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ABSTRACT
In the rapidly evolving field of Artificial Intelligence (AI), efficiently storing and managing AI models is crucial, 

particularly as their complexity and size increase. This paper explores the strategic importance of AI model storage, 
focusing on performance, cost-efficiency, and scalability within the realm of customer churn prediction, utilizing 
model compression technologies. Deep learning networks, integral to AI models, have become increasingly large, 
necessitating millions of parameters. These parameters make the models computationally expensive and voluminous in 
storage requirements. Addressing these issues, the paper discusses the application of model compression techniques—
specifically pruning and quantization—to mitigate the storage and computational challenges. The experimental results 
demonstrated the effectiveness of the proposed method. These techniques reduce the physical footprint of AI models and 
enhance their processing efficiency, making them suitable for deployment on resource-constrained devices. Using these 
models in customer churn prediction in telecommunications illustrates their potential to improve service delivery and 
decision-making processes. By compressing models, telecom companies can better manage and analyze large datasets, 
enabling more effective customer retention strategies and maintaining a competitive edge in a dynamic market.
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1. Introduction
In the rapidly evolving field of Artificial Intel-

ligence (AI), the development and deployment of 
AI models have become central to transforming 
industries, enhancing decision-making processes, and 
improving service delivery across various sectors [1–5]. 
For instance, Luo et al. developed an utterance-based 
parallel neural network for effective audio sentiment 
analysis and demonstrated its effectiveness [1]. Qiu et al. 
first proposed a Siamese network for pose-guided 
matching in rehabilitation training and deployed the 
algorithm in the software [2]. Li et al. introduce DDN-
SLAM, the pioneering real-time dense dynamic 
neural implicit SLAM system that integrates se-
mantic features, achieving excellent performance [3].  
However, as these models increase in complexity 
and size, the challenge of efficiently storing and 
managing these models becomes critical. This paper 
explores the strategic importance of AI model stor-
age, particularly focusing on its impact on perfor-
mance, cost-efficiency, and scalability in the realm of 
customer churn prediction using model compression 
technologies.

AI models, particularly deep learning networks, 
have grown not only in sophistication but also in the 
size of their architectures and the datasets they re-
quire [6, 7]. It is inspired by biology domain which has 
achieved significant progress in the last decades [8–14]. 
These models are typically composed of millions, if 
not billions, of parameters, making them both com-
putationally expensive and large in terms of storage 
requirements. Efficient model storage is not merely a 
technical requirement but a strategic one, impacting 
everything from the speed of model deployment to 
the cost of operations and the feasibility of real-time 
analytics.

The significance of AI model storage can be dis-
cerned through several critical lenses: performance 
optimization, cost reduction, and regulatory compli-
ance. Each of these aspects is essential for businesses 
that rely on AI to drive customer insights and oper-
ational efficiencies. For instance, in the telecommu-
nications industry, predicting customer churn allows 
companies to proactively engage at-risk customers 

with retention strategies.
Prior research has demonstrated that not all pa-

rameters in neural networks (NNs) are crucial [15], 
leading to over-parameterization [16]. A major chal-
lenge in deep neural networks (DNNs) is minimizing 
computational costs and storage needs to facilitate 
deployment on devices with limited resources [17]. 
While cloud deployment of deep learning (DL) 
models offers substantial computation and storage, it 
suffers from low throughput and extended response 
times. Consequently, there is a growing trend to shift 
inference processes from the cloud to edge devices 
for real-time tasks like video object detection and 
segmentation. Current edge device capabilities, how-
ever, limit their use for real-time DL model inference 
and the application in other domains such as biology 
and finance [18–21]. Moreover, transferring data over 
networks consumes more energy than local process-
ing due to the high cost of network transmission. 
Mobile computing, prevalent across various do-
mains, benefits from local data and image processing 
on the device itself, avoiding the latency involved 
in server-based processing. Pre-deployment, DL 
models require training on large datasets, a process 
that is both time-intensive and dependent on GPUs 
for speed. Training variants of the popular VGG DL 
model on the ImageNet dataset, for instance, can 
take 2-3 weeks based on the network architecture [22].

The telecommunications industry, characterized 
by its intensive data generation, sees customers con-
tinually producing vast amounts of information. One 
vital application of data mining within this sector is 
customer segmentation, which organizes customers 
into different groups based on their attributes, en-
suring that those within the same group are highly 
similar, while those in different groups are distinctly 
different. However, the predominant focus of re-
search has been on analyzing the data from current 
customers to devise strategies for attracting new 
ones. In reality, the expense of acquiring potential 
customers far exceeds the cost of retaining those at 
risk of leaving. Hence, there is substantial potential 
for companies to enhance revenues at a lower cost 
by examining the data of customers who are either 
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lost or in the process of leaving to inform marketing 
decisions. Incorporating model compression tech-
niques can be pivotal in this context, which this arti-
cle aims to explore further. Model compression not 
only reduces the computational demands and storage 
requirements of deploying deep learning models on 
resource-constrained devices, but it also enhances 
the efficiency of processing large datasets typical of 
the telecom industry. By applying these techniques, 
telecom companies can leverage advanced data 
analytics for customer segmentation and retention 
strategies more effectively, enabling faster and more 
cost-efficient decision-making processes that are 
crucial for maintaining competitive advantage in a 
rapidly evolving market.

This paper is structured as follows: section 2 de-
tails the related works of customer churn prediction 
and model compression technologies. Subsequently, 
section 3 provides the workflow of the proposed 
method.  The experimental results and corresponding 
discussion are provided in section 4. Finally, section 
5 provides a comprehensive conclusion of this paper.

2. Literature Review

2.1 The progresses of customer churn prediction

In the realm of customer churn prediction within 
the difference industries, a variety of advanced data 
mining techniques have been explored to improve 
accuracy and comprehensibility of predictive models. 
These methodologies underscore the integration of 
hybrid modeling approaches and advanced algorith-
mic strategies to address challenges such as large, un-
balanced datasets and the need for actionable insights.

M.A.H. Farquad proposed a three-phase hybrid 
Support Vector Machine (SVM) model aimed at 
overcoming the opacity of traditional SVMs [23]. 
This method begins with SVM-Recursive Feature 
Elimination to minimize the feature set, followed 
by the generation of an SVM model from which 
support vectors are extracted. In the final phase, a 
Naive Bayes Tree—a blend of decision tree and na-
ive Bayesian classifier—is used to formulate rules. 

Despite its innovative approach, the model struggled 
with scalability on large datasets.

Qiu et al. introduces a K-means++ approach for 
segmenting silent customers [24]. Initially, essential 
variables for the segmentation model were select-
ed, followed by preprocessing of the original data. 
Subsequently, silent customers were grouped using 
this method, and the Calinski-Harabasz index was 
employed to confirm the optimal clustering outcome 
at k=6. Finally, through radar chart analysis, recom-
mendations were provided to enhance operational 
and maintenance management and support deci-
sion-making in precision marketing.

Chih-Fong Tsai explored hybrid neural network 
techniques, particularly using back-propagation Ar-
tificial Neural Network (ANNs) and self-organizing 
maps (SOMs) [25], to predict customer churn in data-
sets provided by American telecom companies. This 
approach involved using data reduction to enhance 
prediction accuracy, with the ANN+ANN hybrid 
model demonstrating superior performance over the 
SOM+ANN model in various test scenarios.

Wouter Verbeke introduced the application of 
Ant-Miner+ and ALBA algorithms for churn predic-
tion [26], which utilize Ant Colony Optimization and 
rule extraction to enhance model comprehensibility 
and incorporate domain knowledge through mono-
tonicity constraints. This method emphasizes the 
creation of intuitive and accurate classification rules.

Ning Lu advocated for the use of boosting algo-
rithms to improve churn prediction models [27]. By 
segmenting customers into clusters based on their 
risk profiles, and applying logistic regression within 
these clusters, the boosting method effectively differ-
entiated between customer segments, enhancing the 
predictive performance compared to single-model 
approaches.

Collectively, these studies highlight a trend to-
wards combining multiple data mining techniques to 
tackle the complexities of churn prediction [28]. Hy-
brid models and sophisticated algorithmic enhance-
ments are central to advancing the field, offering 
better accuracy and model transparency which are 
crucial for practical applications in data-rich indus-
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tries like telecom and banking.

2.2 The advancements of model compression 
techniques

Model compression can be broadly categorized 
into four main techniques: pruning, quantization, 
knowledge distillation, and compact network design.

Pruning. It involves removing redundant or 
non-significant parameters from a model [29]. This 
can be achieved through various methods, such as 
weight pruning, where small weight values are ze-
roed out to reduce the model size, and neuron prun-
ing, which removes entire neurons or layers deemed 
less important. The challenge with pruning lies in 
determining which parameters to remove without ad-
versely impacting the model’s accuracy.

Quantization. It reduces the precision of the nu-
merical values used in the model [30]. By converting 
floating-point representations to lower-bit quantized 
versions, quantization can significantly decrease the 
model’s memory requirements and speed up infer-
ence, often with minimal loss in accuracy. Techniques 
range from simple uniform quantization to more 
complex mixed-precision and adaptive methods.

Knowledge distillation. It is a technique where 
a smaller “student” model is trained to mimic the 
behavior of a larger ”teacher” model [30]. The student 
learns from the soft output distributions of the teach-
er, which carry richer information than hard labels 

alone. This approach not only reduces the size of the 
model but often retains much of the teacher’s predic-
tive power.

Compact network designs. It involves creat-
ing new architectures that are inherently smaller 
and more efficient yet maintain high performance. 
Examples include MobileNets, EfficientNets, and 
SqueezeNet, which use depthwise separable con-
volutions, network scaling, and bottleneck layers, 
respectively, to achieve compactness.

Recent studies have shown that combining these 
techniques can lead to even more efficient models. 
Model compression not only helps in deploying deep 
learning models in memory and power-constrained 
environments but also reduces the carbon footprint 
associated with training and running AI systems. 
As the demand for AI on edge devices continues to 
grow, model compression will play a crucial role in 
making AI ubiquitous and sustainable.

3. Method

3.1 Dataset Preparation

Churn customers in the communication industry 
are defined as those who were previously active with 
frequent communication sessions but have become 
less active over time and rarely communicate now. 
These are customers who have been lost or are in 
the process of being lost. By utilizing the data min-

Figure 1. The general workflow of customer churn prediction based on double-compressed artificial neural network.
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ing technique of clustering analysis, it is possible to 
group churn customers, characterize each group, and 
analyze their properties to devise targeted strategies 
for customer retention and minimize customer loss.

The study collected data on 125,296 churn cus-
tomers from a large communication company in 
one Province, representing all churn customers in a 
specific city over certain months. The data for churn 
customers from October and November of the cur-
rent year was used to ensure the timeliness of the 
analysis results. The original dataset contains 26 fea-
tures, which are categorized into customer identity 
information, customer package fee, package usage, 
and customer communication frequency.

To mitigate the impact of input variables with dif-
fering unit dimensions on distance calculation in the 
clustering model, it is essential to standardize the key 
variables using the equations (1) (2) mentioned be-
low. Following the removal of some anomalous data, 
zero-mean normalization was employed. Thereinto, 
80% of data was chosen as training data for model 
training while the remaining dataset was used for 
evaluating the model performance.

xmean=n
1Σn

i=1xi

(1)

s=
n–1
1 Σn

i=1xi（xi–xmean）
2

(2)

n is the number of data, xmean and s respective-
ly represent the mean and variance of selected  
variables.

3.2 Double-compressed ANN model

Figure 1 presents the general workflow of cus-
tomer churn prediction based on double-compressed 
artificial neural network.

ANN baseline model
Artificial Neural Networks are a cornerstone of 

modern machine learning, simulating the way the 
human brain analyzes and processes information. 
ANNs are the foundations of deep learning archi-
tectures, which have substantially improved the 
performance of systems in various domains such as 
image recognition, natural language processing, and 
predictive analytics. The basic building block of an 
ANN is the neuron, or node, which receives input 
from external sources or other neurons and computes 
an output. Each neuron is connected by weights that 
are adjusted during the training process to minimize 
prediction error. The network’s ability to learn com-
plex patterns depends on the arrangement of layers 
and nodes within each layer.

The typical architecture of an ANN shown in 
Figure 2 includes an input layer, one or more hidden 
layers, and an output layer. The input layer receives 
raw data aligned with the features of the problem 
domain. The hidden layers perform the majority of 

Figure 2. The architecture of the artificial neural network.
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computations through their neurons, which are de-
signed to extract progressively higher-level features 
from the input data. The output layer produces the 
final prediction or classification based on the learned 
features and relationships in the data.

This paper introduces a tailored ANN designed 
specifically for categorizing churn customers into 
two distinct classes, reflecting the silent customer 
categories identified in our research. The proposed 
neural network architecture comprises four hidden 
layers, which enhances its ability to capture com-
plex, non-linear relationships in the data.

The four hidden layers of the ANN are structured 
with varying numbers of neurons: 32, 16, 8, and 4, 
respectively. This configuration allows the network 
to refine and abstract customer data through each 
successive layer, providing a robust mechanism for 
understanding the nuanced behaviors that character-
ize silent and potentially churning customers. Each 
layer serves to transform the input data with increas-
ing granularity, ensuring that by the time information 
reaches the output layer, the network has a compre-
hensive understanding of the customer profiles.

The final layer of the network is the output layer, 
which consists of 2 neurons. Each neuron corre-
sponds to one of the two categories of churn custom-
ers identified: those at immediate risk of termination 
and those showing signs of potential future disen-
gagement. This bifurcation enables precise interven-
tions tailored to the specific needs and behaviors of 
different customer segments.

By implementing a four-layer hidden structure, 
the ANN can effectively learn from a large dataset of 
churn customers, identifying complex patterns that 
are not immediately apparent through traditional an-
alytic techniques. This deep learning model offers a 
sophisticated tool for telecommunications companies 
to preemptively address customer churn and enhance 
retention strategies, ultimately leading to improved 
customer satisfaction and loyalty.

Pruning
The schematic of general pruning process is 

shown in Figure 3. The “LayerDrop” technique 
represents a groundbreaking method for managing 

over-parameterized neural networks, eliminating 
the need for traditional post hoc pruning while still 
allowing for the extraction of efficient sub-networks 
without loss of performance. This approach in-
volves strategically reducing model weights during 
the training process to create smaller, sampleable 
sub-networks. These sub-networks are robust and 
can later be pruned more effectively, extending the 
utility and flexibility of the network.

Distinct from previous methods, which primarily 
relied on dropping layers during the training phase 
to enable the extraction of shallower sub-networks, 
LayerDrop introduces a novel capability. It allows 
for the dynamic selection of sub-networks at varying 
depths during the inference stage. This flexibility en-
sures that one can tailor the network depth according 
to specific needs or constraints without compromis-
ing the overall network integrity.

This adaptive feature of LayerDrop facilitates the 
stabilization of training processes for significantly 
deeper networks than typically feasible, thereby 
enhancing the model’s ability to generalize from 
training data to real-world applications. The efficacy 
of this technique is demonstrated in this study by 
applying it to the DistilBERT model, a streamlined 
version of the larger BERT architecture known for its 
efficiency and performance. For this application, we 
set the LayerDrop rate at p = 0.2, carefully chosen 
to balance network depth with performance during 
inference.

Quantization
Quantization is a key technique in model com-

pression, aimed at reducing the numerical precision 
of a model’s weights and activations to streamline 
its computational demands. This approach is particu-
larly beneficial for deploying deep learning models 
on resource-constrained platforms, where memory 
bandwidth and storage capacity are limited. In our 
study, we implemented both static and dynamic 
quantization methods on various components of the 
network to enhance its performance efficiency.

The process commenced with the extraction of 
original floating-point (float32) weights from a pre-
viously pruned model. These weights underwent a 
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specialized quantization procedure designed specif-
ically for converting float weights without affecting 
the model’s precision requirements—this technique 
is known as weight-only float quantization. As part 
of this step, the float32 precision embeddings were 
transformed into quantized embeddings, significantly 
reducing their size and computational complexity.

Further, we leveraged dynamic quantization, par-
ticularly focusing on the model’s linear layers, where 
the majority of computations take place. Using the 
torch.quantization.quantize_dynamic function, we 
converted the weights in these linear layers from 
float32 values to compact 8-bit integer (int8) values. 

This method dynamically adjusts the quantization 
parameters based on the distribution of the weights, 
which is crucial for maintaining the performance of 
the model while significantly reducing its computa-
tional overhead.

By integrating static and dynamic quantization, 
our approach effectively minimizes the resource 
demands of the neural network without compromis-
ing its accuracy or latency. This dual-quantization 
strategy exemplifies a practical balance between per-
formance and efficiency, making it a viable solution 
for real-world applications where speed and size are 
critical constraints.

4. Results and Discussion

4.1 The performance of the baseline model

Figure 4, Figure 5 and Figure 6 provide a com-
prehensive overview of the performance of differ-
ent ANN models employing various compression 
techniques, focusing on accuracy, inference time, 
and model size. Across these metrics, distinct trends 
emerge, shedding light on the efficacy of pruning 
and quantization methods in optimizing ANN perfor-

mance. The first bar chart displays the Accuracy of 
the various ANN models, providing a clear compar-
ison of their predictive performance after different 
compression techniques are applied. The second 
chart illustrates the Inference Time in seconds for 
each model, where shorter bars represent faster pro-
cessing, which is advantageous for real-time applica-
tions. The third chart depicts the Size in megabytes 
(MB) of each model, showcasing the reduction in 
model footprint post-compression techniques. This is 
particularly relevant for deployment in environments 
with limited storage capacity.

Figure 3. The schematic of pruning: (a) baseline ANN model (b) the neurons required to be pruned (c) the ANN model after pruning.
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Figure 4. The accuracy of different models.

Figure 5. The inference time of different models.

Figure 6. The size of different models.

Table 1. Performance metrics for different models.

Model
Metrics

Accuracy Inference Time (s) Size 
(MB)

Baseline ANN Model 0.883 8.9 2.5M

ANN + pruning 0.876 6.4 1.7M

ANN+ quantization 0.881 6.9 2.1M

ANN + pruning+ 
quantization 0.879 6.1 1.6M

Beginning with accuracy, it’s evident that both the 
baseline ANN model and the ANN model incorporat-
ing both pruning and quantization techniques exhibit 
relatively higher accuracy compared to those em-
ploying only pruning or quantization. This suggests 
that even with model compression, these techniques 
can maintain model accuracy, especially when used 
in conjunction. Regarding inference time, the ANN 
model utilizing both pruning and quantization tech-
niques demonstrates the fastest inference time, fol-
lowed by the model employing quantization alone. 
This indicates that these compression techniques 
significantly accelerate the inference process, en-
hancing the model’s suitability for real-time applica-
tions. Lastly, in terms of model size, the ANN model 
employing both pruning and quantization techniques 
exhibits the smallest model size, followed by the 
model employing quantization alone. This illustrates 
the effectiveness of these compression techniques in 
reducing the model’s storage requirements, conse-
quently lowering deployment and transmission costs.

It is evident that they excel in reducing model 
size and inference time while maintaining high accu-
racy. Pruning reduces model complexity and storage 
demands by eliminating unnecessary connections 
and parameters. Quantization further reduces model 
size by reducing parameter bit-width and accelerates 
inference speed. When combined, these techniques 
complement each other, further enhancing model 
performance while preserving accuracy.

4.2 Discussion

Analyzing the impact of compression techniques 
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on ANNs provides crucial insights into their effi-
ciency and applicability in various technological 
environments. The experimental results outlined 
in the provided charts examine the effectiveness of 
pruning and quantization on three key metrics: ac-
curacy, inference time, and model size. Each metric 
is critical for determining the viability of deploying 
compressed ANNs in real-world applications, par-
ticularly where performance, speed, and storage are 
constrained.

Accuracy. The data shows that ANNs employing 
both pruning and quantization maintain high accura-
cy, suggesting that these methods, when combined, 
effectively compensate for any potential degradation 
caused by model compression alone. This is particu-
larly noteworthy as maintaining high accuracy is 
paramount in applications such as medical imaging 
or autonomous driving where decision-making is 
based on model predictions. The synergy between 
pruning and quantization could be attributed to their 
complementary nature; while pruning eliminates re-
dundant connections, potentially making the model 
more generalizable, quantization simplifies the com-
putational demand without significantly affecting the 
predictive power.

Inference Time. In the realm of real-time appli-
cations, the speed of inference is as crucial as accu-
racy. The experimental results highlight that models 
utilizing both pruning and quantization excel in min-
imizing inference time. This improvement in speed 
can be transformative for applications requiring re-
al-time data processing, such as video surveillance 
and real-time transaction monitoring. By reducing 
the inference time, these compression techniques en-
hance the responsiveness of ANNs, thereby support-
ing more agile and efficient operational capabilities.

Model Size. The reduction in model size is an-
other significant advantage of employing compres-
sion techniques. Smaller models are not only easier 
to store and transmit but also less costly in terms of 
computational resources. This makes compressed 
models particularly advantageous for deployment 
in mobile and embedded systems where memory 
and processing power are limited. The reduction in 

model size can also facilitate faster updates and scal-
ability across networks, which is essential for cloud-
based AI services and IoT devices.

When pruning and quantization are applied to-
gether, they can compound each other’s limitations. 
For example, a model that has been both pruned and 
quantized might exhibit exacerbated information loss 
or further reduced robustness to variations in input 
data. The combined effects of these techniques need 
thorough testing across various scenarios to ensure 
that the resultant models can still meet the required 
standards of reliability and accuracy.

Despite these advantages, the deployment of 
compressed models is not without challenges. The 
complexity of choosing the right balance between 
compression level and performance metrics requires 
careful tuning and validation to ensure optimal oper-
ation. Additionally, certain applications may exhibit 
sensitivity to reduced precision, leading to potential 
biases or errors under specific conditions.

In future studies, the potential for further innova-
tions in model compression techniques holds prom-
ise for even greater enhancements in ANN perfor-
mance. Advances might include more sophisticated 
algorithms for dynamic pruning and quantization 
that adapt to real-time data inputs [31–38], potentially 
increasing both accuracy and efficiency. In addition, 
the hardware should be also improved to be more 
compatible with these algorithms [39–45]. Furthermore, 
as edge computing grows, the demand for light-
weight models that can operate independently of 
large data centers will likely increase, amplifying the 
importance of effective compression techniques.

5. Conclusion
This study has highlighted the pivotal role of 

model compression techniques in enhancing the effi-
ciency and applicability of AI models, particularly in 
the context of predicting customer churn in the tele-
communications industry. By implementing pruning 
and quantization, the study demonstrates that it is 
possible to maintain high accuracy, reduce inference 
times, and decrease model sizes effectively. These 
changes are crucial for deploying models in envi-
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ronments with limited computational and storage re-
sources, and they facilitate real-time processing and 
decision-making capabilities essential for customer 
retention and satisfaction. Pruning and quantization 
individually and in combination help in simplifying 
the models while ensuring they remain effective 
and agile for real-world applications. However, the 
study also recognizes the inherent limitations asso-
ciated with these techniques, such as potential loss 
of model robustness and the challenges in balancing 
compression with performance. Moving forward, the 
development of more sophisticated, adaptive com-
pression algorithms could further enhance model 
performance and efficiency.
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