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ABSTRACT
This study addresses the challenge of Android malware detection, a critical issue due to the pervasive threats 

affecting mobile devices. As Android malware evolves, conventional detection methods struggle with novel or 
polymorphic malware that bypasses traditional defenses. This research leverages machine learning (ML) and deep 
learning (DL) techniques to overcome these limitations by adopting domain adaptation strategies that enhance model 
generalization across different distributions. The approach involves dividing a dataset into distinct distributions and 
applying domain adaptation techniques to ensure robustness and accuracy despite distribution shifts. Preliminary results 
demonstrate that domain adaptation significantly improves detection accuracy in target domains not represented in the 
training data. This paper showcases a domain adaptation-based method for Android malware detection, illustrating its 
potential to enhance security measures in dynamic environments. The findings suggest that integrating advanced ML 
and DL strategies with domain adaptation can substantially improve the efficacy of malware detection systems.
Keywords: Component; Android malware detection; Deep learning; Domain adaptation

1. Introduction
Android malware, a malicious software specifically 

designed to exploit the Android operating system, 
has become a significant concern in the mobile eco-
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system [1,2]. With the exponential growth of Android 
devices globally, the number of malwares targeting 
these devices has also surged, posing serious threats 
to users’ privacy, financial security, and the overall 
integrity of the mobile environment. Malware can 
take various forms, including trojans, ransomware, 
adware, and spyware, each with distinct mechanisms 
and detrimental effects. Detecting and mitigating 
these threats is paramount to ensuring the safety and 
reliability of mobile platforms, thereby safeguarding 
user data and maintaining trust in digital services. 
his issue has become even more pronounced in the 
post-pandemic era, where the use of electronic de-
vices among younger students has increased signifi-
cantly due to the widespread adoption of educational 
technology [3,4]. The importance of Android malware 
detection cannot be overstated. As mobile devices 
become increasingly integral to daily life, encom-
passing functions such as banking, communication, 
and personal management, the impact of a success-
ful malware attack can be devastating. Moreover, 
malware often evolves to bypass traditional security 
measures, necessitating advanced and adaptive de-
tection techniques. Effective malware detection not 
only protects individual users but also preserves the 
broader digital infrastructure, preventing large-scale 
breaches and cyber-attacks. 

Traditional methods of malware detection pri-
marily rely on signature-based approaches, where 
known patterns of malicious code are identified and 
flagged. While effective against previously encoun-
tered threats [5], these methods fall short in detecting 
novel or polymorphic malware, which can modify its 
code to evade detection. Heuristic-based techniques, 
which analyze the behavior of applications to iden-
tify suspicious activities, offer an improvement but 
still face limitations in adaptability and accuracy. 
The dynamic nature of malware, coupled with the 
vast and varied landscape of Android applications, 
calls for more sophisticated detection mechanisms.

In recent years, the advent of machine learning 
(ML) and deep learning (DL) has revolutionized in 
many fields [6–8] . For instance, Liu et al. introduces 
two machine learning strategies designed to simul-

taneously optimize accuracy and output frequency. 
The first strategy employs a hybrid model combining 
a convolutional neural network (CNN), a long short-
term memory (LSTM) module, and a regression 
module. The second strategy utilizes a dual random 
forest model configuration. Both approaches were 
applied to data obtained from ultra-wideband (UWB) 
sensors installed on a highway bridge. The results 
demonstrate that these strategies surpass current 
leading methods in both measurement accuracy and 
output frequency [9]. Qiu et al. conducted a thor-
ough analysis of various clustering algorithms to 
determine the most effective method for accurately 
categorizing credit card customers. The accuracy 
of the clustering models was assessed using the 
Davies-Bouldin Index, Silhouette Score, and Calin-
ski-Harabasz Index [10]. By leveraging large datasets 
and advanced algorithms, these techniques can learn 
intricate patterns and make predictions with high 
accuracy [11,12]. Semantic wireframe detection aids 
Android malware detection by parsing code structure 
and behavior patterns, enhancing feature extraction 
accuracy and detection model efficiency [13]. Also, 
machine learning models, such as decision trees 
and support vector machines, have demonstrated 
notable success in classifying benign and malicious 
applications. Deep learning models, particularly 
neural networks, have further enhanced detection 
capabilities by automatically extracting and learning 
features from raw data [14–16], thereby improving the 
detection of complex and evolving malware. Despite 
the significant advancements, current ML and DL 
approaches for Android malware detection often 
assume that the training and testing data are drawn 
from the same distribution. This assumption, howev-
er, does not hold in real-world scenarios, where the 
distribution of malware and benign applications can 
change over time and across different environments. 
Consequently, models trained on a particular dataset 
may experience a decline in performance when ap-
plied to data with a different distribution. This distri-
bution shift can lead to increased false positives and 
false negatives, undermining the effectiveness of the 
detection system and potentially exposing users to 
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undetected threats.
To address this challenge, the concept of domain 

adaptation has emerged as a promising solution [17–19].  
Domain adaptation techniques aim to improve the 
generalization of models by adapting them to new, 
unseen distributions, thereby enhancing their robust-
ness and accuracy. By aligning the feature space of 
the source domain (training data) with that of the 
target domain (testing data), these techniques can 
mitigate the performance degradation caused by dis-
tribution shifts. In this study, we propose a domain 
adaptation-based approach to Android malware de-
tection shown in Figure 1. By dividing our dataset 
into different distributions and applying domain 

adaptation techniques, we aim to train models on the 
source domain and evaluate their performance on the 
target domain. This approach seeks to demonstrate 
the effectiveness of domain adaptation in maintain-
ing high detection accuracy across varying distribu-
tions, ultimately contributing to more resilient and 
reliable malware detection systems.

This paper is organized as follows: Section 2 
reviews the related works on Android malware de-
tection. Section 3 outlines the workflow of the pro-
posed method in this study. Section 4 presents the 
experimental results and provides a discussion of the 
findings. Finally, Section 5 offers a comprehensive 
conclusion of the paper.

2. Literature review

Android malware detection

Recent research on Android malware detection 
using machine learning has focused on improving ac-
curacy and efficiency through various techniques due 
to their excellent performance in many domains [20–22].  
For example, Lee et al. applied a genetic algorithm 
for feature selection, which proved to be more effec-
tive than traditional information gain-based meth-
ods [23], enhancing the detection capabilities of their 
machine learning models on a dataset that included 
5000 benign apps and 2500 malware instances. 
Catarina Palma et al. focused on making machine 

learning models more interpretable in the context of 
malware detection. They employed techniques like 
feature selection to pinpoint which app characteris-
tics are most indicative of malware. This approach 
not only improved the accuracy of malware detec-
tion but also made the reasons behind the model’s 
predictions clearer, which is crucial for trust and fur-
ther improvement of these models [24]. Janaka Sen-
anayake et al. conducted a systematic review of ma-
chine learning-based methods for Android malware 
detection. Their review highlighted the effectiveness 
of these methods and identified potential areas for 
improvement, emphasizing the need for ongoing 
research to address emerging malware threats [25]. 
Additionally, the architectures and implementations 

Figure 1. The workflow of the proposed method.
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of distributed file systems can provide efficient data 
management and storage solutions for Android mal-
ware detection, thereby enhancing the performance 
and reliability of detection systems [26].

Research has shown that advanced photodetec-
tion technology and frequency-tunable structures 
exhibit excellent performance in signal detection 
under complex conditions [27,28]. This suggests that 
employing similar domain adaptation techniques 
could enhance the robustness and adaptability of 
Android malware detection models across different 
data distributions, addressing the challenge of mod-
el performance variation due to the dynamic nature 
and continual evolution of malware. While previous 
studies have demonstrated the effectiveness of ma-
chine learning in detecting malware within similar 
distributions, they often do not address the critical 
issue of performance across varying data distribu-
tions. This paper aims to explore the performance 
of models trained on one data distribution when 
applied to another, seeking to improve this aspect 
through domain adaptation techniques. This ap-
proach is expected to lead to more robust and adapt-
able malware detection systems.

3. Method

3.1 Dataset preparation

The dataset used in this study collected from Kag-
gle [29] consists of 7,845 entries, each described by 
14 features. These features include the name, which 
identifies the Android application, and tcp_packets, 
representing the number of TCP packets sent and 
received. Additionally, dist_port_tcp indicates the 
number of distinct TCP ports, while external_ips 
counts the unique external IP addresses contacted. 
Volume_bytes measures the total volume of data sent 
and received in bytes, and udp_packets indicates the 
number of UDP packets. The tcp_urg_packet feature 
counts TCP packets with URG flags. Source_app_
packets and remote_app_packets represent the total 
packets sent by the application and received from the 

remote application, respectively. Similarly, source_
app_bytes and remote_app_bytes measure the total 
bytes sent by the application and received from the 
remote application. There is also a column named 
source_app_packets.1, which appears to be a dupli-
cate of source_app_packets. DNS_query_times re-
cords the number of DNS queries made by the appli-
cation, and finally, the type feature indicates whether 
the traffic was benign or malicious.

In the preprocessing phase of our study, we trans-
formed the labels in the dataset into numerical for-
mat for compatibility with machine learning models. 
Specifically, we converted the type feature, which 
originally categorized traffic as either ‘benign’ or 
‘malicious’, into binary labels: ‘0’ for benign and 
‘1’ for malicious. Additionally, we applied min-max 
normalization to the features to ensure that all values 
fall within the same range, thereby improving the 
performance and convergence of our machine learn-
ing models. 

In this study, to establish a dataset with differing 
distributions of Android malware, we employed the 
k-means clustering algorithm. K-means [30,31] is a 
widely used method in data mining that partitions 
data into k distinct clusters based on feature similar-
ity. Each cluster is defined by the mean of the data 
points assigned to the cluster, minimizing the vari-
ance within each cluster. To determine the optimal 
number of clusters (k), we utilized Silhouette scores, 
which measure the quality of the clustering. The 
Silhouette score is a metric that assesses how simi-
lar an object is to its own cluster compared to other 
clusters. A higher Silhouette score indicates a bet-
ter-defined clustering. Our analysis determined that 
the best clustering occurred at k = 2. We designated 
the larger cluster, depicted by green points, as the 
source domain, and the smaller cluster, represented 
by blue points, as the target domain. Figures 2, Fig-
ures 3, and Figures 4 in our study illustrate the PCA 
distribution of the original data, the curve of Silhou-
ette scores, and the PCA distribution after clustering, 
respectively.



17

Artificial Intelligence Advances | Volume 06 | Issue 01 | October 2024

Figure 2. The PCA distribution of the original data.

Figure 3. The curve of Silhouette scores.

Figure 4. The PCA distribution of the data with identified clusters.

3.2 The introduction of domain adaptation-based 
ANN model 

Artificial neural networks
Artificial Neural Networks (ANNs) are a cor-

nerstone of modern artificial intelligence, drawing 
inspiration from the biological neural networks that 
make up animal brains [32–34]. An ANN is composed 
of layers of interconnected nodes or neurons, which 
collectively process information through their in-
terconnections. These networks are highly adept 
at tasks involving pattern recognition, prediction, 
and classification, making them essential in diverse 
applications such as image recognition, natural 
language processing, and financial forecasting. 
Advanced techniques, like prompt engineering, fur-
ther enhance these networks’ capabilities, enabling 
significant improvements in complex tasks such as 
multi-class classification [35]. The basic structure of 
an ANN includes three primary layers: the input lay-
er, one or more hidden layers, and the output layer. 
The input layer receives the data, which is then pro-
cessed through successive hidden layers that extract 
features and patterns. Each neuron in these layers 
applies a transformation function to the inputs it re-
ceives, often using a non-linear activation function 
like Rectified Linear Unit (ReLU) or Sigmoid. This 
transformation helps the network learn complex pat-
terns. The final layer, or the output layer, produces 
the results based on the learned patterns.

Training an ANN involves adjusting the weights 
of the connections between neurons [36,37]. This is 
typically done using a method known as backpropa-
gation, coupled with an optimization algorithm like 
stochastic gradient descent. Backpropagation effec-
tively adjusts the weights by calculating the gradient 
of the network’s error with respect to each weight. 
It then updates the weights to minimize the error, 
improving the model’s predictions. The ability of 
ANNs to learn from large datasets and improve their 
accuracy over time without explicit programming for 
the task is a significant advantage. They are capable 
of generalizing from the data they train on, which 
enables them to perform well on new, unseen data, 
assuming the new data resemble the training data.

The neural network used in this study is struc-
tured with multiple dense layers, each employing a 
ReLU activation function [38,39] to introduce non-lin-
earity and facilitate complex pattern learning within 
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the data. Starting with a dense layer of 256 neurons, 
the network architecture gradually reduces the di-
mensionality through successive layers—128, 64, 
32, 16, and 8 neurons—before concluding with a 
layer of 4 neurons, also using ReLU. The final layer 
consists of 2 neurons with a softmax activation func-
tion, designed to output the probabilities for the two 
classes: benign and malicious.

Domain adaptation
Domain Adaptation is a technique in machine 

learning that aims to adapt a model trained on a 
source domain (where abundant labeled data is avail-
able) to perform well on a different but related target 
domain (where labeled data is scarce or unavailable). 
This approach is crucial in scenarios where the dis-
tribution of data in the training set (source domain) 
differs from the data in the deployment environment 
(target domain), which can significantly degrade the 
performance of the model.

Correlation Alignment (CORAL) shown in equa-
tion (1) is a specific method used in domain adapta-
tion to minimize domain shift by aligning the sec-
ond-order statistics (covariances) of the source and 
target domain feature distributions. This is achieved 
by adjusting the feature distributions of both do-
mains so that their covariances are similar, reducing 
the domain discrepancy at the feature level. Building 
on the concept of CORAL, DeepCORAL integrates 
this alignment directly into the training of deep neu-
ral networks. DeepCORAL adds a loss term that 
minimizes the difference in covariances between the 
last layer features of the source and target domains 
during the training process. This approach enables 
the network to learn features that are more invariant 
to the change in domains, thus improving the mod-
el’s ability to generalize from the source to the target 
domain.

CORAL Loss = 
4d2
1

|Cs–CT|2F

(1)

Where, Cs and CT are the covariance matrices of the 
source and target domain features, respectively. |Cs–
CT|2F represents the Frobenius norm of the difference 

between the source and target covariance matrices. 
The Frobenius norm is used to measure the ‘distance’ 
between these matrices.  is the dimensionality of the 
output features from the layers where the CORAL 

loss is being applied. The factor 
4d2
1

 is a normaliza-

tion term that helps in controlling the scale of the 
loss relative to other terms in the network’s loss 
function.

In our implementation, we adopt the DeepCOR-
AL approach, utilizing the CORAL metric to com-
pute the distribution differences between the source 
and target domains. The network architecture used 
for the target domain mirrors that of the source do-
main described earlier, featuring the same sequence 
of dense layers with ReLU activations—256, 128, 
64, 32, 16, and 8 neurons. However, it omits the final 
output layer because the target domain data is treated 
as unlabeled during training.

Implementation details
The model’s trainable parameters were optimized 

using the Adaptive Moment Estimation (Adam) op-
timizer [40,41], with a learning rate set at 0.001. The 
training process was configured with 1000 epochs 
and a batch size of 512. All training sessions were 
conducted using the TensorFlow framework with 
RTX 3090 graphics card.

4. Results and discussion

4.1 The performance of the model

Figure 5 and Table 1 visualizes the performance 
of five machine learning models (ANN, LR, DT, 
KNN, RF) widely used in many tasks [42–44] across 
three different scenarios: direct prediction in the 
source domain, direct prediction in the target do-
main, and domain adaptation in the target domain. 
The accuracies of each model under these conditions 
are depicted clearly. Due to the inability of other 
models to optimize distribution differences directly 
like DeepCORAL, for models other than ANN, we 
first applied CORAL to transform the data before 
proceeding with predictions.
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Key observations from these results include: (1) 
Performance in Source Domain: The ANN model 
exhibits the highest accuracy (0.90), followed by the 
RF model at 0.87, showcasing strong performance 
when the models operate within the domain of their 
training data. (2) Performance Drop in Target Do-
main: A significant decline in performance is ob-
served for all models when directly predicting in the 
target domain without adaptation. For instance, the 
accuracy of the ANN model drops from 0.90 in the 
source domain to 0.64 in the target domain. (3) En-
hanced Performance with Domain Adaptation: When 

domain adaptation techniques are applied, there is a 
marked improvement in model accuracy in the target 
domain. The ANN model’s accuracy improves from 
0.64 to 0.81, illustrating the effectiveness of domain 
adaptation in bridging the gap between different data 
distributions. From these observations, the domain 
adaptation can significantly boost the performance 
of all models in the target domain. This confirms the 
value of employing domain adaptation strategies, 
especially in situations where models are expected to 
function in environments different from their train-
ing context.

Figure 6 shows the accuracy of domain adapta-
tion in an ANN at different layers, each varying in 
the number of neurons. Starting with 128 neurons 
and progressing down to 4, the accuracy on the 
target domain is tracked to evaluate the efficacy of 
domain adaptation applied via CORAL alignment 
at each layer. As observed, the accuracy increases 
significantly as the number of neurons in the layers 
decreases, starting from 0.66 with 128 neurons and 
peaking at 0.81 with 4 neurons. The mid-layer with 
32 neurons showed a dip to 0.69 before climbing 

again, indicating an interesting fluctuation in perfor-
mance.

The performance variations across different lay-
ers can be attributed to the varying degrees of feature 
abstraction at each layer. Deeper layers (with fewer 
neurons) in an ANN tend to capture more abstract 
representations of the data [45,46]. When CORAL [47,48] 
is applied to these layers, it aligns these high-level 
features more effectively between the source and 
target domains, leading to improved accuracy. Lay-
ers with more neurons capture more granular, less 

Figure 5. The performance comparison of different models.

Table 1. Detailed numerical prediction performance of different models.

Model Name Testing data in Source Domain 
(Direct prediction)

Testing data in Target  Domain 
(Direct prediction)

Testing data in Target  Domain 
(Domain adaptation)

ANN 0.90 0.64 0.81
LR 0.72 0.52 0.57
DT 0.75 0.50 0.55
KNN 0.81 0.54 0.59
RF 0.87 0.61 0.66
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abstract features. While alignment at these layers can 
be beneficial, the high dimensionality and complex-
ity might make it harder for CORAL to effectively 
reduce domain discrepancy at this level, resulting 
in lower accuracy. The dip at 32 neurons and subse-
quent rise as layers become deeper suggest that there 
might be an optimal point of abstraction for domain 
adaptation, where the features are neither too granu-
lar nor too abstract, balancing detail with domain-in-
variant representation.

Figure 7 illustrates the impact of varying COR-
AL coefficient values on the accuracy of a model in 
domain adaptation scenarios. The coefficients tested 
range from 0.01 to 0.5, and the corresponding ac-
curacies are plotted to show how adjustments in the 
CORAL coefficient influence model performance. A 
clear trend is observed where the accuracy increas-
es with the CORAL coefficient from 0.01 to 0.2, 

reaching a peak accuracy of 0.81 at a coefficient of 
0.2. Beyond this point, at a coefficient of 0.5, the ac-
curacy declines to 0.77, suggesting that too strong a 
weighting on the CORAL loss relative to the classifi-
cation loss might be detrimental.

The initial increase in accuracy with higher COR-
AL coefficients suggests that stronger alignment of 
feature distributions between the source and target 
domains is beneficial up to a certain point. This 
aligns with the concept that reducing domain dis-
crepancy helps the model generalize better to the 
target domain. The decrease in accuracy at the high-
est coefficient (0.5) indicates an overemphasis on 
domain alignment, potentially at the cost of losing 
relevant information necessary for accurate predic-
tions. This could lead to the model overfitting to the 
domain adaptation criterion rather than focusing on 
the predictive task.

Figure 6. The performance based on different layers of ANN.

Figure 7. The influence of coral coefficients on the model accuracy.
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4.2 Discussion

Domain adaptation, especially through methods 
like CORAL, effectively bridges the gap between 
source and target domain distributions, as seen in 
the substantial accuracy improvements from di-
rect predictions in the target domain to those with 
domain adaptation. For instance, the ANN model 
shows a notable increase from 0.64 to 0.81 accu-
racy, demonstrating domain adaptation’s potential 
to mitigate the challenges posed by domain shift. 
While domain adaptation offers considerable bene-
fits, it is not without its limitations. The variance in 
performance improvement across different models 
and the dependency on hyperparameter tuning (such 
as the CORAL coefficient) indicate areas that could 
be improved. For example, excessive emphasis on 
the CORAL loss, as evidenced by the decrease in 
accuracy at higher coefficients, suggests a delicate 
balance is required to optimize both domain adap-
tation and classification performance. Furthermore, 
the fluctuating performance across different layers 
of the ANN when applying CORAL suggests that 
the effectiveness of domain adaptation may depend 
significantly on the nature and depth of the layers 
involved. This observation points to the potential 
need for layer-specific adaptation strategies, where 
domain adaptation parameters are tailored based on 
the layer’s characteristics and its role in the network.

Future studies could explore adaptive mecha-
nisms that dynamically adjust domain adaptation [49,50] 
parameters during training, potentially guided by 
real-time feedback on model performance in both the 
source and target domains. Additionally, investigat-
ing domain adaptation across more diverse and com-
plex datasets could further validate the robustness 
and versatility of these techniques [51].

5. Conclusion
The results of this study underscore the effective-

ness of domain adaptation in addressing the chal-
lenges posed by the dynamic nature of Android mal-
ware. Traditional malware detection methods often 
fail to generalize well to new, unseen environments, 

leading to decreased performance and increased risk. 
By implementing domain adaptation techniques, 
this research demonstrates a notable improvement 
in model accuracy across varied data distributions, 
particularly in environments different from the 
training context. For instance, the application of 
CORAL-based domain adaptation methods allowed 
for substantial gains in accuracy, highlighting the 
technique’s ability to mitigate the adverse effects of 
domain shifts. 

Moving forward, future research should focus 
on developing more adaptive domain adaptation 
mechanisms that could dynamically adjust based on 
real-time model performance feedback. Additionally, 
exploring these strategies across a broader range of 
datasets and real-world scenarios will be crucial to 
fully ascertain the robustness and applicability of do-
main adaptation in malware detection.
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