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ABSTRACT

Motors play a crucial role in energy conversion and are essential components of mechatronic systems. However,

diagnosing faults in rolling bearings during motor operation presents significant challenges, making it difficult to achieve

high accuracy in fault identification. To address these challenges, this paper introduces a novel intelligent diagnostic method

based on an enhanced multi-kernel extreme learning machine (ELM) model. While the ELM model is widely used for

diagnosing motor rolling bearing faults, it often struggles to classify complex vibration data. To improve its performance,

this study proposes a multi-kernel ELM (MKELM) model that integrates three traditional kernel functions: Gaussian,

polynomial, and perceptron kernels. Additionally, to overcome the challenges posed by the numerous parameters and the

risk of local optima in the MKELM model, the kernel parameters were optimized using the Grey Wolf Optimization (GWO)

algorithm, resulting in the GWO-MKELM algorithm. Finally, the GWO-MKELM algorithm was applied to diagnose motor

rolling bearing faults. Experimental results show that this method achieves a 99.6% accuracy rate and effectively identifies

various types of bearing faults.
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1. Introduction

Motors are critical components in mechatronic systems,

playing a key role in energy conversion. Rolling bearings, as

essential parts of motor structures, directly influence overall

motor performance and lifespan [1, 2]. Therefore, timely and

accurate fault diagnosis of rolling bearings during operation

is vital. Common faults in motor rolling bearings include

failures in the outer ring, inner ring, rolling elements, and

cage. Numerous studies have been conducted to identify

these faults, among them, many diagnostic methods rely

on time-frequency signal analysis, which extract character-

istic features from vibration signals. Unfortunately, these

methods often encounter challenges in feature extraction and

frequently suffer from low accuracy. Thus, developing an

efficient fault diagnosis method for motor rolling bearings

is crucial for maintaining motor integrity [3, 4]. Leveraging

distributed data parallelism in GANs can enhance fault di-

agnosis efficiency in large-scale data processing, advancing

the field [5, 6].

With the continuous advancement of AI algorithms,

methods such as Support Vector Machines (SVM), Kernel

Extreme Learning Machines (KELM), and Neural Networks

have been proposed and successfully applied in motor rolling

bearing fault diagnosis. Data-driven intelligent algorithms

have proven effective in optimizing supply chain manage-

ment and industrial clusters, offering potential improvements

for fault diagnosis [7–9]. Among them, KELM is particularly

favored for its high computational efficiency, fast learning

speed, and resistance to local optima, making it widely used

in various motor bearing fault diagnostics [10–12]. However,

the KELMmodel often relies on a single kernel function, lim-

iting its performance in classifying complex motor bearing

vibration data and negatively impacting diagnostic accuracy.

To overcome these limitations, researchers have made sev-

eral improvements to the KELM model. For example, Chen

Chi et al. [13] established a hybrid KELM model by combin-

ing Gaussian radial basis and polynomial kernel functions

for transformer fault diagnosis. Experimental results showed

that the hybrid model significantly improved classification

accuracy, but it struggled with low computational efficiency.

Huang Guangbin et al. advanced the KELM by integrat-

ing polynomial and radial basis functions, establishing a

Multi-Kernel Extreme Learning Machine (MKELM) model.

They optimized the model’s parameters using the Particle

Swarm Optimization (PSO) algorithm, which enhanced the

MKELM model’s recognition accuracy [14, 15]. Meanwhile,

theMKELMmodel still faces challenges in selecting optimal

kernel parameters, leading to lower recognition accuracy. To

address this issue, Wang Jing et al. [16] proposed a method to

optimize the kernel parameters of the MKELM model using

the Cuckoo Search algorithm, aiming to enhance classifi-

cation accuracy. Meanwhile, green technology innovations

are increasingly impacting China’s chemical industry, driv-

ing further advancements in motor fault diagnosis technol-

ogy [17, 18]. However, this optimization algorithm still suffers

from low computational efficiency and has a tendency to get

trapped in local optima.

The studies above demonstrate that developing an

MKELM model is effective, and optimizing its kernel pa-

rameters using intelligent algorithms can further improves

the fault diagnosis accuracy. Thus, this study is conducted to

establish a more efficient ELM for bearing fault diagnosis.

2. Motor structure design and bear-

ing fault diagnosis methods

2.1 Motor structure design

Motors are vital components in industrial automation,

and their rational design along with timely fault diagnosis is

essential for ensuring production safety and enhancing equip-

ment efficiency. At the same time, material innovations have

provided valuable insights for motor structure design, par-

ticularly in enhancing durability and heat dissipation [19–21].

This study focuses on a wound-rotor induction motor, and

its structural components illustrated in Figure 1 [22].

Figure 1. Structure of the wound-rotor asynchronous motor.
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2.2 Bearing fault diagnosis methods

Rolling bearings are critical components of a motor’s

transmission system, and their operating condition directly

affects the overall performance and lifespan of the motor.

To prevent motor failures and ensure smooth production,

diagnosing faults in rolling bearings is essential. Common

diagnostic methods include vibration signal analysis, sound

monitoring diagnosis, lubrication condition inspection, and

temperature and wear monitoring. The following sections

describe the above diagnostic methods for motor rolling bear-

ings fault diagnosis [23–25].

(1) Vibration Signal Analysis

Vibration signal analysis is a widely used and effec-

tive method for diagnosing faults in rolling bearings. In

recent years, deep learning has achieved significant success

in image recognition, and its application in complex sig-

nal processing offers new directions for bearing vibration

analysis [26]. By installing vibration sensors, real-time data

from the bearing’s operation can be collected and analyzed.

Common vibrational-based analysis methods include time

analysis, frequency analysis, and time-frequency analysis.

(2) Sound monitoring diagnosis

Sound monitoring is a straightforward and easy-to-

implement method for fault diagnosis. Acoustic sensors,

such as microphones, capture the sound signals generated by

the bearing during operation. The frequency, tone, and vol-

ume of these signals are captured and analyzed to assess the

bearing’s condition. For example, abnormal noises caused

by bearing wear, poor lubrication, or foreign objects can

indicate faults.

(3) Lubrication condition inspection

The lubrication condition is a key factor affecting the

operational quality of rolling bearings, making regular lubri-

cation checks essential. These checks involve assessing the

quantity, quality, and formation of the oil film. One approach

is to examine the lubricant’s color and clarity, while testing

its viscosity and acidity offers further insights. Lubrication

oil analysis can also detect metal wear particles and con-

taminants. These measures are vital for early detection of

potential issues arising from insufficient lubrication.

(4) Temperature and wear monitoring

Temperature and wear are two critical parameters that

indicate the operational state of bearings. By installing tem-

perature sensors, the temperature variations of the bearings

can be monitored in real time, allowing for the timely detec-

tion and prevention of heat-induced damage. Additionally,

regular inspections of bearing wear are essential, including

measuring clearance and checking for wear marks on rolling

elements and raceways. These inspections help assess the

remaining life of the bearings and determine whether replace-

ment is necessary.

3. GWO-MKELM intelligent pattern

recognition algorithm

3.1 Grey Wolf Optimizer (GWO)

In 2014, the renowned scholar Mirjalili et al. [27] pro-

posed an intelligent optimization algorithm called the Grey

Wolf Optimizer (GWO), which simulates the hunting behav-

ior of wolf packs. This algorithm has several advantages

compared with its peers, including a small number of ini-

tial parameters, high computational efficiency, and strong

optimization performance.

In the GWO, wolves are categorized into four different

groups: Wolves α, responsible for making decisions during

the hunting. The rest groups are classified as beta (β) and

delta (δ).

The computational steps of the GreyWolf Optimization

algorithm primarily consist of two phases: encircling and

hunting.

(1) Encircling

During the hunt, grey wolves first encircle their target

prey, confining it within the pack’s range. The distance be-

tween the prey and the grey wolves is expressed by Equation

(1), while the position of the wolf pack at the t-th iteration

can be represented by Equation (2):

D = |C ·Xp (t)−X (t) | (1)

X (t+ 1) = Xp (t)−A ·D (2)

where t represents the number of iterations, Xp (t) is the

position of the optimal solution, D is the distance between

the wolf pack and the target prey, and X (t+ 1) denotes the

position of the wolf pack during the t-th iteration. A and C

are corresponding coefficients, as shown in Equations (3)

and (4).

A = 2a · r1 − a (3)
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C = 2 · r2 (4)

where a is convergence factor, r1 and r2 represent random

numbers in range [0, 1].

(2) Hunting

After encircling the prey, wolves β and δ, under the

leadership of the wolves α, proceed to capture the target. In

this process, the positions of all wolves change randomly,

and the prey’s position is updated based on the location of

each wolf. The specific steps for updating the positions are

shown in Equations (5) and (6).


Dα = |C1Xα (t)−X (t)|
Dβ = |C2Xβ (t)−X (t)|
Dδ = |C3Xδ (t)−X (t)|

(5)


X1 = Xα (t)−A1Dα

X2 = Xβ (t)−A2Dβ

X3 = Xδ (t)−A3Dδ

(6)

Xp (t+ 1) =
X1 +X2 +X3

3
(7)

where Dα, Dβ , Dδ is the step lengths of the current wolves

α, β, and δ during the hunting.

Specifically, when A ≥ 1, the wolf pack conducts a

range search to enlarge the hunting area, which is called

global search. When A < 1, the wolf pack narrows the encir-

cling area and focuses on attacking, corresponding to local

search. The coefficient vector C, which takes values in the

range [0, 2], assigns random weights that enhance the al-

gorithm’s random search capabilities, helping it avoid local

optima.

3.2 Multi-Kernel Extreme Learning Machine

model (MEKLM)

The MKELMmodel introduced in this paper composes

of two steps: First, it linearly combines three traditional

kernel functions, i.e., the Gaussian kernel, polynomial ker-

nel, and perceptron kernel, to create a multi-kernel function.

Next, this multi-kernel function is employed to classify the

sample data using the spatial mapping method (illustrated in

Figure 2), enabling efficient classification and recognition.

Figure 2. Spatial mapping transformation method of the kernel

function.

(1) Polynomial kernel function

The polynomial kernel function is a classic global ker-

nel in the MKELM model, recognized for its strong ability

to handle complex data samples while requiring fewer ini-

tial parameters compared with other kernels. This kernel

function is displayed in Equation (8).

K1 (xi · xj) = [α (xi · xj) + β]
n

(8)

whereK1 (xi · xj) represents the kernel function, xi is the

coordinates of the i-th point, xj is the coordinates of the j-th

point, α and β are the kernel parameters.

(2) Perceptron kernel function

The perceptron kernel function is a novel mapping ker-

nel. It effectively handles nonlinear data and compresses the

data while preserving its amplitude. The kernel function is

shown in Equation (9).

K2 (xi · xj) = tan [v (xi · xj) + c] (9)

where K2 (xi · xj) is the kernel function, xi and xj repre-

sents the coordinates of the i-th and j-th point, respectively.

Gaussian kernel function

The Gaussian kernel has several advantages, includ-

ing a wide mapping space, a small number of initial kernel

parameters, and high computational efficiency. This kernel

function is shown below.

K3 (xi · xj) = exp (−γδ (xi · xj)) (10)

δ (x, y) =

√√√√ n∑
i=1

(xi − yi)
2

(11)

whereK3 (xi · xj) is the kernel function, δ (x, y) is the Eu-

clidean distance, γ is the kernel parameter.
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This study utilizes a hybrid kernel function obtained

by linearly combining the polynomial, perceptron, and Gaus-

sian kernel functions. This approach not only enhances opti-

mization performance but also ensures the algorithm’s gen-

eralization capability. Consequently, the MKELM model

demonstrates improved stability and accuracy in managing

multi-class sample data. The expression for the MKELM

algorithm is presented in Equation (12).

K =

∑3
i=1 qiKi∑3
i=1 qi

(12)

where qi is the product coefficient corresponding to the i-

th kernel function,K1 is the polynomial kernel function in

Equation (8),K2 is the perceptron kernel function in Equa-

tion (9), K3 is the the Gaussian kernel function in Equa-

tion (10).

3.3 Algorithmic process of the GWO-MKELM

intelligent pattern recognition method

The computational steps of the GWO-MKELM are as

follows:

Step 1: Select the training sample.

Step 2: Classify the original training sample set using

the MKELM model, generating a new sample set that in-

cludes the kernel function parameters of the MKELMmodel.

Step 3: Apply the GWO to the kernel parameters of the

MKELM model.

Step 4: Input the optimized kernel function parameters

(obtained from the optimization) into the MKELM model

for retraining, resulting in optimal pattern recognition.

4. Steps for fault diagnosis of vibra-

tion signals in motor rolling bear-

ings

Given the nonlinear characteristics and feature coupling

of vibration signals inmotor rolling bearings, this paper estab-

lishes a fault feature extraction and diagnosis method based

on an improved MKELM model. The specific procedures

for this fault diagnosis method are outlined below:

Step 1: Vibration signals are collected using an ac-

celerometer placed on the motor.

Step 2: The original vibration signals of the motor

rolling bearings are adaptively decomposed using the Em-

pirical Mode Decomposition (EMD) method, resulting in a

series of Intrinsic Mode Function (IMF) components.

Step 3: The correlation coefficients between each IMF

component and the original vibration signal are calculated.

According to statistic, higher correlation coefficient indicates

greater fault-related information and contains less noise in

corresponding IMF components. Therefore, the IMF com-

ponents with higher correlation coefficients are selected for

summation and reconstruction, ultimately yielding a refined

rolling bearing vibrational signal.

Step 4: The Multiscale Fuzzy Entropy (MFE) algo-

rithm is applied to the reconstructed vibration signal for fault

feature extraction. This step identifies key fault information

from the vibration signal and constructs the fault feature

vectors used in the pattern recognition method.

Step 5: Finally, the GWO-MKELM is used for motor

rolling bearing fault diagnosis.

5. Experimental verification of the

proposed method

5.1 Data sources

Data from a motor bearing vibration simulation plat-

form were utilized to evaluate the effectiveness of the pro-

posed method [28]. The rolling bearing was operated under

a load of 0 Hp, at a speed of 1750 r/min, and with a sam-

pling frequency of 12 kHz. Spark erosion technology was

employed to induce faults in the outer race, inner race, and

rolling elements of the normal bearing, resulting in a damage

diameter of 0.5336 mm. The test created three fault states for

the motor rolling bearing [29], in addition to the normal state,

yielding a total of four distinct states. Figure 3 displays the

examples of the vibration signals under different states.

5.2 Fault feature extraction based on EMD and

MFE

First, the EMD decomposition was employed to the

vibration signals. Specifically, the vibration signal of each

state was divided into multiple IMF components. Figures 4

and 5 display an example using the EMD decomposition for

normal signal and inner ring fault signal, respectively.
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Figure 3. Time domain signals of motor rolling bearing under

different states.

Figure 4. EMD decomposition of vibration signals under normal

conditions.

Figure 5. EMD decomposition of vibration signals under inner

ring fault conditions.

Then, the correlation coefficients between each IMF

component and the original signal were calculated. Accord-

ing to statistic, a higher coefficient indicates that the IMF

signal contains more fault characteristic information and less

noise. Thus, the first six IMF components were selected

for further study due to their relatively high coefficients,

as displayed in Table 1 [30]. These IMF components were

then summed and reconstructed to yield the refined vibration

signal.

Table 1. Correlations of the first six IMF components with the

original signal.

Fault type

The correlation coefficients between each

IMF component and the original signal

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

Normal condition 0.4145 0.9312 0.7165 0.2310 0.4755 0.2265

Inner ring fault 0.3658 0.9468 0.7132 0.1245 0.3989 0.1745

Rolling element fault 0.4591 0.6548 0.8465 0.4726 0.4419 0.0895

Outer ring fault 0.3512 0.8825 0.8965 0.0961 0.4528 0.3796

Subsequently, the refined vibration signals were ana-

lyzed using the MFE method by entropy-based feature ex-

traction [31], resulting in 20 fault characteristics from each

sample data, as shown in Table 2. These values formed the

elements of the fault feature vectors.

Table 2. Example feature vectors of the motor’s rolling bearings

under different operating conditions.

Scale

factor

Normal

condition

Inner

ring fault

Rolling

element

fault

Outer

ring fault

1 1.6811 0.8623 0.9468 0.7518

2 1.9158 0.9256 1.2205 1.0597

3 2.1957 1.1649 1.3644 1.0681

4 2.1351 1.3484 1.6182 1.5415

5 1.9212 1.1249 1.7236 1.3148

6 2.3512 1.2983 1.5311 1.0182

7 2.6235 1.4981 1.5184 1.7523

8 2.4266 1.7288 1.8256 1.8924

9 2.4512 1.6438 1.8467 1.8611

10 2.6381 1.6185 2.1066 1.5873

11 2.4463 1.6509 2.1849 1.4406

12 2.7239 1.7518 2.2206 1.5639

13 2.5846 1.6234 2.2691 1.7591

14 2.7391 1.7783 2.0312 1.8264

15 2.5368 1.7561 2.2283 1.9485

16 2.6631 1.7502 2.6429 1.6483

17 2.6619 1.6933 2.2718 1.7916

18 2.8893 1.7618 2.5364 1.9364

19 3.0198 1.8934 2.7618 1.9461

20 3.2264 1.8165 2.3648 2.0779
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5.3 Identification results

Employing the fault feature extraction method based

on EMD and MFE, 180 samples of fault feature vectors were

obtained in this research. 100 of them were randomly se-

lected as the training samples, while the remaining 80 were

used as the testing set [32, 33]. The testing results are presented

in Table 3.

Table 3. Classification results for motor rolling bearing fault diagnosis using different methods.

Feature extraction methods Inner ring (%) Rolling element (%) Outer ring (%) Normal condition (%) Overall accuracy (%)

SVM 91.7 93.3 91.7 91.7 92.1

KELM 93.3 95 95 93 94.1

GWO-KELM 96.7 96.7 95 95 95.9

GWO-MKELM 98.3 100 100 100 99.6

As shown in Table 3, the GWO-MKELM method

achieves the highest accuracy across all damage states. A

comparison of overall accuracy reveals that the proposed

method outperforms the SVM method by 7%, the KELM

method by approximately 5%, and the GWO-KELMmethod

by about 3%.

6. Conclusions

This study introduces a novel method for diagnosing

motor rolling bearing faults by combining polynomial, per-

ceptron, and Gaussian kernel functions with the GWO opti-

mization algorithm to form the GWO-MKELM model. Ex-

perimental results showed that the new diagnostic method

achieved a recognition accuracy of 99.3% across all fault

states. This method outperformed traditional approaches, im-

proving accuracy by nearly 7% over SVM, 5% over KELM,

and 3% over GWO-KELM, proving its effectiveness in mo-

tor rolling bearing fault diagnosis.
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