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ABSTRACT

Face recognition has become a cornerstone technology in various domains, including security, healthcare, and person-

alized applications. While traditional methods relied on handcrafted features and classical machine learning, advancements

in deep learning have significantly improved face recognition’s accuracy and robustness. However, challenges such as

environmental variations—darkened or overexposed images—create domain shifts that compromise the generalization

of these models. To address this, domain adaptation techniques have emerged as a promising solution, aligning feature

distributions between source domain and target domain. This paper proposes a domain adaptation framework integrating

Correlation Alignment (CORAL) and a Residual Network (ResNet) to enhance model robustness under varying conditions.

Our method effectively reduces domain discrepancies using CORAL loss. Experimental results demonstrate that domain

adaptation significantly improves model performance, as evidenced by reduced Equal Error Rates (EER) and enhanced

feature alignment in challenging lighting scenarios. Despite its success, domain adaptation faces challenges such as

computational costs and handling extreme distortions, highlighting the need for further research into more efficient and

generalized approaches.
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1. Introduction

Face recognition is a critical technology in computer

vision that involves identifying or verifying the identity of

individuals using their facial features [1, 2]. Over the years, it

has gained immense attention and has been widely applied

in various fields, including security, access control, social

media tagging, personalized marketing, and even health-

care [3–6]. Its ability to enhance convenience and improve

security systems has made it a cornerstone of many modern

technological applications.

Traditionally, face recognition relied on handcrafted

features and classical machine learning algorithms [7–10].

These methods typically involved extracting specific facial

landmarks or descriptors, such as the distance between the

eyes or the shape of the jawline, to distinguish between in-

dividuals. Popular algorithms, such as Principal Compo-

nentAnalysis (PCA) [11, 12] and Linear DiscriminantAnalysis

(LDA) [13, 14], were used to project facial data onto lower-

dimensional spaces for classification tasks. Although effec-

tive in controlled environments, these traditional approaches

often struggled in real-world scenarios [15–17]. They were

highly sensitive to variations in lighting, pose, facial ex-

pressions, and occlusions. As a result, their accuracy and

robustness were significantly compromised in uncontrolled

settings.

The advent of artificial intelligence (AI) [18–20], partic-

ularly deep learning [21–23], revolutionized the field of com-

puter vision. For example, Xiong et al. proposed a deep

learning-based multifunctional end-to-end model that inte-

grates denoising and character classification to enhance the

efficiency and accuracy of Optical Character Recognition

(OCR) [24]. AI-based face recognition systems leverage deep

neural networks to automatically extract hierarchical and

discriminative features from facial images. Convolutional

Neural Networks (CNNs) [25–27], for instance, have become

the backbone of many state-of-the-art face recognition mod-

els. These networks can handle complex variations in facial

data, making them highly effective in diverse and challenging

environments. Popular AI-based frameworks like FaceNet,

DeepFace, and ArcFace [28–30] have achieved remarkable ac-

curacy in large-scale datasets, setting new benchmarks for

the field. However, even with the advancements brought

by AI, face recognition systems are not immune to chal-

lenges. Environmental factors, such as lighting conditions

and camera exposure, can significantly degrade the quality

of facial images. For example, an overexposed image may

wash out important facial details, while an underexposed

image may obscure critical features. Such issues create a

domain shift between the training data (typically captured un-

der ideal conditions) and the test data (often captured in less

controlled settings). This domain shift adversely affects the

performance and generalization ability of face recognition

models.

To address these challenges, the concept of domain

adaptation has emerged as a promising solution [31–33]. Do-

main adaptation is a subfield of transfer learning that focuses

on reducing the domain discrepancy between the source do-

main (training data) and the target domain (test data). By

aligning the feature distributions of the two domains, domain

adaptation techniques improve the generalization ability of

models across varying environments. Over the years, several

domain adaptation methods have been proposed, such as ad-

versarial training, moment matching, and feature alignment.

These methods have been successfully applied in various

applications, including image classification, object detection,

and, more recently, face recognition.

In this paper, we aim to apply domain adaptation to

enhance the robustness and generalization ability of face

recognition models under challenging conditions. Specifi-

cally, we focus on addressing the issues caused by overex-

posure and underexposure in facial images. Our approach

leverages a CNN backbone to extract fixed-length feature

vectors from facial images across different exposure con-

ditions for matching. To ensure the alignment of feature

distributions between domains, we employ CorrelationAlign-

ment (CORAL) loss [34], which minimizes the discrepancy

between the second-order statistics of source and target fea-

tures. Additionally, cross-entropy loss is used to optimize

the classification performance of the model. The framework

of our method is illustrated in Figure 1. First, facial images

from the source domain (original faces) and the target do-

main (darkened or overexposed faces) are passed through

a shared CNN backbone. The CNN extracts fixed-length

feature vectors for each image. These feature vectors are

then used for two purposes: classification and feature align-

ment. For classification, cross-entropy loss ensures the cor-

rect identification of individuals in the source domain. For

feature alignment, CORAL loss is applied to reduce the do-

64



Artificial Intelligence Advances | Volume 05 | Issue 01 | April 2023

main gap between the source and target domains, improving

the model’s ability to recognize faces in diverse exposure

conditions.

The key contribution of this paper lies in the integration

of domain adaptation into face recognition to handle environ-

mental variations, such as lighting and exposure. By aligning

feature distributions across domains, our approach enhances

the adaptability and reliability of face recognition models.

This work not only addresses the limitations of traditional

andAI-based face recognition methods but also demonstrates

the potential of domain adaptation in improving the general-

ization of machine learning models in real-world scenarios.

Figure 1. The architecture of the proposed domain adaptation-

based fingerprint recognition framework.

2. Literature Review

2.1. Face recognition

Facial recognition has been a key research focus for

several decades [35–37], transitioning from traditional methods

to modern deep learning-based approaches due to techno-

logical advancements across various domains [38–40]. Early

techniques relied on handcrafted feature extraction, which,

while straightforward, provided the groundwork for later

developments. Turk and Pentland introduced the use of Prin-

cipal Component Analysis (PCA) for facial recognition [41],

coining the term Eigenfaces to facilitate dimensionality re-

duction and feature extraction. However, PCA-based meth-

ods proved highly sensitive to changes in lighting, pose,

and facial expressions. To mitigate these issues, researchers

developed Linear Discriminant Analysis (LDA) and Local

Binary Patterns (LBP) [42, 43], which offered improved ro-

bustness to specific variations but still depended on manu-

ally engineered features. The emergence of deep learning

transformed facial recognition by enabling automatic feature

extraction from raw images. Taigman et al. introduced Deep-

Face [44], an early deep learning model for face recognition

that utilized a deep neural network to achieve near-human ac-

curacy. Schroff et al. advanced this with FaceNet [28], which

employed a triplet loss function to learn a compact embed-

ding space for both recognition and clustering tasks. The

adoption of deep embeddings greatly improved the scalabil-

ity and precision of facial recognition systems.

2.2. Domain adaptation

Domain adaptation techniques can be broadly divided

into two main categories based on their architectures: shal-

low and deep. Shallow domain adaptation methods [45, 46]

primarily use instance-based or feature-based approaches

to align domain distributions. These methods aim to min-

imize domain discrepancies by leveraging metrics such as

maximum mean discrepancy (MMD), Wasserstein distance,

correlation alignment (CORAL), Kullback-Leibler (KL) di-

vergence [47, 48], and contrastive domain discrepancy (CDD).

On the other hand, deep domain adaptation techniques utilize

neural network architectures [49, 50], including convolutional

networks, autoencoders, and adversarial models, to address

domain shifts. These approaches often integrate distance

metrics at various layers within dual-network setups, where

one network processes source domain data and the other pro-

cesses target domain data. By comparing feature representa-

tions across corresponding layers, these methods effectively

reduce domain discrepancies.

3. Method

3.1. Dataset preparation

The dataset utilized in this study is obtained from Kag-

gle and comprises a total of 1,105 images, representing 248

distinct individuals, including both male and female partici-

pants. The images are in RGB format, with each individual

having varying numbers of images, though no individual is

represented by more than 10 samples. Each image is orig-

inally provided at a resolution of 160x160 pixels. For the

purposes of training and evaluation, 70% of the dataset is

allocated to the training set, while the remaining 30% is re-

served for testing. To simulate conditions of darkened and

overexposed images, brightness adjustments were applied

to the original images by systematically altering pixel inten-

sity values. Specifically, pixel values were either increased
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to simulate overexposure or decreased to create darkened

effects, mimicking real-world scenarios with challenging

lighting conditions. This controlled adjustment ensured the

creation of visually distinct variations while preserving the

overall structure of the facial features. A selection of sample

images from the dataset, along with their processed counter-

parts, is shown in Figures 2–4

Figure 2. The face samples from the original dataset.

Figure 3. The face samples under the darkened situation.

Figure 4. The face samples under the overexposed situation.

3.2. Domain adaptation-based face recognition

a) Preliminaries of domain adaptation

Domain adaptation is a subfield of machine learn-

ing that focuses on addressing the challenge of do-

main shift, where the source domain and the target

domain come from different distributions. This shift

can significantly degrade model performance, as most

machine learning algorithms assume identical data

distributions across training and testing phases. Do-

main adaptation techniques aim to bridge this gap by

aligning the source and target domain distributions,

enabling models to generalize effectively to unseen

or challenging conditions. Methods for domain adap-

tation can broadly be categorized into shallow and

deep approaches. Shallow methods often rely on fea-

ture transformation techniques, such as minimizing

metrics like Maximum Mean Discrepancy (MMD) or

Correlation Alignment (CORAL), to reduce discrep-

ancies between domains. These approaches focus on

aligning feature-level representations without lever-

aging the full potential of deep learning. In contrast,

deep domain adaptation methods utilize neural net-

works to learn domain-invariant features. These tech-

niques often incorporate adversarial training, where

a domain discriminator tries to distinguish between

the source and target domains, while the feature ex-

tractor aims to confuse the discriminator, promoting

alignment. Other approaches, such as adding specific

loss functions to measure domain similarity, further

enhance feature alignment.

b) CORAL-based ResNet framework

The proposed CORAL-based ResNet framework in-

tegrates Correlation Alignment (CORAL) and the

Residual Network (ResNet) to tackle domain adap-

tation challenges by aligning feature distributions

and improving feature extraction capabilities. In the

CORAL-based ResNet framework, ResNet acts as the

feature extractor, leveraging its deep residual blocks

to generate robust feature representations from input

data. CORAL loss is then applied to these feature

representations to align the distributions of source

and target domains. This combination ensures both

high-quality feature extraction and effective domain

adaptation, making the framework suitable for tasks

like image classification, object detection, and face

recognition in diverse environments.

CORAL is a domain adaptation technique that focuses

on aligning the second-order statistics (covariance)

of source and target domain feature representations.

Unlike adversarial approaches that require training a

domain discriminator, CORAL achieves feature align-

ment by directly minimizing the distance between

covariance matrices of the two domains. This is of-

ten achieved using a loss function that calculates the

Frobenius norm of the difference between the covari-

ance matrices of the source and target features. By

reducing this discrepancy, CORALhelps models learn

domain-invariant features without explicitly needing

labeled data in the target domain. Its simplicity and

effectiveness make it a popular choice for feature

alignment in domain adaptation tasks.

ResNet is a deep neural network architecture known

for its ability to train very deep networks effectively.

The key innovation of ResNet lies in its residual
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blocks, which introduce skip connections that bypass

one or more layers. These skip connections address

the vanishing gradient problem by allowing gradients

to flow directly through the network during backprop-

agation, ensuring that deeper layers continue to learn

effectively. ResNet architectures have become a cor-

nerstone of image classification and feature extraction

tasks due to their high performance and scalability.

Variants like ResNet-50 and ResNet-101 are widely

used in both research and real-world applications.

c) Hyperparameter setting

TheAdam optimizer was utilized for parameter adjust-

ment, benefiting from its adaptive learning rate and

consistent performance across diverse machine learn-

ing tasks. The training process spanned 20 epochs

with a batch size of 8, striking a balance between

computational resource usage and effective model

convergence. To assess the model’s effectiveness, the

Equal Error Rate (EER) was employed as a primary

evaluation metric [49], supplemented by the Receiver

Operating Characteristic (ROC) curve for a detailed

performance analysis. EER is particularly significant

in biometric systems, as it identifies the point where

the false acceptance rate (FAR) matches the false re-

jection rate (FRR). This metric provides a concise rep-

resentation of the trade-off between these two error

types, serving as an essential indicator of the system’s

reliability. A lower EER signifies higher accuracy

and robustness, underscoring the model’s potential

for real-world fingerprint recognition applications.

Additionally, the ROC curve offers a complementary

perspective by graphically depicting the model’s per-

formance across various decision thresholds.

4. Experimental results and discus-

sion

4.1. The performance of face recognition

Figure 5 and Table 1 provide the performance of

the model on three different datasets: the original dataset,

the darkened dataset, and the overexposed dataset. Each

dataset’s performance is evaluated using the ROC curve and

the EER. These metrics provide insights into the model’s

classification capabilities under varying conditions. The first

ROC curve corresponds to the model’s predictions on the

original dataset. With an EER of 0.3488, this result reflects

the baseline performance of the model when tested on im-

ages without significant alterations. The relatively low EER

indicates that the model is capable of distinguishing between

classes with moderate accuracy. However, this baseline high-

lights that the model still encounters challenges, likely due

to intra-class variations and inter-class similarities in the

original data. The second ROC curve depicts the model’s

performance on the darkened dataset. The EER increases

to 0.4137, indicating a drop in model accuracy under dark-

ened conditions. This decline can be attributed to the loss

of critical facial details in images with reduced brightness.

Darkened images obscure fine-grained features, such as con-

tours and textures, which are essential for accurate classi-

fication. Consequently, the model struggles to effectively

extract discriminative features, leading to increased false

acceptance and rejection rates. The third ROC curve rep-

resents the model’s predictions on the overexposed dataset,

with an EER of 0.4523. This is the highest EER among the

three datasets, signifying the most significant degradation

in performance. Overexposed images suffer from excessive

brightness, causing key facial features to be washed out or

entirely lost. This lack of discernible details makes it diffi-

cult for the model to correctly classify images, resulting in

higher error rates. The results highlight the sensitivity of face

recognition models to variations in lighting conditions. The

increased EER values for both the darkened and overexposed

datasets underscore the challenges posed by environmental

factors. In both cases, the primary issue lies in the disruption

of feature extraction. Darkened images obscure critical fea-

tures, while overexposed images erase or distort them. These

disruptions create a domain shift between the training data

(original dataset) and the test data (altered datasets), reducing

the model’s ability to generalize.

Figure 5. The EER comparison under different conditions using

direct prediction.

Figure 6 further presented the similarity scores for both

same-identity and different-identity pairs of some samples.
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For the original dataset, same-identity pairs achieve a high

similarity score of 0.92, indicating that the model effectively

recognizes individuals under ideal lighting conditions. For

different-identity pairs, the similarity score is relatively low

at 0.73, demonstrating the model’s capability to differentiate

between distinct individuals. These scores serve as the base-

line for comparison with altered datasets. In the darkened

dataset, the similarity score for same-identity pairs drops

to 0.88. This reduction is likely due to the obscured facial

details in darker images, which challenge the model’s ability

to extract distinguishing features. More notably, the similar-

ity score for different-identity pairs decreases significantly

to 0.66. This indicates a decline in the model’s ability to

differentiate between different individuals. The reduction

arises because darkened images often lose detailed facial

textures and contours, leading to less distinctive represen-

tations. In the overexposed dataset, the similarity score for

same-identity pairs is 0.86, slightly lower than the darkened

dataset.

Table 1. The numerical EER comparison under different conditions

using direct prediction.

Model EER

Direct prediction on testing set of the original dataset 0.3488

Direct prediction on testing set of the darkened dataset 0.4131

Direct prediction on testing set of the overexposed dataset 0.4523

Figure 6. The prediction samples under different conditions.

Figure 7 and Table 2 illustrate a clear performance

improvement when domain adaptation is applied compared

to direct prediction on both the darkened and overexposed

datasets. In the darkened dataset, the Equal Error Rate (EER)

for direct prediction is 0.4137, indicating the model struggles

with distinguishing between classes due to the loss of critical

features in darker images. After applying domain adaptation,

the EER is reduced to 0.3677, demonstrating a significant

improvement. This reduction highlights the effectiveness of

domain adaptation in aligning feature distributions between

the source (original) and target (darkened) domains, enabling

the model to generalize better under challenging conditions.

Similarly, for the overexposed dataset, the EER drops from

0.4523 in direct prediction to 0.3842 with domain adapta-

tion. The improvement indicates that domain adaptation

effectively mitigates the impact of overexposure by learning

domain-invariant features. While overexposed images erase

important facial details, the alignment provided by domain

adaptation helps the model maintain a more robust decision

boundary. In addition, the samples in Figure 8 further high-

lights the effectiveness of domain adaptation in improving

similarity scores for both same-identity and different-identity

pairs on darkened and overexposed datasets.

Figure 7. The EER comparison between direct prediction and do-

main adaptation-based prediction under different conditions.

Figure 8. The comparison of prediction samples using direct pre-

diction and domain adaptation-based prediction.

As shown in Figure 9, for the darkened face, the

heatmaps generated from direct prediction focus less ef-

fectively on facial regions, with dispersed attention that

misses critical features. In contrast, the heatmap from do-

main adaptation-based prediction shows more concentrated

attention on key facial areas, indicating improved feature
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Table 2. The numerical EER comparison between direct prediction and domain adaptation-based prediction under different conditions.

Model EER

Direct prediction on testing set of the darkened dataset 0.4131

Direct prediction on testing set of the overexposed dataset 0.4523

Domain adaptation-based prediction on testing set of the darkened dataset 0.3677

Domain adaptation-based prediction on testing set of the overexposed dataset 0.3842

alignment and robustness under low-light conditions. Sim-

ilarly, for the overexposed face, direct prediction suffers

from a lack of focus on significant facial features due to the

washed-out image details. However, domain adaptation en-

ables better feature extraction, as evidenced by the heatmap’s

sharper focus on critical facial landmarks around eyes and

nose.

Figure 9. The Grad-CAM visualization of the attention using direct

prediction and domain adaptation-based prediction.

4.2. Discussion

While domain adaptation has shown promising results

in improving the robustness of face recognition systems un-

der challenging conditions i.e. darkened and overexposed

faces, several limitations and challenges remain. First, the

effectiveness of domain adaptation heavily depends on the

quality and diversity of the source and target domain map-

pings. Extreme distortions, such as severe overexposure or

darkness that obliterates critical facial features, remain a sig-

nificant challenge. In these cases, the model may struggle to

align features effectively due to the irretrievable loss of in-

formation, resulting in suboptimal performance. Second, do-

main adaptation often incurs high computational costs. The

alignment of feature distributions, especially in deep neural

networks, requires significant resources, which can limit its

feasibility for real-time or resource-constrained applications.

The added complexity of domain adaptation algorithms may

also introduce latency in systems where rapid predictions

are critical. Third, the generalization capability of domain

adaptation methods is not guaranteed across all scenarios.

While these methods address specific domain shifts, they

may not be effective in handling other variations, such as

changes in pose, occlusion, or background clutter, which

are common in real-world settings. Ensuring robustness to

a wider range of factors remains a critical area for further

investigation. Future research should focus on addressing

these challenges by exploring lightweight and efficient do-

main adaptation techniques that maintain high performance

without excessive computational demands. Additionally,

incorporating advanced data augmentation strategies to sim-

ulate diverse environmental conditions during training could

enhance the model’s robustness. Investigating unsupervised

or semi-supervised methods for domain adaptation may also

help reduce reliance on labeled data, making the approach

more scalable.

5. Conclusions

This study demonstrates the effectiveness of domain

adaptation in improving face recognition performance under

challenging environmental conditions, such as darkened and

overexposed images. By integrating CORAL-based align-

ment with ResNet, the proposed framework reduces domain

discrepancies, enhancing the model’s generalization capabili-

ties. Experimental results confirm significant improvements

in recognition accuracy, as shown by lower EERs and en-

hanced attention mechanisms. However, challenges remain,

including the reliance on high-quality domain mappings,

computational costs, and limitations in addressing extreme

distortions or other variations like pose and occlusions. Fu-

ture research should focus on developing lightweight and

scalable domain adaptation methods, incorporating advanced

data augmentation strategies, and exploring semi-supervised
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approaches to reduce dependency on labeled data. By ad-

dressing these limitations, domain adaptation can further

solidify its role in making face recognition systems more

robust and practical for real-world applications.
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