
controller to the ICS, using the GA and neural network, 
using QGA. The simulator is interesting because it covers 
many areas required for its implementation. There are also 
many different ways of development: improvement of the 
2D model or even implementation in 3D, control of the 
pendulum in on line (changing the parameters of the pen-
dulum, adding various noises), making the simulator more 

universal for simply creating simulations of other tasks 
based on the prepared project.

Selection of development toolkit. Simulator access is as 
simple as possible and it is implemented as a non-typical 
web application. The diagram of the sequence of the user's 
work with the system and the interaction of the model, the 
presentation and the template are presented on Fig. 62.

Figure 62. Sequence Diagram of System

Most of the server side work is math. It is necessary 
to calculate the position of the carriage, the angle of in-
clination of the pendulum in space. For this reason, Py-
thon and the Django framework, which implements the 
model-view-controller (MVC) approach, were chosen 
as the programming language (or in Django, this is the 
model-view-template (MVT)). MySQL is used to store all 
data, and the architecture has been developed for adding 
Redis to be faster, if the MySQL operation speed is insuf-
ficient.

Figure 63 show Benchmark results of quantum intelli-
gent control simulation of “cart - pole” system with QGA 
(box for the type choice of “Quantum correlation” on Fig. 
54).

Partial rendering performance of the simulator is shown 
in Fig. 63.

(a) Visualization of Inverted Pendulum Behavior
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(b) Cart Behavior (Q-S-T – Quantum Spatio-temporal 
Correlation; Q-T – Quantum Temporal Correlation; 

Q-S – Quantum Spatial Correlation; FC – Fuzzy Con-
troller)

Figure 63. Simulation results of “cart - pole” system with 
PID - controller, fuzzy controllers and QFI-QGA-control-

ler with different quantum correlation

The described method is differed from [47-53].
Example: Application of quantum computing opti-

mizer of knowledge base (QCOPTKBTM) for the case of 
experimental teaching signal from control object Control 
object shown on Fig. 64 a. Structure of robust ICS based 
on QFI is shown on Fig. 53 and on Fig. 54 is shown QAG 
structure of QFI that used in the simulation and experi-
ment. On Fig. 64 b are demonstrated results of simulation 
and experimental results comparison. Mathematical mod-
eling and experimental results are received for the case 
of unpredicted control situation and knowledge base of 
fuzzy controller was designing with SW of QCOPTKBTM 
for teaching signal measured directly from control object 
(autonomous robot on Fig. 64 a). As model of unpredicted 
control situation on Fig. 53 (Box 1Z- ) was the situation 
of feedback sensor signal delay on three times. 

(a)

(b)

Figure 64. Autonomous Robot with Inverted Pendulum (a) 
and Simulation & Experimental Results Comparison for 

Unpredicted Control Situation in Cases of PID-controller, 
Fuzzy Controller and QFI-controller (b)

Results of controllers behavior comparison confirm 
the existence of synergetic self-organization effect in the 
design process of robust KB on the base of imperfect (non 
robust) KB of fuzzy controllers on Fig. 53. In unpredicted 
control situation control error is dramatically changing 
and KB responses of fuzzy controllers (FC 1 and FC 2) 
that designed in learning situations with soft computing 
are imperfect and do not can achieve the control goal. 
Using responses of imperfect KB (as control signals for 
design the schedule of time dependent coefficient gain in 
PID-controller on Fig. 53) in Box QFI the robust control 
is formed in on line. This effect is based on the existence 
of additional information resource that extracted by QFI 
as quantum information hidden in classical states of con-
trol signal as response output of imperfect KB’s on new 
control error (QFI algorithm structure on line in Fig. 56). 
QGA in Fig. 56 for this case recommended the spatial 
quantum correlation as was early received in [54, 55]. 

2. Discussion

The described design method of ICS based on QAG-ap-
proach let to achieve global robustness in the case of 
unpredicted control situations in online using new types 
of computational intelligence toolkit as quantum and soft 
computing and based on computational resource of classi-
cal computers. The introduced model of QFI is a new type 
of quantum search algorithm based on sophisticated struc-
ture of quantum genetic algorithm embedded in his struc-
ture. Such on an approach to the solution of robust control 
design problems of classical nonlinear control objects 
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(in general globally unstable and essentially nonlinear) is 
considered as Benchmark for effective application of de-
veloped design information technology of ICS [14, 54-58]. The 
results of simulation and experiment show unconventional 
(for classical Boolean logic) conclusion: from response 
of two non-robust imperfect KB of FCs in the structure of 
ICS on Fig. 53 with new quantum search algorithm QFI 
possible to design in online robust quantum FC. 

With RQGA based on reduced Grover’s QSA used 
spatial quantum correlation between two coefficient gain 
schedules of FCs in Fig. 53 and quantum self-organization 
of imperfect KBs in online effectively on classical stan-
dard chip realized and described on concrete example. 

This synergetic information effect has pure quantum 
nature, used hidden in classical states quantum informa-
tion as additional information resource and does not have 
classical analogy. 

3. Conclusions

o New circuit implementation design method of quan-
tum gates for fast classical efficient simulation of QAs is 
developed. Benchmarks of design application as Grover’s 
QSA and QFI based on QGA demonstrated. Applications 
of QAG approach in intelligent control systems with 
quantum self-organization of imperfect knowledge bases 
are described on concrete examples. 

o The results demonstrate the effective application pos-
sibility of end-to-end quantum technologies and quantum 
computational intelligence toolkit based on quantum soft 
computing for the solution of intractable classical [59] and 
algorithmically unsolved problems as design of global 
robustness of ICS in unpredicted control situations and 
intelligent robotics.

o Efficient simulation on classical computer quantum 
soft computing algorithms, robust fuzzy control based 
on quantum genetic (evolutionary) algorithms and quan-
tum fuzzy neural networks (that can realized as modified 
Grover’s QSA), AI-problems as quantum gate simulation 
approaches and quantum deep learning, quantum optimi-
zation in Part II are considered.

o Thus, positive application results of mutual tech-
nologies based on soft and quantum computing give the 
possibility of application Feymann - Manin thesis to study 
classical physical system as inverse problem “quantum 
control system – classical control object” solve effectively 
classical intractable and algorithmic unsolved problems.
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