
Artificial Intelligence Advances | Volume 06 | Issue 01 | October 2024

Artificial Intelligence Advances

https://journals.bilpubgroup.com/index.php/aia

ARTICLE

DNN-Based AI-DrivenH2/H∞ Filter Design of Nonlinear Stochastic

Systems via Two-Coupled HJIEs-Supervised Adam Learning Algorithm

Bor-Sen Chen* , Jui-Ming Ma, Ruei-Syuan Wu

Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan

ABSTRACT

This study introduces a new approach using supervised learning deep neural networks (DNNs) to develop anAI-driven

filter for nonlinear stochastic signal systems with external disturbance and measurement noise. The filter aims to achieve

a balanced design between and norm of the state estimation error to achieve both optimal and robust filtering design of

nonlinear signal system simultaneously while considering environmental disturbance and measurement noise. Traditionally,

this nonlinearH2/H∞ filter design involves solving complex two-coupled Hamilton-Jacobi-Issac Equations (HJIEs). To

simplify this complicated design process, a novel two-coupled HJIEs-supervised Adam learning algorithm is proposed

for DNN-based AI-driven filter. This algorithm trains a H2/H∞ DNN-based AI-driven filter offline using worst-case

scenarios of environmental disturbance and measurement noise. This training phase generates state estimation errors that

teach the DNN-based AI-driven filter how to coordinate nonlinear system model with worst-case external disturbance

and measurement noise, Luenberger-type filter, estimation error dynamic model and two-coupled HJIEs-supervised deep

Adam learning algorithm to achieve the mixed H2/H∞ filtering strategy effectively. The study demonstrates theoretically

that this approach will achieve the desired mixed H2/H∞ filtering strategy once the Adam learning algorithm converges.

Finally, the effectiveness of the proposed DNN-based AI-driven filter design method is validated through simulations,

specifically involving trajectory estimation and prediction of an incoming ballistic missile detected by a radar system.
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1. Introduction

The estimation of state variables in stochastic signal

systems, affected by environmental disturbance and measure-

ment noise, presents a significant challenge in signal pro-

cessing with broad engineering applications. The Kalman

optimal H2 filter design is widely used in fields such as

control engineering, aerospace engineering, and signal pro-

cessing, assuming known covariances of disturbance and

noise [1]. However, when these covariances are uncertain

or not well-defined, the robust H∞ filter is employed to

mitigate the impact of worst-case disturbances and noise on

state estimation performance, ensuring attenuation below a

specified level [2]. While the H∞ filter enhances robustness

compared to the optimal H2 filters, its design tends to be

overly conservative, resulting in high filter gains. Conse-

quently, the mixedH2/H∞ filter design has been introduced

to combine the advantages of both the optimalH2 and robust

H∞ filters [3–6].

In linear stochastic signal systems, the mixed H2/H∞

filter design requires solving two-coupled Riccati-like equa-

tions for filter gain [3, 5, 6]. However, in nonlinear stochas-

tic signal systems, the mixed H2/H∞ filter design in-

volves solving two-coupled Hamilton-Jacobi-Isaacs Equa-

tions (HJIEs). These equations are complex nonlinear partial

differential equations involving the state x(t), state estima-

tion x̂(t) and estimation error
∼
x (t), and they cannot be easily

solved using conventional analytic or numerical methods due

to the unavailability of x(t). Therefore, engineers avoid di-

rectly solving these coupledHJIEs in themixedH2/H∞ non-

linear filter design process. Instead, interpolation techniques

such as the fuzzy interpolation method [7], global lineariza-

tion method [8], and gain scheduling method [9] are employed.

These methods interpolate local linearized stochastic sys-

tems to approximate the behavior of the nonlinear stochastic

system. The coupled H2/H∞ HJIEs are transformed into

sets of Riccati-like Inequalities and then into sets of Linear

Matrix Inequalities (LMIs). For example, if l local linearized

stochastic systems at l different operating points are inter-

polated using l fuzzy smoothing functions to approximate a

nonlinear stochastic system, a Takagi-Sugeno (T-S) fuzzy fil-

ter can be used to interpolate the corresponding l local linear

filters for the mixedH2/H∞ nonlinear filter design [6]. How-

ever, fuzzy mixed H2/H∞ filter designs require solving l2

set of coupled LMIs. This means that if l local linearized sys-

tems are used for nonlinear system approximation, l2 LMIs

must be solved for the nonlinear filter design [8, 10]. Further-

more, l2 local linear filters need to be interpolated using l2

interpolation functions to obtain the mixed H2/H∞ filter

for the nonlinear stochastic system. Consequently, consider-

able computation time is necessary for filtering at each time

step, currently making it impractical for real-time applica-

tions. Additionally, the use of quadratic Lyapunov function

V

(
∼
x
T
(t)

)
=

∼
x
T
(t)P

∼
x (t), where PT = P > 0 is com-

mon. These functions treat the filtering error
∼
x (t) as the

solution of the coupled HJIEs is transformed into coupled

sets of l2 LMIs. However, relying on such quadratic Lya-

punov functionsmay lead to conservative results in themixed

H2/H∞ nonlinear filter design.

Recently, deep neural networks (DNNs) have emerged

as highly effective models for information processing [11–17].

Trained by large datasets, DNNs excel in various applications

such as speech recognition [13], language translation [11], and

image classification [14], tasks traditionally associated with

human cognition. However, integrating DNNs into man-

made machines with dynamic equations remains challeng-

ing [15, 16]. To address this challenge, reinforcement learning

schemes have been increasingly utilized to enhance learning

algorithms for some specific objectives [15, 18]. Furthermore,

with the rapid advancement ofAI neural network chips, there

has been a recent proposal to embed HJIEs within DNNs

for H∞ filtering designs in nonlinear stochastic systems [19].

Given that H2 filtering schemes represent critical optimal

filter designs, there is growing interest in developing DNN-

based filter trained with H2/H∞ HJIEs-supervised learning

algorithm. This approach aims to coordinate the nonlin-

ear stochastic system, Luenberger filter, estimation error

system and two-coupled H2/H∞ HJIEs-supervised learn-

ing algorithm to directly solve the coupled H2/H∞ HJIEs

for achieving mixed H2/H∞ filtering schemes tailored for

nonlinear stochastic systems with external disturbance and

measurement noise.

In this study, a novelH2/H∞ HJIEs-supervised Adam

learning algorithm for training DNN-based AI-filter is pro-

posed for nonlinear stochastic systems to achieve mixed

H2/H∞ filtering strategy. In scenarios where environmen-

tal disturbance and measurement noise are unavailable, the

system substitutes them by the available worst-case envi-

ronmental disturbance and measurement, denoted as v∗(t)
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and n∗(t), respectively, in the nonlinear system model and

the estimation error dynamic. The resulting filtering error

is used as input for training the DNN with a two-coupled

H2/H∞ HJIEs-supervised deep learning algorithm. This

training aims to solve two coupled H2/H∞ HJIEs to out-

put

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
, which is essential for constructing the

mixed H2/H∞ filter gain l∗(x̂(t)), v∗(t) and n∗(t). The

construction of the mixedH2/H∞ DNN-basedAI-driven fil-

ter is divided into two phases: (i) off-line pre-training phase

and (ii) on-line operation phase. In the off-line pre-training

phase (illustrated in Figure 1), the DNN takes the estimation

error
∼
x (t) as input and is trained using the two coupled

H2/H∞ HJIEs-supervised Adam learning algorithm to out-

put

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
. This output is then used to simultaneously

generate the mixed H2/H∞ filter gain l∗(x̂(t)), as well as

the worst-case measurement noise n∗(t) and environmen-

tal disturbance v∗(t) for further supervised deep learning

iterations of the DNN-based AI-driven filter. In the off-line

pre-training phase, the study employs available worst-case

scenarios v∗(t) and n∗(t) to replace the unavailable envi-

ronmental disturbance v(t) and measurement noise n(t) in

the mixed H2/H∞ filter design. This substitution ensures

that the state estimation performance of the mixed H2/H∞

filtering strategy remains for DNN-based AI-driven filter, as

it is designed to handle worst-case conditions in the absence

of v(t) and n(t) during the pre-training phase. Further, the

use of available worst-case v∗(t) and n∗(t) can significantly

compress the training data and training time of DNN-based

AI.

Figure 1. The DNN-based AI-driven mixedH2/H∞ nonlinear filter coordinates the nonlinear stochastic system with the worst-case

disturbance and measurement noise, Luenberger-type filter in (2), estimation error system in (4) and aH2/H∞ HJIEs-supervised learning

DNN to output
(
∂V

(∼
x (t)

)
/∂

∼
x (t)

)
to generate

(
∂V

(∼
x (t)

)
/∂

∼
x (t)

)
to produce H2/H∞ filter gain l∗(x̂(t)) for Luenberger-

type filter to become a mixedH2/H∞ filter. The flowchart depicts a two-coupled learning scheme usingH2/H∞ HJIEs-supervised

Adam learning algorithm for training a DNN-based AI-driven mixedH2/H∞ filter for a nonlinear stochastic system described in (1).

During the offline pre- training phase, the DNN is trained using the estimation error
∼
x (t) obtained from the estimation error system

in (4), considering the worst-case input v∗(t) and n∗(t). The trained DNN-based AI outputs
(
∂V

(∼
x (t)

)
/∂

∼
x (t)

)
, which is then

used to compute the worst-case input v∗(t), n∗(t), and the filter gain l∗(x̂(t)) based on (9)–(11). These are utilized by the nonlinear

stochastic system in (1) to produce output y(t), estimated state x̂(t) via a Luenberger-type filter in (2), and estimation error
∼
x (t) via

the system in (3). Furthermore,
∼
x (t), x̂(t), and

(
∂V

(∼
x (t)

)
/∂

∼
x (t)

)
are inputs to two coupled H2/H∞ HJIEs in (12) and (13),

yielding outputs
[
HJIE1

ε

(
t), HJIE2

ε(t)]
T
= [ε1(θi(t)), ε2(θi(t))]

T
as described in (19) and (20). These outputs serve as inputs to

a supervised Adam learning Algorithms (16)–(18). If [ε1(θi(t)), ε2(θi(t))]
T → [0, 0]T , according to Theorem 2, the convergence of[

HJIE1
ε

(
t), HJIE2

ε(t)]
T → [0, 0]T implies that the proposed two-coupledH2/H∞HJIEs-supervised DNN-based AI-driven filter

scheme approaches the mixedH2/H∞ filter strategy in (7) and (8). This marks the transition to the online operational phase, where real

inputs v(t) and n(t) in (1) are used to obtain the output y(t). Typically, no further training of the DNN-based AI-driven filter using the
two-coupledH2/H∞ HJIEs-supervised Adam learning algorithm is necessary. However, if |ε1(θk(t))| > δ or |ε2(θk(t))| > δ for a
specified δ > 0, the feedback of [ε1(θi(t)), ε2(θi(t))]

T
is required for theH2/H∞ HJIEs-supervised Adam learning algorithm of the

DNN during the online phase to enhance the filtering performance of the DNN-based AI-driven mixedH2/H∞ filter.
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After completing the off-line pre-training phase, the

mixedH2/H∞ DNN-based AI-driven filter scheme is trans-

mitted to the on-line operation phase. During this phase,

since v(t) and n(t) are available in the nonlinear stochastic

system, the worst-case v∗(t) and n∗(t) are unnecessary for

generating
∼
x (t) as DNN input. It is demonstrated that as

the error [ε1(θ(t)),  ε2(θ(t))]
T
in solving the two coupled

H2/H∞ HJIEs using the trained DNN approaches [0,  0]
T

via the proposed two-coupled H2/H∞ HJIEs-supervised

Adam learning algorithm, the proposed DNN-based AI-

driven filtering scheme achieves the mixedH2/H∞ filter de-

sign for the nonlinear stochastic signal system. However, in

practical applications, the H2/H∞ HJIEs-supervised Adam

deep learning algorithm is stopped after the pre-training

phase and is transmitted to the operation phase when both

|ε1(θ(t))| ≤ ε and|ε2(θ(t))| ≤ εsimultaneously, where ε is

a small prescribed positive value.

The contributions of this paper are described as follows:

1) Anovel approach is introduced: a deep learning-based

DNNAI-driven filter scheme supervised by embed-

ded two-coupled H2/H∞ HJIEs coordinates with

nonlinear system model, Luenberger filter and esti-

mation error model with the worst-case v∗(t) and

n∗(t) to achieve mixed H2/H∞filter performance

for nonlinear stochastic systems under uncertain en-

vironmental disturbances and measurement noises.

During the off-line pre-training phase, the worst-case

scenarios v∗(t) and n∗(t) replace unavailable v(t)

and n(t), respectively, to train the DNN-based AI-

driven filter using the proposed two-coupledH2/H∞

HJIEs-supervised Adam learning algorithm. This ap-

proach ensures the DNN-based AI-driven filter can

achieve the desired mixed H2/H∞ filtering perfor-

mance. It has been demonstrated that the proposed

DNN-based AI-driven filter, trained with the two-

coupled H2/H∞ HJIEs-supervised Adam learning

algorithm, effectively achieves the mixedH2/H∞ fil-

ter performance as the convergence of the supervised

Adam learning algorithm for solving two-coupled

H2/H∞ HJIEs is ensured.

2) The proposed DNN-based AI-driven filter scheme,

trained by two coupled H2/H∞ HJIEs-supervised

Adam learning algorithm, can directly compute(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
for the filter gain l∗(x̂(t)) in the mixed

H2/H∞ filter design. This method bypasses the

conventional approach of solving Lyapunov function

V
(∼
x (t)

)
from two coupledH2/H∞ HJIEs, thereby

avoiding the complex computation of partial differ-

entials

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
based on numerical data of

∼
x (t)

and V
(∼
x (t)

)
in traditional nonlinear filter design

methods for more practical applications.

3) The proposed two-coupled H2/H∞ HJIEs-

supervised Adam learning algorithm for DNN-based

AI-driven filter scheme represents a significant ad-

vancement in mixed H2/H∞ nonlinear filter design.

It integrates HJIEs-supervised Adam learning algo-

rithm and DNN-based AI with mixed H2/H∞ filter

co-design, bridging the gap between recent advances

in supervised machine learning and the complex

requirements of optimal H2 and robust H∞ nonlin-

ear filtering design in nonlinear stochastic signaling

systems. This approach leverages theH2/H∞ HJIEs-

supervised Adam learning algorithm for DNN-based

AI-driven filter to tackle the intricate mixed H2/H∞

filter design challenges of nonlinear stochastic signal

systems with uncertain external disturbance and mea-

surement noise, significantly compressing training

time and data requirements compared to conven-

tional big data-driven deep learning methods that do

not utilize system dynamic models and theoretical

derivatives.

The rest of this paper is structured as follows: Sec-

tion 2 presents the problem formulation, focusing on the

mixed H2/H∞ filter design for nonlinear stochastic sys-

tems. In this section, we introduce a novel two-coupled

H2/H∞ HJIEs-supervised learning DNN-based AI-driven

filter scheme tailored for achieving the mixedH2/H∞ filter

strategy of nonlinear stochastic signal systems. In the Sec-

tion 3, we introduced how we combine our proposed method

and the deep Adam learning algorithm, and a pseudocode

is given to illustrate the proposed H2/H∞ DNN-based AI-

driven filter scheme. Section 4 includes a simulation ex-

ample demonstrating the application of the proposed mixed

H2/H∞ DNN-basedAI-driven filter using the twoH2/H∞

HJIEs-supervised Adam learning algorithm for trajectory

estimation of an incoming ballistic missile by a radar system.

Finally, Section 5 concludes the paper.

Notation: Rn: The space real vectors of dimen-
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sion. Rn×m: The space of real n × m matrices. Ia the

identity matrix of dimension a × a; 0n×n: the zero ma-

trix of dimension n×n. If x(t) ∈ Rn, then ‖ x(t) ‖2 =(∑n
i=1x

2
i (t)

)1/2
=

(
xT

(
t)x(t))

1/2
, where xT (t) denotes

the transpose of x(t). L2
F [0,∞): The set of n-tuple stochas-

tic functions with finite energy i.e., x(t) ∈ L2
F [0,∞), if

E
(∫∞

0

(
xT (t)x(t)

)1/2
dt
)
= E

(∫∞
0
‖ x(t) ‖2dt

)
<∞.

2. Problem description

Consider the following nonlinear stochastic system

with environmental disturbance and measurement noise

˙x(t) = f(x(t)) + g(x(t))v(t)

   y(t) = h(x(t)) + n(t)   
(1)

where x(t) ∈ Rn is the state vector, v(t) ∈ Rl denotes the

random environmental disturbance, n(t) ∈ Rm denotes the

measurement noise, and y(t) ∈ Rm is the output measure-

ment. f(x(t)) ∈ Rn, g(x(t)) ∈ Rn×l, and h(x(t)) ∈ Rm

are the nonlinear system and measurement functions of state

vector and satisfy with the Lipschitz condition.

We assume that the nonlinear stochastic system de-

scribed in (1) is observable. Therefore, to achieve a specific

filtering objective, we can utilize the following nonlinear

Luenberger filter to estimate the state vector of the system

from its output measurement y(t).

˙̂x(t) =  f(x̂(t)) + l(x̂(t))(y(t)− h(x̂(t)) (2)

where x̂(t) denotes the state estimation of x(t).

For the nonlinear Luenberger filter design in (2), we

need to design filter gain l(x̂(t)) to estimate x(t) from the

measurement output y(t) in (1) as good as possible despite

unavailable v(t), n(t) ∈ L2
F [0,  ∞).

∼
x (t) =  x(t)− x̂(t) (3)

From (1) and (2), we get the estimation error dynamic

as follows:

∼̇
x(t) =  f(x(t))− f(x̂(t))− l(x̂(t))(h(x(t))− h(x̂(t)))

+g(x(t))v(t)− l(x̂(t))n(t)
(4)

Due to the absence of statistical information regarding

v(t) and n(t), the effectiveness of H2 optimal state estima-

tion is compromised. Hence, in this study, the design of the

filter gain l(x̂(t)) for the Luenberger-type filter in (2) aims

to achieve theH2/H∞ filtering performance. This approach

seeks to leverage the advantages of both optimalH2 filtering

and robust H∞ filtering concurrently. Specifically, the goal

is to implement an H2 optimal filter while considering the

worst-case scenaros of v∗(t) and n∗(t) based on robust H∞

filter design principles for the state estimation process of

the nonlinear stochastic system described in (1). The per-

formance indices J∞(l(x̂(t)),  v(t),  n(t)) for the H∞ filter

design and J2(l(x̂(t)),  v(t),  n(t)) for the H2 filter design

in (2) for the nonlinear stochastic system (1), are given in

the following [3, 5–8]:

J∞(l(x̂(t)),  v(t),  n(t)) = E
(
V
(∼
x (tf )

))
+

E
(∫ tf

0
[
∼
x
T
(t)Q

∼
x (t)− r2(vT (t)v(t) + nT (t)n(t))]dt

)
(5)

J2(l(x̂(t)),  v(t),  n(t)) = E
(
V
(∼
x (tf )

))
+E

(∫ tf
0

∼
x
T
(t)Q

∼
x (t)dt

)
(6)

where Q  =  QT ≥ 0 represents the weighting matrix ap-

plied to the state estimation error. The Lyapunov function

V  
(∼
x (t)

)
serves as the energy function for the state esti-

mation error at time t. The parameter r  >  0 indicates

the desired robustness level for H∞ filtering against distur-

bances v(t) and measurement noise n(t) affecting the state

estimation error, viewed in terms of energy. The function

E(·) denotes the expectation operation, and tf denotes the

terminal time.

The mixed H2/H∞ filtering design of nonlinear

stochastic system in (1) needs to solve the following

two-person Nash non-zero sum games in which l(x̂(t))

is one player and (v(t),  n(t)) is considered as another

player [8, 10, 20],

J∞(l∗(x̂(t)),  v∗(t),  n∗(t)) ≤ J∞(l∗(x̂(t)),  v(t),  n(t))

(7)

J2(l
∗(x̂(t)),  v∗(t),  n∗(t)) ≤ J2(l(x̂(t)),  v

∗(t),  n∗(t))

(8)

where J∞(l∗(x̂(t)), v∗(t), n∗(t)) , max
v(t),n(t)∈L2

F [0,∞)
J∞

(l∗(x̂(t)),  v(t),  n(t)), J2(l
∗(x̂(t)), v∗(t), n∗(t)) ,

min
 l(x̂(t))

J2(l(x̂(t)),  v
∗(t), n∗(t)) with v∗(t) and n∗(t) be-

ing the solution of (7) and (l∗(x̂(t)), v∗(t), n∗(t)) denotes

the Nash equilibrium point of two Nash non-zero sum games

in (7) and (8) for the mixed H2/H∞ filtering strategy.
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The concept conveyed by the two-person Nash non-

zero sum games in (7) and (8) for the mixed H2/H∞ filter

design is that, when confronted with the worst-case external

disturbances v∗(t) and measurement noise n∗(t) as per the

robust H∞ filtering strategy in (7), the filter gain l∗(x̂(t))

in the Luenberger-type filter in (2) can achieve the optimal

H2 filtering performance in (8) simultaneously, as discussed

in [7, 8].

From the two-person Nash non-zero sum games in (7)

and (8), we get the mixedH2/H∞ filter design of nonlinear

stochastic system as follows:

Theorem 1. (i) The filter gain l∗(x̂(t)), along with the worst-

case scenarios of v∗(t) and n∗(t), are specified for the mixed

H2/H∞ filter strategy in (7) and (8) of the nonlinear stochas-

tic system described in (1):

l∗(x̂(t)) = 2r2

|| 
(

∂V
(∼
x(t)

)
∂
∼
x(t)

)
||
2  

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
×

(h(x(t))− h(x̂(t)))
T

(9)

v∗(t) = 1
2r2 g

T (x(t))

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
(10)

n∗(t) = 1
2r2 l

∗T (x̂(t))

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
(11)

where

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
is the solution of the following two-

coupled H2/H∞ HJIEs,

HJIE1(t) =
∼
x
T
(t)Q

∼
x (t) +

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

(f(x(t))− f(x̂(t))) + 1
4r2

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

g(x(t))gT (x(t))

×
(

∂V
(∼
x(t)

)
∂
∼
x(t)

)
− r2(h(x(t))− h(x̂(t)))

T

(h(x(t))− h(x̂(t)))
T
= 0

(12)

HJIE2(t) =
∼
x
T
(t)Q

∼
x (t) +

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

(f(x(t))− f(x̂(t))) + 1
2r2

(
∂V
(∼
x (t )

)
∂
∼
x(t)

)T

g(x(t))gT (x(t))

×
(

∂V
(∼
x(t)

)
∂
∼
x(t)

)
−2r2(h(x(t))− h(x̂(t)))

T

(h(x(t))− h(x̂(t)))
T
= 0

(13)

(ii) If v(t) and n(t) belong to L2
F [0,∞), meaning they

possess finite energy, then the mixed H2/H∞ filter strategy

can achieve the mean square asymptotic filtering capability.

This is expressed as E

(
∼
x
T
(t)

∼
x (t)

)
→ 0 as t→  ∞.

Proof. SeeAppendix A.

According to Theorem 1, solving

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
to

determine the filter gain l∗(x̂(t)) for the mixed H2/H∞

filter involves addressing the coupled HJIEs equations[
HJIE1

(
t),HJIE2(t)]

T
  =  [0,  0]

T
in (12) and (13).

This task remains particularly challenging due to the com-

plex nature of solving

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
from the coupled non-

linear partial differential equations HJIE1(t) = 0 and

HJIE2(t) = 0 in (12) and (13), whether through numeri-

cal or analytical methods [21]. Additionally, HJIE1(t) and

HJIE2(t) are functions involving x(t), x̂(t), 
∼
x (t). Since

the state x(t) of the stochastic system in (1) cannot be di-

rectly accessed, and only the output measurement y(t) is

available, solving

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
directly from the coupled

HJIE1(t) = 0 and HJIE2(t) = 0 equations is nearly

impossible due to the unavailability of f(x(t)), g(x(t)), and

h(x(t)) in (12) and (13).

Remark 1. In recent decades, various interpolation tech-

niques such as the fuzzy method [10], global linearization

method [8], and gain scheduling method [9] have emerged to

address the challenge of solving two coupledH2/H∞ HJIEs

in (12) and (13). These methods involve interpolating several

local linearized stochastic models across different operat-

ing conditions to approximate the behavior of the nonlinear

stochastic system described in (1). For instance, by interpo-

lating N local linear stochastic systems, one can effectively

approximate the dynamics of (1).

ẋ(t) =
N∑
i=1

Ii(x̂(t))(Fix(t) +Giv(t))

y(t) =
N∑
i=1

Ii(x̂(t))(Hix(t) + n(t)) (14)

where Ii(x̂(t)),  i  =  1,  ..., N are the local interpolation

functions in T-S fuzzy method [7, 10], smoothing functions

in the global linearization method [8] or gain scheduling

method [9], and (Fi, Gi, Hi) are system matrices of the ith

local linearized system in these interpolation methods, re-

spectively.

Based on the interpolatory methods in (14), the nonlin-

ear Luenberger-type filter in (2) can be represented by the

following interpolation filter.
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˙̂x(t) =
N∑
i=1

N∑
j=1

Ii(x̂(t))Ij(x̂(t))

(Fix̂(t) + Li(y(t)−Hj x̂(t)))

(15)

where Ii(x̂(t)) denotes the ith interpolation functions of non-

linear Luenberger-type filter, and Li denotes the ith local

filter gain of l(x̂(t)) in (2).

Given the interpolation methods discussed above, de-

signing a mixed H2/H∞ filter for the nonlinear stochastic

system described by (1) and (2) involves solving N2 cou-

pled H2/H∞ Riccati-like algebraic equations, under the

assumption that the coupled HJIEs in (12) and (13) admit a

Lyapunov solution V
(∼
x (t)

)
=

∼
x
T
(t)P

∼
x (t) for some pos-

itive definite matrix P   =  PT   >  0. For highly nonlinear

systems characterized by (1), solving N2 coupled Riccati-

like equations for Li, i = 1, ..., N in (15) requires significant

computational effort and time [7, 8, 10]. Moreover, if the num-

ber N of local linear systems is large, computing x̂(t) using

the interpolation filter defined in (15) at each time step de-

mands substantial computational resources, highlighting the

current challenges of nonlinear filter design in this area.

3. Mixed H2/H∞ DNN-based AI-

driven nonlinear filter via coupled

H2/H∞ HJIEs-supervised adam

learning algorithm

To circumvent the challenge of concurrently solving(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
for the filter gain l∗(x̂(t)) in (9) from two cou-

pledH2/H∞ HJIEs (12) and (13) using conventional meth-

ods for the mixedH2/H∞ filter (2), an attractive alternative

is to employ a robust DNN-based AI. This DNN-based AI

can be trained to simultaneously address

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
for

HJIE1(t) =  0  in (12) and HJIE2(t) =  0  in (13) in

order to determine l∗(x̂(t)) in (9), v∗(t) in (10), and n∗(t) in

(11) simultaneously. This approach leverages a supervised

deep learning algorithm specifically tailored for handling

two-coupled H2/H∞ HJIEs in practical applications.

This study proposes a two-coupled H2/H∞ HJIEs-

supervised Adam learning algorithm for DNN-based AI-

driven filter scheme to achieve the mixed H2/H∞ filter

strategy of nonlinear stochastic signal systems, as illustrated

in Figure 1. Specifically, it coordinates with nonlinear sys-

temmodel in (1), Luenberger filter in (2) and estimation error

system in (4) with the worst-case v∗(t) and n∗(t), to develop

a H2/H∞ HJIEs-supervised Adam learning algorithm for

DNN-based AI-driven filtering scheme capable of achieving

simultaneous optimalH2 and robust H2 state estimation for

the nonlinear stochastic system (1). The design process con-

sists of two distinct phases: an off-line pre-training phase

and an on-line operation phase.

In the off-line pre-training phase, due to the unavail-

ability of f(x(t)), g(x(t)), and h(x(t)) required by the

two-coupled H2/H∞ HJIEs in (12) and (13), we approx-

imate them using the synthesized state x(t) = x̂(t)+ 
∼
x (t).

Here, x̂(t) is obtained from the output of the Luenberger-

type filter in (2), and
∼
x (t) represents the output of

the estimation error system in (4). In this phase, af-

ter computing f(x(t)), g(x(t)), and h(x(t)) and obtain-

ing

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
∈
from the DNN output, we calculate

[HJIE1
∈(t),  HJIE2

∈(t)]
T

=  [∈1(θi(t)),  ∈2(θi(t))]T ,

where ∈1(θi(t)) and ∈1(θi(t)) represent the errors with re-
spect to the ideal values 0. During pre-training, the error

vector between [∈1(θi(t)),  ∈2(θi(t))]T and [0,  0]
T
is fed

back to the DNN, facilitating training using a two-coupled

H2/H∞ HJIEs-supervised deep learning-based Adam algo-

rithm in the sequel. This process aims to train the DNN to

accurately predict

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
as shown in Figure 2. More-

over, as depicted in Figure 1, the output

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
from

the DNN is utilized to compute l∗(x̂(t)), v∗(t), and n∗(t).

These values contribute to generating y(t) through the non-

linear stochastic system in (1), x̂(t) via the Luenberger filter

in (2), and
∼
x (t) through the estimation error system in (4)

for the (i +  1)th step of the training process using the two-

coupled H2/H∞ HJIEs -supervised deep learning-based

Adam algorithm for DNN-based AI-driven filter scheme in

the off-line training phase in the sequel.

Remark 2. In this study, by substituting the unavailable v(t)

and n(t) with the accessible worst-case v∗(t) from (10) and

n∗(t) from (11) in the nonlinear stochastic system described

by (1), the outputs y(t) (from (1)), estimated state x̂(t) (from

(2)), and state estimation error
∼
x (t) (from (3)) are generated

during the off-line pre-training phase simultaneously. Impor-

tantly, this substitution has no impact on the performance

of the mixed H2/H∞ DNN-based AI-driven filter. This is

because the design of the mixed H2/H∞ filter inherently
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considers the worst-case external disturbance v∗(t) (from

(10)) and worst-case measurement noise n∗(t) (from (11))

as specified in Theorem 1.

Figure 2. The core structure of proposed approach involves

a two-coupled H2/H∞ HJIEs-supervised Adam learning algo-

rithm DNN with
∼
x (t) as input and

(
∂V

(∼
x (t)

)
/∂

∼
x (t)

)
as

output. This DNN aims to simultaneously solve HJIE1(t) in
(12) andHJIE2(t) in (13) following pre-training using the Adam
learning algorithm (16), (17), and (18). The pre-training fo-

cuses on minimizing the errors HJIE1
∈(t) = ∈1(θi(t)) and

HJIE2
∈(t) = ∈2(θi(t)), where θi(t) denotes the weighting vec-

tor of neurons in the hidden layers of the DNN. The objective is

to adjust θi(t) iteratively to minimize the combined squared error
∈2

1(θi(t)) + ∈2
2(θi(t)) by the H2/H∞ HJIEs-supervised Adam

learning algorithm as specified in (16)–(18).

As the coupled error [∈1(θi(t)),  ∈2(θi(t))]T →
[0,  0]

T
during the pre-training phase, the be-

havior of [HJIE1
∈(t),  HJIE2

∈(t)]
T

approaches[
HJIE1

(
t), HJIE2(t)]. This transition signifies that

the DNN-based AI-driven H2/H∞ filter scheme depicted

in Figure 1 achieves towards the mixed H2/H∞ filter

strategy outlined in (7) and (8). Consequently, the off-line

pre-training phase depicted in Figure 1 shifts into the online

operational phase.

During the online operation phase, the availability of ex-

ternal disturbance v(t) and measurement noise n(t) renders

the substitution of v∗(t) and n∗(t) unnecessary to generate

outputs y(t), x̂(t), and
∼
x (t) as defined in (1), (2), and (3),

respectively. Therefore, there is no requirement to restrain

the DNN using the two-coupled HJIEs-supervised Adam

deep learning algorithm during the online phase. However,

if |∈1(θi(t))|  >   ∈ or |∈2(θi(t))|  >   ∈ for a specified

threshold ∈   >  0, it indicates that [∈1(θi(t)),∈2(θi(t))]T

should be fed back into the two-coupled H2/H∞ HJIEs-

supervised Adam deep learning algorithm to train DNN.

This feedback mechanism aims to enhance the filtering per-

formance of the proposed mixed H2/H∞ DNN-based AI-

driven filter scheme in operation phase as illustrated in Fig-

ure 1.

The core structure of the proposed mixed H2/H∞

DNN-based AI-driven filter scheme, supervised by two cou-

pled H2/H∞ HJIEs, is depicted in Figure 2. It comprises

an input layer, multiple hidden layers, and an output layer.

Each hidden layer is equipped with neurons employing the

LeakyReLU activation function, as described in [16].

a
(∼
x (t)

)
=

{
α1

∼
x (t)                    if  

∼
x (t) > 0

α2
∼
x (t)                    if  

∼
x (t) ≤ 0

where α1 and α2 are of constant within (0,1).

The following two-coupledH2/H∞ HJIEs-supervised

Adam learning algorithm is proposed to minimize the

objective function [∈1(θi(t)),∈2(θi(t))][∈1(θi(t)),∈2
(θi(t))]

T
=∈21(θi(t)) + ∈22(θi(t)) [10, 15, 18, 22, 23]:

θi(t) = θi−1(t)− l√
v̂i(t)+τ

m̂i(t),      i = 1, . . . , I

(16)

m̂i(t) =
mi(t)
1−λi

1
,  v̂i(t) =

vi(t)
1−λi

2
(17)

mi(t) = λ1mi−1(t) + (1− λ1)gi(t)

vi(t) = λ2vi−1(t) + (1− λ2)g
2
i (t)

(18)

gi(t) =
∂

∂θi(t)

√
1
N

N∑
i=1

(∈21(θi(t)) + ∈22(θi(t)))

= ∂
∂θi(t)

√
1
N

N∑
i=1

(
HJIE1

∈(θi(t))(t)
2
+HJIE2

∈(θi(t))(t)
2
)

where θi(t) represents the vector of weighting coefficients

in the hidden layers of the DNN, which are trained to

produce

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
, as depicted in Figure 2. Here,

l denotes the learning rate and I denotes the number of

training steps at time t. m̂i(t) and v̂i(t) are bias-corrected

estimators. gi(t) denotes the gradient vector of the ob-

jective function, which is the root mean square error

(RMSE) of a batch of 1
N

∑N
i=1 ∈21(θi(t)) + ∈22(θi(t)).

∈21(θi(t)) + ∈22(θi(t)) represents the quadratic error of

the two-coupled [HJIE1
∈(t),  HJIE2

∈(t)] in (12) and (13),

which serves as the supervisor for the Adam learning al-

gorithm in (16)–(18) to minimize ∈21(θi(t)) + ∈22(θi(t)),
aiming for ∈21(θi(t)) = ∈22(θi(t)) =  0 or HJIE1

∈(t),=

HJIE2
∈(t) = 0. N represents the batch size. In (18), λ1,

λ2 ∈  (0,  1) denote coefficients specifying the previous

impact on the current gradient direction, designed to prevent

the algorithm from getting trapped in local minima, incorpo-

rating the momentum concept to accelerate learning. τ in

(16) is a small value used to prevent division by zero in the
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denominator. mi(t) and vi(t) in (18) are moving averages of

the gradient and square gradient at time t, respectively. vi(t)

adjusts adaptively, starting large and decreasing near the

minimum to benefit from adaptive learning rates. Currently,

the Adam learning algorithm in (16)–(18) is recognized as a

potent deep learning technique for stochastic optimization

with global linear convergence [23].

The Adam learning algorithm, supervised by two cou-

pled H2/H∞ HJIEs as detailed in (16)–(18), leverages the

benefits of RMSProp and momentum. This adaptive learning

method efficiently addresses the task of solving

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
when

[
HJIE1

(
t),  HJIE2(t)]

T
=  [0,  0]

T
for l∗(x̂(t)),

v∗(t), and n∗(t) in (9)–(11). It demonstrates robust con-

vergence performance and offers straightforward implemen-

tation [20], building on the widely adopted Adam algorithm

used extensively in optimizing neural networks. Hence, it is

selected for application in the two-coupled H2/H∞ HJIEs-

supervised Adam learning algorithm in (16)–(18) for DNN-

based AI-driven filter scheme in this study.

Remark 3. (i) The proposed mixed H2/H∞ DNN-based

AI-driven filter differs from conventional big data-driven

DNN-based AIs used in applications such as speech recogni-

tion [11] and image classification [14]. In this study, we employ

the Luenberger filter described in (2), the estimation error

system in (4), and the theoretical results (9)–(12) from the

mixed H2/H∞ filter design strategy, where two-coupled

conditions HJIE1(t) = 0 in (12) and HJIE2(t) = 0 in

(13) are utilized. These two conditions supervise the Adam

learning algorithm in (16)–(18), ensuring convergence to

HJIE1
∈(t) = 0 and HJIE2

∈(t) = 0. This convergence en-

sures that the output

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
∈
of the pre-trained DNN

converges to

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
. The supervised Adam learn-

ing algorithm described in (16)–(18) guarantees that the

weighting parameter vector θi(t) of the DNN converges

to the stochastic optimal solution [23]. Specifically, with a

sufficiently large number of neurons in the hidden layers

and training steps I in (16), θi(t) can converge linearly to

a globally optimal parameter vector θ∗i (t) for minimizing

∈21(θi(t)) + ∈22(θi(t)) [23]. (ii) A robust H∞ DNN-based

filter of nonlinear stochastic system was introduced in [17].

Since the robust H∞ filter is more conservative with high

filter gain and the optimalH2 filter is more appealing in the

conventional designs, the mixedH2/H∞ filter design of non-

linear stochastic systems is proposed in this study. Further,

it is more difficult and challenging to solve HJIE1(t) = 0

in (12) and HJIE2(t) = 0 in (13) simultaneously in mixed

H2/H∞ nonlinear filter design than to solveHJIE1(t) for

H∞ nonlinear filter in [19].

During the off-line pre-training process of two-coupled

H2/H∞ HJIEs-supervised Adam learning algorithm in Fig-

ure 1, the DNN output

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
∈
is sent to two-coupled

H2/H∞ HJIEs in (12) and (13) as follows:

HJIE1
∈(t) =

∼
x
T
(t)Q

∼
x (t) +

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

∈
(f(x(t))− f(x̂(t))) + 1

4r2

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

∈
g(x(t))gT (x(t))

×
(

∂V
(∼
x(t)

)
∂
∼
x(t)

)T

∈
− r2(h(x(t))− h(x̂(t)))

T
(h(x(t))− h(x̂(t)))

T

= ∈1(θi(t)) (19)

HJIE2
∈(t) =

∼
x
T
(t)Q

∼
x (t) +

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

∈
(f(x(t))− f(x̂(t))) + 1

2r2

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

∈
g(x(t))gT (x(t))

×
(

∂V
(∼
x(t)

)
∂
∼
x(t)

)T

∈
− 2r2(h(x(t))− h(x̂(t)))

T
(h(x(t))− h(x̂(t)))

T
= ∈2(θi(t)) (20)

where the terms ∈1(θi(t)) = HJIE1
∈(t) – HJIE1(t) and

∈2(θi(t)) = HJIE
2
∈(t)−HJIE2(t) represent the discrep-

ancies between the two coupled H2/H∞ HJIEs defined in

(12) and (13), and their counterparts predicted by the DNN

during the pre-training phase, as described in (19) and (20).

The state x(t) = x̂(t)+
∼
x (t) in (19) and (20) is accessi-

ble via x̂(t) through the Luenberger filter in (2), and via
∼
x (t) through the state estimation error dynamics in (4) as

illustrated in Figure 1.

The discrepancy [∈1(θi(t)),∈2(θi(t))]T as defined in

(19) and (20) serves as feedback to train the DNN using

the two-coupled H2/H∞ HJIEs-supervised Adam learning
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algorithm in (16)–(18) during the pre-training phase. Con-

sequently, the DNN is expected to output

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
to

derive the mixed H2/H∞ filter gain l∗(x̂(t)) in (9), the

worst-case v∗(t) in (10), and n∗(t) in (11) following the

completion of the offline pre-training phase, as illustrated in

Figure 1.

As the approximation error[HJIE1
∈(t),  HJIE2

∈(t)]
T
=

[∈1(θi(t)),∈2(θi(t))]T approaches to [0,  0]
T
by the two

coupled H2/H∞ HJIEs-supervised Adam learning algo-

rithm (16)–(18), we can prove that the output

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
∈

of DNNwill approach

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
of two-coupledH2/H∞

HJIEs in (12) and (13), i.e., [HJIE1
∈(t),  HJIE2

∈(t)]
T →[

HJIE1
(
t),  HJIE2(t)]

T
=  [0,  0]

T
in the following

theorem.

Theorem 2. If [∈1(θi(t)),∈2(θi(t))]T = [HJIE1
∈(t),

HJIE2
∈(t)]

T
in (19) and (20) approaches [0,  0]

T

through the two-coupled H2/H∞ HJIEs-supervised

Adam learning algorithm in (16)–(18), then the output(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
∈
of the DNN in (19) and (20) will ap-

proximate

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
in (12) and (13). This means

[HJIE1
∈(t),  HJIE2

∈(t)]
T
in (19) and (20) will approach[

HJIE1
(
t),  HJIE2(t)]

T
in (12) and (13), respectively.

The HJIEs-supervised DNN-based filter gain l∗(x̂(t)) =

2r2

||
(

∂V
(∼
x(t)

)
∂
∼
x(t)

)
∈

||

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
∈
(H(x(t))−H(x̂(t))) in Fig-

ure 1will then achieve the mixedH2/H∞ filter gain l∗(x̂(t))

in (9).

Proof. SeeAppendix B.

Remark 4. (i) According to Theorem 2 and Theorem

1, the proposed two-coupled H2/H∞ HJIEs-supervised

Adam learning algorithm for DNN-based AI-driven filtering

scheme in Figure 1 is capable of generating

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
to derive the mixed H2/H∞ filter gain l∗(x̂(t)) in (9) as

[∈1(θi(t)),∈2(θi(t))]T → [0,  0]
T
. In practical applica-

tions, however, the off-line pre-training phase transitions to

the operational phase once |∈1(θi(t))| and |∈2(θi(t))|  ≤  δ

for a small prescribed δ, or when the pre-training steps reach

a specified number I in (16)–(18). (ii) Unlike the conven-

tional big data-driven supervised DNN-based AI learning

schemes used for binary classification tasks like image clas-

sification or speech recognition (i.e., yes or no outcomes),

the proposed two-coupled H2/H∞ HJIEs-supervised learn-

ing algorithm for DNN-based AI-driven filtering scheme is

applied to achieve mixed H2/H∞ state estimation of the

nonlinear stochastic system in (1). In this study, the non-

linear Luenberger-type filter in (2) and the two-coupled

H2/H∞ HJIEs act as supervisors for the Adam learning

algorithm in (16)–(18) to train the DNN-based AI to solve(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
for the two coupled H2/H∞ HJIEs in (19)

and (20) of the mixed H2/H∞ filter scheme. Thus, this ap-

proach allows substantial savings in training data and time

compared to conventional big data-driven DNN-based AI

learning schemes, leveraging the system model and theo-

retical mixed H2/H∞ filtering results (9)–(13) to achieve

complex mixedH2/H∞ DNN-based AI-driven filter designs

for state estimation of nonlinear stochastic systems of man-

made machines for more practical applications.

To facilitate the training of the DNN-based AI-driven

filter using the two-coupled H2/H∞ HJIEs-supervised

Adam learning algorithm for practical applications, the

continuous nonlinear stochastic system in (1) must be

transformed into the corresponding sampled-data nonlinear

stochastic system.

x(t+ h) ≈ (x(t) + hf(x(t))) + hg(x(t))v(t)

y(t) = h(x(t)) + n(t)
(21)

where h is the sampling period. Consequently, the

Luenberger-type filter in (2) and the estimation error sys-

tem in (4) need to be changed, respectively, as follows:

x̂(t+ h) = (x̂(t) + hf(x̂(t))) + hl(x̂(t))(y(t)− h(x̂(t)))

(22)

and

∼
x (t+ h) =

(∼
x (t) + hf(x(t))− hf(x̂(t))

)
+ ̂(t̂(t))(h(x(t))− h(hl(x x )))

+hg(x(t))v(t)− hl(x̂(t))n(t)

(23)

Accordingly, the flow chart of two-coupled H2/H∞

HJIEs-supervised DNN-based AI-driven filter scheme of

nonlinear stochastic sample data system in (21)–(23) is mod-

ified in Figure 3. For the convenience of design, the off-line

pre-training process is given as Algorithm 1.

Upon completing the off-line pre-training of the mixed

H2/H∞ DNN-based AI-driven filter using the aforemen-
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tioned two-coupled H2/H∞ HJIEs-supervised Adam learn-

ing algorithm in Algorithm 1, the process transitions to the

on-line operational phase of the mixedH2/H∞ DNN-based

AI-driven filter. During this phase, since v(t) and n(t) are

directly available, there is no need for the information of

v∗(t) and n∗(t). Thus, at each time step, only
∼
x (t) is re-

quired as input for the DNN to produce

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
, which

is used to compute the filter gain l∗(x̂(t)) via (9) for the

Luenberger-type mixed H2/H∞ filter in (22) and the esti-

mation error system in (23). However, if the absolute error

|∈1(θi(t))|  or |∈2(θi(t))|  ≥  δ for a prescribed error thresh-

old δ, it necessitates retraining the DNN using the proposed

two-coupledH2/H∞ HJIEs-supervised Adam learning al-

gorithm in (16)–(18), ensuring it does not disrupt the op-

erational phase process of the mixed H2/H∞ DNN-based

AI-driven filter.

Figure 3. The flow chart of mixedH2/H∞ DNN-based AI-driven filtering scheme of nonlinear stochastic sample-data systems in (21)

and (22) with sampling period h. The pre-training process of the nonlinear sample-data system is the same as nonlinear stochastic system

in Figure 1 and is given in Algorithm 1.

Remark 5. Before applying the proposed H2/H∞ HJIEs-

supervised Adam learning scheme in the off-line pre-training

phase to train the DNN, it is essential to preprocess the data.

This preprocessing includes normalization and standardiza-

tion to mitigate the impact of potentially large estimation

errors
∼
x (t) on the training efficiency of the deep learn-

ing methodologies proposed. Therefore, it is necessary to

standardize these sample data before feeding them into the

DNN. Standardization serves the dual purpose of enhancing

the estimation accuracy of the mixed H2/H∞ DNN-based

AI-driven filter and accelerating its training speed.

Remark 6. Currently, there is no efficient deep learning

approach available to implement the mixed H2/H∞ DNN-

based AI-driven filter for nonlinear signal systems in (1),

Luenberger filter in (2) and mixedH2/H∞ filter in Theorem

1 and H2/H∞ HJIEs-supervised DNN-based AI that inte-

grates theoretical insights into nonlinear H2/H∞ filtering

strategy with the deep Adam learning algorithm. Conven-

tional deep learning algorithms are primarily designed for

training DNNs as classifiers or recognizers. The challenge

lies in the fact that conventional big data-driven DNN-based

AIs require extensive empirical data, making it challenging

to realize a cohesive design of the nonlinear mixed H2/H∞

filtering scheme and the supervised Adam algorithm learning

DNN-based AI for robust H∞ and optimal H2 state estima-

tion of nonlinear stochastic signal systems simultaneously.
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Algorithm 1. Two-coupled H2/H∞ HJIEs-supervised Adam learning algorithm for DNN-based AI-driven

H2/H∞ filter scheme of nonlinear stochastic system

Input: Time step t, sampling time h, terminal time tf , amplitude A, state vector x(t), state estimation x̂(t)
of x(t), system functions f(x(t)), g(x(t)) and h(x(t)), weighting matrix Q, attenuation level r2, a small
prescribed value δ, missile coefficient β, gravity constant g, external disturbance v(t), measurement noise
n(t)

1: for t← 0 to tf (+h, total t) do
2: x̃(t)← x(t)− x̂(t)
3: Calculate f(x(t)), f(x̂(t)), h(x(t)), h(x̂(t)), g(x(t)) and g(x̂(t))
4: Inputs in the Input Layer of DNN← x̃(t)

5:
∂V (x̃(t))
∂x̃(t)

∣∣
ε
← Obtain the partial differential of a Lyapunov function from the Output Layer of DNN by

using DNN

6: HJIE1
ε ,HJIE2

ε ← Equation (19) and Equation (20) with
∂V (x̃(t))
∂x̃(t)

∣∣
ε
, f(x̃(t)) and h(x̃(t)), respectively

7: if |ε1(θi(t))| ≥ δ or |ε2(θi(t))| ≥ δ or t < tf then
8: l∗(x̃(t)), v∗(t), n∗(t)← Calculate from Equation (9)–Equation (11), respectively

9: x(t+ h), x̃(t+ h), v(t+ h)← Equation (21)–Equation (23), respectively

10: Train the DNN with x̃(t+ h) and calculate HJIE1
ε (t+ h), HJIE2

ε (t+ h) by using the output of
DNN

11: Else
12: Calculate H2/H∞ attenuation level← by Equation (30)

13: end if

14: end for

4. Simulation example

In this section, after building upon the flow chart of

the proposed two-coupled H2/H∞ HJIEs-supervised Adam

learning algorithm for mixedH2/H∞ DNN-basedAI-driven

filtering scheme depicted in Figure 3 for the nonlinear

stochastic sample-data system described by (21), including

the sample-data Luenberger-type filter presented in (22) and

estimation error sample data system, we provide a design

example with computer simulation. This example focuses on

the mixed H2/H∞ trajectory estimation problem of an in-

coming ballistic missile following trajectories akin to Eugen

Sanger or Tsien Hsueshen [24], observed via sensor measure-

ments within a radar system. The objective is to validate

the trajectory estimation performance of the incoming ballis-

tic missile using the proposed two-coupled H2/H∞ HJIEs-

supervised mixed H2/H∞ DNN-based AI-driven filtering

scheme, as illustrated in Figure 4.

In Figure 4, an incoming ballistic missile, maneuvering

with either Eugen Sanger or Tsien Hsueshen trajectory [24],

is targeting an origin-bound target and detected by a radar

sensor located at (x,  y,  z)  =  (300,  300,  0). The ballistic

missile’s flight trajectory is governed by the guidance control

law u(t) associated with Eugen Sanger or Tsien Hsueshen

trajectory [24], aimed at evading precise estimation and sub-

sequent interception by anti-missile defenses. Considering

external disturbances v(t) affecting the missile and measure-

ment noise n(t) from the radar sensor, the dynamics of both

the incoming ballistic missile and the radar detection sys-

tem can be described by the following nonlinear stochastic

system [9, 25]:

Figure 4. The incoming ballistic missile followed a trajectory

known as the Tsien Hsueshen trajectory [24]. The x axis, y axis,

and z axis represent the downrange, offrange, and attitude of the
missile, respectively. The missile’s target is situated at the origin,

and a detection radar is positioned at (x, y, z) = (300, 300, 0) to
estimate the missile’s trajectory using the proposed mixed DNN-

based AI-drivenH2/H∞ filter with sensor measurements Y (t).

Ẋ(t) = f(X(t)) + u(t) + g(X(t))v(t)

Y (t) = h(X(t)) + n(t)
(24)

where X(t)  = [x(t),  y(t),  z(t),  ẋ(t),  ẏ(t),  ż(t)]
T
.
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f(X(t)) =



ẋ(t)

ẏ(t)

ż(t)
−ρ(z(t))g

√
ẋ2(t)+ẏ2(t)+ż2(t)
2β ẋ(t)

−ρ(z(t))g
√

ẋ2(t)+ẏ2(t)+ż2(t)
2β ẏ(t)

−ρ(z(t))g
√

ẋ2(t)+ẏ2(t)+ż2(t)
2β ż(t)− g


(25)

g(X(t)) = diag[01×3,  1,  1,  1] (26)

h(X(t)) = [x(t)− 300,  y(t)− 300,  z(t), ẋ(t),  ẏ(t),  ż(t)]T

(27)

where x(t), y(t) and z(t) denote the target-centered Carte-

sian coordinates of the incoming ballistic missile, g is the

gravity constant, ρ(z(t)) denotes the density of the atmo-

sphere at the position of the incoming ballistic missile de-

fined in the following [25, 26]:

ρ(z(t)) =

{
ρhe

−αhz(t),  ρh = 1.75,  αh = 1.49× 10−4, if  z(t) ≥ 9144 meters 

ρle
−αlz(t),  ρl = 1.227,  αl = 1.093× 10−4, if  z(t) < 9144 meters

For the convenience of representation, let us denote

the state vector of the ballistic missile detection system in

Figure 4 as follows:

X(t) =



x(t)

y(t)

z(t)

ẋ(t)

ẏ(t)

ż(t)


=



x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

x6(t)


To steer the ballistic missile along a Tsien Hsueshen

trajectory [24] and prevent precise detection followed by in-

terception from anti-missile systems, the following guidance

strategy is proposed for the ballistic missile:

u(t) = kX(t) = [−0.1x1(t)− x4(t) + a(t),

 − 0.1x2(t)− x5(t),−0.08x3(t)− x6(t),

−e−0.1tsin(10t)x4(t),−0.01x5(t),−0.01x6(t)]
T

(28)

where a(t) is the following wave function:

a(t) = Ae−0.1t 4
π sin(t) where A represents the ampli-

tude value, set to 15000 in the simulation, and e−0.1t acts

as a decreasing function over time. In our simulation, as

time progresses, the missile’s wavelike trajectory transitions

towards a straight path to approach the target. As the ma-

neuvered missile approaches the target, its trajectory needs

to be more direct to ensure accurate impact. Therefore, the

aforementioned decreasing function is multiplied with a(t)

to attenuate the influence of the wave function.

Then the nonlinear ballistic stochastic missile system

in (24) under the maneuvering flight by the guidance control

strategy in (28) can be given as follows:

Ẋ(t) = f(X(t)) + g(X(t))v(t)

Y (t) = h(X(t)) + n(t)
(29)

where f(X(t)) =



−0.1x1(t) + a(t)

−0.1x2(t)

−0.08x3(t)

−ρ(x3(t))g
√

x2
4(t)+x2

5(t)+x2
6(t)

2β x4(t)− e−0.1tsin(10t)x4(t)

−ρ(x3(t))g
√

x2
4(t)+x2

5(t)+x2
6(t)

2β x5(t)− 0.01x5(t)

−ρ(x3(t))g
√

x2
4(t)+x2

5(t)+x2
6(t)

2β x6(t)− 0.01x6(t)− g


,

h(X(t)) = [x1(t) −  300,  x2(t) −  300,  x3(t), x4(t),  x5(t),  x6(t)]
T
and g(X(t))  = diag[01×3,  1,  1,  1].

In Figure 3, the radar detection system employs a

two-coupled HJIEs-supervised Adam learning algorithm for

mixedH2/H∞ DNN-basedAI-driven filtering scheme. The

weighting matrix is set to Q = 10−5 I and the attenuation

level r2 = 0.03. This scheme is utilized to estimate the

trajectory of an incoming ballistic missile following a Tsien

trajectory. For ease of design, the nonlinear stochastic mis-

sile detection system described in (29) is transformed into

a sample-data nonlinear stochastic system as given in (21),

with a sampling interval of h = 0.01 seconds. Under the

two-coupledH2/H∞ HJIEs-supervised Adam learning al-

gorithm in Figure 3, DNN-based AI-driven mixed H2/H∞
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filter scheme is applied to the nonlinear stochastic sample-

data missile system (21)–(23). The DNN architecture in

Figure 2 includes an input layer, four hidden layers, and an

output layer. The input layer has 6 inputs, while the four

hidden layers sequentially 256, 128, 32, and 6 neurons as

output, following a data compression concept.

In Figure 3, during the off-line pre-training phase, the

DNN-based AI undergoes training using the two-coupled

H2/H∞ HJIEs-supervised Adam learning algorithm de-

scribed in (16)–(18). This training is guided by mini-

mizing the errors HJIE1
∈(t)  =  ∈1(θi(t)) from (19)

and HJIE2
∈(t)  =  ∈2(θi(t)) from (20) to achieve

HJIE1(t)  =  0 in (12) andHJIE2(t)  =  0 in (13). The

objective is for the DNN to output

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
. Conse-

quently, the filter gain l∗(x̂(t)), the external disturbance

v∗(t), and the measurement noise n∗(t) are determined,

which replace l(x̂(t)), v(t), and n(t) in (21)–(23).These vari-

ables are utilized to compute Y (t), X̂(t +  h),
∼
X (t +  h),

and X(t  +  h)  = X̂(t  +  h)  +  
∼
X (t  +  h) for the

subsequent training step at t +  h.

Remark 7. (i) Since HJIE1(t) in (12) and HJIE2(t) in

(13) depend on the state X(t) of the stochastic nonlinear

system described by the ballistic missile equations in (29),

which is not directly available and needs to be estimated from

the output measurements Y (t), DNN-based AI-driven filter-

ing scheme cannot directly train the DNN using the proposed

two-coupledH2/H∞ HJIEs-supervised Adam learning al-

gorithm in (16)-(18). Therefore, X̂(t) is generated by the

filter model in (22), and
∼
X (t) represents the estimation error

modeled in (23). This allows AI-driven filter to obtain X(t)

as X(t)  =  X̂(t)  +  
∼
X (t) to satisfy HJIE1(t)  =  0 in

(12) and HJIE2(t)  =  0 in (13), enabling the training of

the DNN-based AI to achieve the mixedH2/H∞ DNN-based

AI-driven filter scheme. (ii) Since the external disturbance

v(t) and measurement noise n(t) are not directly available

for the stochastic missile dynamics in (29), it is challenging

to generate the output Y (t) using the sample-data stochas-

tic system model in (21) and to model
∼
X (t) accurately in

(23). Therefore, v(t) and n(t) are replaced with worst-case

estimates v∗(t) from (10) and n∗(t) from (11). This sub-

stitution enables the generation of Y (t) in (21), X̂(t) in

(22), and
∼
X (t) in (23). Subsequently, X(t) is computed

as X(t)  =  X̂(t)  +  
∼
X (t) to satisfy HJIE1(t)  =  0

in (12) and HJIE2(t)  =  0 in (13), facilitating the train-

ing of the DNN using the two-coupled H2/H∞ supervised

Adam learning algorithm in (16)–(18) during each time step

t in the off-line pre-training phase.(iii) Additionally, to solve(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
required for obtaining the filter gain l∗

(
X̂(t)

)
in (9), v∗(t) in (10), and n∗(t) in (11), a calculation block[
HJIE1

(
t),  HJIE2(t)]

T
= [∈1(θi(t)),∈2(θi(t))]T  is in-

tegrated into the final step of the DNN pre-training using

the Adam learning algorithm (16)-(18). This adjustment al-

lows the DNN to approach the desired output

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
.

Finally, the output

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
of the DNN is utilized to

compute the filter gain l∗
(
X̂(t)

)
in (9), v∗(t) in (10), and

n∗(t) in (11) for the subsequent training phase at t +  h, as

illustrated in Figure 3.

In this simulation example, the goal of DNN-based AI-

driven filter is to train a DNN using the two-coupledH2/H∞

HJIEs-supervised Adam learning algorithm (16)–(18) to out-

put the nonlinear function

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
and thereby obtain

the mixedH2/H∞ filter gain l∗
(
X̂(t)

)
with fewer neurons

in each hidden layer of the DNN. Generally, if the learning

rate in (16) is initially too large, the optimization process

might become stuck in a local minimum or result in slow

training speed. The parameters λ1 and λ2 in (17) influence

the current direction based on previous directions and should

not be set too small due to their dependence on historical

information. In this simulation, the parameters l, λ1, λ2,

and τ of the Adam learning algorithm are set to 0.005, 0.9,

0.999, and 10−7, respectively. The training steps I and

batch size N are chosen as 40 and 50 respectively, with

a sampling time of 0.01 seconds. Both the environmental

disturbance v(t) and measurement noise n(t) are modeled

as 20×N(0,  1). Using the proposed two-coupledH2/H∞-

supervised Adam learning algorithm, the trajectory X(t)  =

 [x1(t),  ...,  x6(t)]
T
of the incoming ballistic missile in

(29) is simulated starting from the initial condition X(0)

= [150000, 210000, 120000,−2500,−2500,−2500]T   and
X̂(0) = [140000, 204000, 111000,−2200,−2800,−2100]T .
Additionally, 2000 random inputs are selected around these

initial conditions as training inputs.

Remark 8. In practical applications of the two-coupled

H2/H∞ HJIEs-supervised Adam learning algorithm to

DNN-based AI-driven filter, it is essential to gather a large

number of training points around the state estimator error
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∼
X (t). During the off-line training phase, random data

points are selected, which means that during online opera-

tion, the state X(t)  =  X̂(t) +  
∼
X (t) may initially be far

from the training data. However, over time, it gradually con-

verges towards

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
to approach the actual solution

of two coupled HJIEs.

The robustness (attenuation) level r in (5) and its real

attenuation level of external disturbance and measurement

noise of the proposed DNN-based AI-driven filter scheme in

this simulation example are given as follows:

∫ 70
0

∼
X

T
(t)Q

∼
X(t)dt−V

(∼
x(0)

)
∫ 70

0
(vT (t)v(t)+nT (t)n(t))dt

≈ 0.004 ≤ 0.03 = r2 (30)

The improved H∞ attenuation level of 0.004, com-

pared to the specified level of 0.03, for mitigating the impact

of external disturbance and measurement noise on the state

estimation of a ballistic missile can be attributed to two main

reasons: (i) The inclusion of an optimal H2 filter scheme

alongside the robust H∞ filter scheme provides enhanced

performance. (ii) The prescribed robust H∞ filtering per-

formance with r2  =  0.03 is designed to handle worst-case

scenarios involving external disturbance v∗(t) (from (10))

and measurement noise n∗(t) (from (11)). In our simulation

scenario, both v(t) and n(t) are modeled as white noise with

20 ∗ N(0,  1), which do not represent the worst-case v∗(t)

and n∗(t).

Using the proposed H2/H∞ DNN-based AI-driven

filter, Figure 5 illustrates the trajectory and its estimation

of an incoming ballistic missile maneuvering with a Tsien

Hsueshen trajectory. Figure 6 displays the position, and

Figure 7 shows the velocity along with their respective esti-

mations obtained through the proposedH2/H∞ DNN-based

AI-driven filter scheme. From the simulation results depicted

in these figures, it is evident that the proposed DNN-based

AI-driven H2/H∞ filter scheme for the radar system can

effectively estimate the Tsien Hsueshen trajectory of the

incoming ballistic missile. This is achieved despite the pres-

ence of unknown environmental disturbances v(t), measure-

ment noise n(t), and maneuvering effects u(t). The actual

H∞ state estimation performance of the incoming ballistic

missile system by the proposed two-coupledH2/H∞ HJIEs-

supervised learning DNN-based AIdriven filter for the radar

system is evaluated with comparison as follows:

Figure 5. The maneuvered Tsien Hsueshen trajectory of the ballistic missile and the estimated trajectory by the proposed two-coupled

H2/H∞ HJIEs-supervised DNN-based AI-driven filter. It can be seen that the trajectoryX(t) of ballistic missile (the red line) and its

estimation X̂(t) (the blue line) show that the asymptotic filtering ability is achieved.

The proposed two-coupled HJIEs-supervised DNN-

based AI-driven filtering scheme depicted in Figure 1 suc-

cessfully achieves the specified H2/H∞ filtering perfor-

mance, effectively reducing the impact of random external

disturbance v(t) and measurement noise n(t) on the estima-

tion accuracy of the Tsien Hsueshen trajectory of maneuvered

ballistic missiles under the guidance control strategy (28).

Notably, the filtering performance of this approach surpasses

both the prescribed value ρ = 0.03 and the performance of

the DNN H∞ DNN-based AI-driven filter with ρ = 0.012
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as reported in [17]. This improvement is attributed to the

inclusion of an optimal H2 filtering criterion in the design

process. The mixedH2/H∞ filter is specifically designed to

minimize H2 filtering performance while considering worst-

case scenarios of external disturbance v∗(t) (from (10)) and

measurement noise n∗(t) (from (11)), which are typically

more severe than those encountered in real-world situations.

In our simulation example, v(t) and n(t) are modeled as

20 ∗N(0, 1), representing nominal disturbances and noise

levels, which contribute to achieving a better performance

than the ρ = 0.03 attenuation level forH∞ filters. From the

simulation results shown in Figures 6 and 8, it is evident

that the proposed H2/H∞ DNN-based filter outperforms

the results depicted in Figures 7 and 9 of the mixedH2/H∞

global linearization filter with N = 8 in (15) as described

in [8], especially in accurately estimating missile velocities

(Figures 8 and 9).

Figure 6. The positions in downrange, off range, and vertical di-

rections (x(t), y(t), z(t)) along with their respective estimations
(x̂(t), ŷ(t), ẑ(t))of the incoming ballistic missile following a Tsien
Hsueshen trajectory are depicted using the proposed two-coupled

H2/H∞ HJIEs-supervised Adam learning DNN-based AI-driven

filter. In the figure, the red line represents the actual position of the

incoming ballistic missile x(t), while the blue line illustrates the
estimated position generated by the proposed DNN-basedAI-driven

filter using two-coupledH2/H∞ HJIEs-supervised Adam learning

algorithm.

In the proposed H2/H∞ DNN-based AI-driven filter

scheme, following the off-line pre-training of the DNN, the

filter achieves the asymptotic trajectory estimation of an in-

coming ballistic missile maneuvered with a Tsien Hsueshen

trajectory, despite finite energy external disturbances v(t)

and measurement noise n(t). The enhanced state estima-

tion performance can be attributed to several factors: (i) The

filter design is based on achieving the global nonlinear solu-

tion

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
of

[
HJIE1

(
t),HJIE2(t)]

T
= [0, 0]

T

in (12) and (13). (ii) The mixed H2/H∞ filter effectively

attenuates the impact of random external disturbances and

measurement noise to a prescribed level r = (0.03)
1
2 of

robust H∞ filtering performance while achieving optimal

H2 filtering simultaneously. (iii) The DNN is capable of

universally approximating any nonlinear function, includ-

ing

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
, enabling computation of the H2/H∞ fil-

ter gain l∗(x̂(t)) in (9) through an efficient two-coupled

H2/H∞ HJIEs-supervised Adam deep learning algorithm

described in (16)–(18).

Figure 7. The downrange, off range, and vertical po-

sitions (x(t), y(t), z(t)) and their corresponding estimations

(x̂(t), ŷ(t), ẑ(t)) are estimated using the mixed H2/H∞ global

linearization filter method described in [8]. Comparing with Fig-

ure 6, the performance of the mixedH2/H∞ global linearization

filtering method in [8] is slightly inferior to that of the proposed

DNN-based AI-driven filter in Figure 6. However, the former

method requires interpolating 64 local filters using 64 complex

interpolation functions Ii(x̂(t)), i = 1, . . . , 64 to compute x̂(t) as
given in (15), with N = 8 applied at each time sampling.

Figure 8. The velocities in downrange, off range, and vertical

directions (ẋ(t), ẏ(t), ż(t)) and their corresponding estimations
( ˙̂x(t), ˙̂y(t), ˙̂z(t)) are captured by the proposed mixed H2/H∞
DNN-basedAI-driven filter. In the figure, the red lines represent the

actual velocities (ẋ(t), ẏ(t), ż(t)) of the incoming ballistic missile,
while the blue lines depict the estimated velocities ( ˙̂x(t), ˙̂y(t), ˙̂z(t))
generated by the proposed mixedH2/H∞ HJIEs-supervised DNN-

based AI-driven filter.
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Figure 9. The velocities in downrange, off range, and verti-

cal directions (ẋ(t), ẏ(t), ż(t)) and their respective estimations
( ˙̂x(t), ˙̂y(t), ˙̂z(t)) by the mixed H2/H∞ global linearization fil-

ter [8] are illustrated in this figure. In comparison with Figure 8, the

filtering performance of the proposed mixedH2/H∞ DNN-based

AI-driven filter exhibits a significantly superior estimation accuracy.

During the simulation, the mixedH2/H∞ global linearization filter

initially provides reasonably accurate velocity estimations. How-

ever, as the simulation progresses, there is noticeable estimation

error, particularly when the real velocities gradually approach zero.

In contrast, the proposed mixed H2/H∞ DNN-based AI-driven

filter consistently maintains better performance throughout the sim-

ulation period.

5. Conclusions

In this study, we address the challenging design prob-

lem of mixed H2/H∞ filter for nonlinear stochastic signal

systems affected by unknown environmental disturbance

and measurement noise. To tackle this, we embed a two-

coupledH2/H∞ HJIEs-supervised scheme within theAdam

learning algorithm to coordinate nonlinear signal system

model, Luenberger filter and estimation error model with

worst-case external disturbance and measurement noise to

generate y(t), x̂(t),
∼
x (t) to train a DNN-based AI-driven

filter to achieve the mixed H2/H∞ filter strategy shown

in Figure 1 by directly solving the two coupled HJIEs (12)

and (13) of the filtering problem. The proposed method

leverages DNNs to simplify the otherwise complex process

of designing robust nonlinear mixed H2/H∞ DNN-based

AI-driven filters. Unlike conventional approaches that rely

on interpolatory local linearized models of several stochas-

tic systems, our method uses the nonlinear system model,

Luenberger filter, and estimation error model to generate

x̂(t) and
∼
x (t) under the worst-case scenarios of external

disturbances and measurement noise. Supervised by the two-

coupledH2/H∞ HJIEs theoretical results viaAdam learning

algorithm, the mixed H2/H∞ DNN-based AI-driven filter

scheme can be achieved for nonlinear stochastic signal sys-

tems. Our co-design of the mixed H2/H∞ filter and the

two-coupledH2/H∞ HJIEs-supervised Adam learning al-

gorithm not only reduces the need for extensive training

data and time, typical in big data-driven DNN methods,

but also overcomes the analytical and numerical challenges

in solving

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
directly from HJIE1(t) = 0 and

HJIE2(t) = 0. This approach demonstrates superior per-

formance compared to conventional mixed H2/H∞ inter-

polation filter designs (such as (14)–(15) in [8, 10]) that as-

sume V (x(t))  =  xT (t)P  x(t). In the simulation example,

the proposed mixed H2/H∞ DNN-based AI-driven filter

achieves better filtering performance in estimating the Tsien

Hsueshen trajectory of a ballistic missile detected by a radar

system sensor. As AI (DNN) technologies become more

accessible and affordable, training these DNNs as sophisti-

cated nonlinear mixedH2/H∞ AI-driven filters as shown in

Figure 3 using our proposed two-coupled H2/H∞ HJIEs-

supervised Adam learning method will become increasingly

practical for state estimation of man made machine in signal

processing area. Looking ahead, we envision extending the

proposed mixedH2/H∞ DNN-basedAI-driven filter design

to applications such as state estimator-based output feed-

back target tracking control (i.e., the guidance and control)

for nonlinear stochastic anti-missile systems under external

disturbances, measurement noise, and potential malicious

attacks.

Appendix A. Proof of Theorem 1

(i) From the H∞ filtering strategy in (7), we get

J∞(l∗(x̂(t)), v∗(t),  n∗(t)) = max
v(t),n(t)

J∞(l∗(x̂(t)), v(t),  n(t))

= max
v(t),n(t)

E(V (
∼
x (tf ))) + E

(∫ tf
0
[
∼
x
T
(t)Q

∼
x (t)− r2

(
vT (t)v(t) + nT (t)n(t)

)
]dt

)
= max
v(t),n(t)

E(V (
∼
x (0))) + E(

∫ tf
0
[
∼
x
T
(t)Q

∼
x (t)− r2

(
vT (t)v(t) + nT (t)n(t)

)
(A1)

+ dV (
∼
x(t))
dt

](dt)
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By the chain rule and the estimation error system in (4)

dV
(∼
x
(
t))

dt =

(
∂V
(∼
x
(
t))

∂
∼
x(t)

)T
d
∼
x(t)
dt

=

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

[f(x(t))− f(x̂(t))− l(x̂(t))(h(x(t))− h(x̂(t))) + g(x(t))v(t)− l(x̂(t)) (A2)

+g(x(t))v(t)− l(x̂(t))n(t)]

Substituting (A2) into (A1), we get

J∞(l∗(x̂(t)), v∗(t),  n∗(t)) = max
v(t),n(t)

E(V (
∼
x (0))) + E(

∫ tf
0
[
∼
x
T
(t)Q

∼
x (t) +

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

((f(x(t))− f(x̂(t))))

−
(

∂V
(∼
x(t)

)
∂
∼
x(t)

)T

(h(x(t))− h(x̂(t))) +

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

g(x̂(t))v(t)

−
(

∂V
(∼
x(t)

)
∂
∼
x(t)

)T

l∗(x̂(t))n(t)− r2vT (t)v(t)− r2nT (t)n(t)dt) (A3)

By the completing square technique of l∗(x̂(t)), v(t) and n(t)

J∞(l∗(x̂(t)), v∗(t),  n∗(t)) = max
v(t),n(t)

E(V (
∼
x (0))) + E(

∫ tf
0
[
∼
x
T
(t)Q

∼
x (t) +

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

((f(x(t))− f(x̂(t))))

−r2(h(x(t))− h(x̂(t)))T (h(x(t))− h(x̂(t)))

−
(
rv(t)− 1

2r
gT (x(t))

(
∂V
(∼
x(t)

)
∂
∼
x(t)

))T(
rv(t)− 1

2r
gT (x(t))

(
∂V
(∼
x(t)

)
∂
∼
x(t)

))
+ 1

4r2

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

g(x(t))gT (x(t))

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
−
(
rn(t)− 1

2r
l∗(x̂(t))

(
∂V
(∼
x(t)

)
∂
∼
x(t)

))T(
rn(t)− 1

2r
l∗(x̂(t))

(
∂V
(∼
x(t)

)
∂
∼
x(t)

))
+( 1

2r
l∗T (x̂(t))

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
− r(h(x(t))− h(x̂(t))))

T

( 1
2r
l∗T (x̂(t))

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
−r(h(x(t))− h(x̂(t)))) (A4)

By HJIE1(t) = 0 in (12) and l∗(x̂(t)) in (9), we get

J∞(l∗(x̂(t)), v∗(t),  n∗(t)) = max
v(t),n(t)

E{V (
∼
x (0)) +

∫ tf
0
[− 1

r
(rv(t)− 1

2
gT (x(t)

)(
∂V
(∼
x(t)

)
∂
∼
x(t)

))T

×
(
rv(t)− 1

2
gT (x(t))

(
∂V
(∼
x(t)

)
∂
∼
x(t)

))
− 1

r

(
rn(t)− 1

2
l∗(x̂(t))

(
∂V
(∼
x(t)

)
∂
∼
x(t)

))T

×
(
rn(t)− 1

2
l∗(x̂(t))

(
∂V
(∼
x(t)

)
∂
∼
x(t)

))
]dt}

= E
{
V
(∼
x (0)

)}
(A5)

And we obtain the worst-case external disturbance v∗(t) in (10) and measurement noise n∗(t) in (11).

Similarly, from the H2 filtering strategy in (8), we get

J2(l
∗(x̂(t)), v∗(t),  n∗(t)) = min

l(x̂(t))
E{V (

∼
x (tf )) +

∫ tf
0

(
∼
x
T
(
t
)
Q

∼
x
(
t))dt}

= min
l(x̂(t))

E{V (
∼
x (0)) +

∫ tf
0
(
∼
x
T
(t)Q

∼
x (t) +

dV
(∼
x
(
t))

dt )dt} (A6)
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From (A2), we get

J2(l
∗(x̂(t)), v∗(t),  n∗(t)) = min

l(x̂(t))
E{V (

∼
x (0)) +

∫ tf
0

∼
x
T
(t)Q

∼
x (t) +

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

[(f(x(t))− f(x̂(t)))

−l(x̂(t))(h(x(t))− h(x̂(t))) + g(x(t))v∗(t)− l(x̂(t))n∗(t)]dt}

= min
l(x̂(t))

E{V (
∼
x (0)) +

∫ tf
0
[
∼
x
T
(t)Q

∼
x (t) +

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

(f(x(t))− f(x̂(t)))

+

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

l(x̂(t))(h(x(t))− h(x̂(t)))+

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

g(x(t))v∗(t)

−
(

∂V
(∼
x(t)

)
∂
∼
x(t)

)T

l(x̂(t))n∗(t)]dt} (A7)

Substituting the worst-case v∗(t) in (10) and n∗(t) in (11) into (A7), we get

J2(l
∗(x̂(t)), v∗(t),  n∗(t)) = min

l(x̂(t))
E{V (

∼
x (0)) +

∫ tf
0
[
∼
x
T
(t)Q

∼
x (t) +

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

(f(x(t))− f(x̂(t)))

+

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

l(x̂(t))(h(x(t))− h(x̂(t))) + 1
2r2

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

×g(x(t))gT (x(t))

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
+ 1

2r2

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

l(x̂(t))lT (x̂(t))

×
(

∂V
(∼
x(t)

)
∂
∼
x(t)

)
]dt}

= min
l(x̂(t))

E{V (
∼
x (0)) +

∫ tf
0
[
∼
x
T
(t)Q

∼
x (t) +

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

(f(x(t))− f(x̂(t)))

+ 1
2r2

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

g(x(t))gT (x(t))

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
+
(

1√
2r
l∗T (x̂(t))

(
∂V
(∼
x
(
t))

∂
∼
x(t)

)−
√
2r(h(x(t))− h(x̂(t))))

T

( 1√
2r
l∗T (x̂(t))

×
(

∂V
(∼
x
(
t))

∂
∼
x(t)

)
−

√
2r(h(x(t))− h(x̂(t))))

+2r2(h(x(t))− h(x̂(t)))T (h(x(t))− h(x̂(t)))]dt}

= min
l(x̂(t))

E{V (
∼
x (0)) +

∫ tf
0
[
∼
x
T
(t)Q

∼
x (t) +

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

(f(x(t))− f(x̂(t))) + 2r2

×(h(x(t))− h(x̂(t)))T (h(x(t))− h(x̂(t))) + 1
2r2

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

g(x(t))

×gT (x(t))

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
+

(
1√
2r
lT (x̂(t))

(
∂V
(∼
x
(
t))

∂
∼
x(t)

)−
√
2r(h(x(t))− h(x̂(t))))T

×
(

1√
2r
lT (x̂(t))

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)−
√
2r(h(x(t))− h(x̂(t))))]dt} (A8)

By HJIE2(t) = 0 in (13), we get

J2(l
∗(x̂(t)), v∗(t),  n∗(t)) = min

l(x̂(t))
E{V (

∼
x (0)) +

∫ tf
0
[( 1√

2r
lT (x̂(t))

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
−

√
2r(h(x(t))− h(x̂(t))))

T

×
(

1√
2r
lT (x̂(t))

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)−
√
2r(h(x(t))− h(x̂(t))))]dt} (A9)

Then we get the H2 optimal case l
∗(x̂(t)) in (9), and (A9) becomes

J2(l
∗(x̂(t)), v∗(t),  n∗(t)) = E{V (

∼
x (0)) (A10)

i.e., with the worst-case v∗(t) in (10) and n∗(t) in (11) to replace v(t) in and n(t), we can obtain the optimal H2

filtering gain l∗(x̂(t)) in (9).

52



Artificial Intelligence Advances | Volume 06 | Issue 01 | October 2024

(ii) Due to the fact that E{V (x(0))} is finite, from (A5) and (A10), J∞(l∗(x̂(t)), v∗(t),  n∗(t)) = E
{
V
(∼
x (0)

)}
<

∞, J2(l
∗(x̂(t)), v∗(t),  n∗(t)) = E

{
V
(∼
x (0)

)}
< ∞ and v(t) and n(t) ∈ L2

F [0,  ∞) i.e. E
{∫∞

0
vT (t)v(t)dt

}
< ∞

and E{
∫∞
0
nT (t) n(t)dt} <∞. From (A1) and (A6), they imply E

{∫∞
0

∼
x
T
(t)Q

∼
x (t)dt

}
<∞. It implies E[

∼
x
T
(t)

∼
x

(t)]→ 0 as t→∞. i.e., the mean square asymptotical filtering ability can be obtained by the mixed H2/H∞ filter. Q.E.D.

Appendix B. Proof of Theorem 2

Suppose [∈1(θi(t)),∈2(θi(t))]T → [0,  0]
T
and there still exists an error function e(

∼
x (t)), between

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
∈
of

[HJIE1
∈(t),  HJIE2

∈(t)]
T
in (19), (20) and

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
of [HJIE1(t),  HJIE2(t)] in (12), (13) in the following.(

∂V
(∼
x(t)

)
∂
∼
x(t)

)
∈
=

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
+ e

(∼
x (t)

)
(B1)

In the following, we will prove that as [∈1(θi(t)),∈2(θi(t))]T → [0,  0]
T
, e

(∼
x
(
t)) → 0, i.e.,

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
∈
→(

∂V
(∼
x(t)

)
∂
∼
x(t)

)
. From (12) and (19), we get

HJIE1
∈(t)−HJIE1(t)

(

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

∈
−

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

)(f(x(t))− f(x̂(t))) + 1
4r2

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T
∈1(θi(t)) =

          =
∈
g(x(t))gT (x(t))

×
(

∂V
(∼
x(t)

)
∂
∼
x(t)

)
∈
− 1

4r2

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

g(x(t))gT (x(t))

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
(B2)

Substituting

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
∈
in (B1) into (B2), we can get

∈1(θi(t)) = eT (
∼
x (t))(f(x(t))− f(x̂(t))) + 1

4r2 e
T (

∼
x (t))g(x(t))gT (x(t))

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
+ 1

4r2

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

g(x(t))gT (x(t))eT (
∼
x (t)) + 1

4r2 e
T (

∼
x (t))g(x(t))gT (x(t))eT (

∼
x (t)) (B3)

By the following symmetric fact of the terms in (B3)

eT
(∼
x (t)

)
g(x(t))gT (x(t))

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
=

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

g(x(t))gT (x(t))eT
(∼
x
(
t)) (B4)

Then (B3) becomes

∈1(θi(t)) = eT (
∼
x (t))(f(x(t))− f(x̂(t))) + 1

2r2 e
T (

∼
x (t))g(x(t))gT (x(t))

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
+ 1

2r2 e
T (

∼
x (t))

×g(x(t))gT (x(t))
(

∂V
(∼
x(t)

)
∂
∼
x(t)

)
+ 1

4r2 e
T
(∼
x (t)

)
g(x(t))gT (x(t))eT

(∼
x (t)

)
= eT

(∼
x (t)

)
[(f(x(t))− f(x̂(t))) + 1

2r2 g(x(t))g
T (x(t))

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
+ 1

4r2 g(x(t))

×gT (x(t))eT (∼x (t))] (B5)
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Similarly, we get

HJIE2
∈(t)−HJIE2(t)

(

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

∈
−

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

)(f(x(t))− f(x̂(t))) + 1
4r2

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T
∈2(θi(t)) =

          =
∈
g(x(t))gT (x(t))

×
(

∂V
(∼
x(t)

)
∂
∼
x(t)

)
∈
− 1

2r2

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

g(x(t))gT (x(t))

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
(B6)

By substituting

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)T

in (B1) into (B6) and by similar procedure in (B4) and (B5), we get

∈2(θi(t)) = eT
(∼
x (t)

)
[(f(x(t))− f(x̂(t))) + 1

2r2 g(x(t))g
T (x(t))

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
+ 1

2r2 g(x(t))g
T (x(t))

×eT (∼x (t))] (B7)

Since the term in [·] in (B5) and (B7) are not equal to 0 for all x(t), ∼x (t) and x̂(t), as [∈1(θi(t)),∈2(θi(t))]T →

[0,  0]
T
as t → ∞, it implies the error function eT

(∼
x (t)

)
→ 0. From (B1),

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
∈
→

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
as

[∈1(θi(t)),∈2(θi(t))]T → [0,  0]
T
. Therefore, the supervised learning DNN-based filter design l∈(x̂(t)) = 2r2

||
(

∂V
(∼
x(t)

)
∂
∼
x(t)

)
∈

||(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
∈
(h(x(t))− h(x̂(t)))

T
based on the output

(
∂V
(∼
x(t)

)
∂
∼
x(t)

)
∈
of DNN in Figure 1 will approach the mixed

H2/H∞ filter gain l∗(x̂(t)) in (9) for the Luenberger-type filter in (2) for the nonlinear stochastic system in (1). Q.E.D.
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