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ABSTRACT

Pensions are fundamental to financial security in retirement, especially in the U.S., where they play a critical role in

ensuring stability for retirees and fostering broader economic benefits. However, predicting pension coverage trends poses

significant challenges due to the complexity of labor markets, demographic shifts, and economic variabilities. Traditional

statistical models, though foundational, often fail to handle the nonlinear patterns inherent in pension data. To address

these limitations, we propose the Inception residual RNN-LSTM hybrid model, which combines the strengths of Recurrent

Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks with residual connections. This model captures

diverse temporal patterns while mitigating vanishing gradient issues, delivering superior performance in predicting pension

coverage trends. Experimental results demonstrate that our model outperforms traditional machine learning models and

standalone deep learning architectures like RNN and LSTM. Its robust performance across key metrics highlights its

potential as a reliable tool for forecasting complex pension trends and aiding policymakers, employers, and financial

institutions in effective retirement planning.
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1. Introduction

Pensions are a cornerstone of financial security for re-

tirees, providing a reliable source of income after their work-

ing years [1–3]. In the United States, pension plans primarily

fall into two categories: defined benefit (DB) plans, where

employers guarantee a specific payout upon retirement, and

defined contribution (DC) plans, such as 401(k)s, where em-

ployees contribute a portion of their income into investment

accounts [4, 5]. Over the decades, there has been a marked

shift from DB plans to DC plans, as private-sector employers

have sought to reduce long-term liabilities. This shift has

introduced greater individual responsibility for retirement

planning, making it critical to understand and predict pension

coverage trends, especially in the private sector.

The role of pensions in society cannot be overstated.

For millions of American workers, pensions provide a safety

net, ensuring financial stability and preventing poverty in

old age [6, 7]. Beyond individual benefits, pensions contribute

significantly to the broader economy by fostering consumer

spending and stabilizing markets. However, the dynamic

nature of the labor market, changing demographics, and

evolving regulatory landscapes make predicting pension cov-

erage trends a complex task. Accurate prediction models are

vital for policymakers, employers, and financial institutions

to ensure effective retirement planning and adapt to societal

changes.

Despite their importance, predicting pension coverage

trends presents unique challenges [8–10]. The private sector

in the U.S. is highly diverse, encompassing industries with

varying workforce compositions, benefits structures, and lev-

els of unionization. Furthermore, economic factors, such as

inflation, recessions, and wage stagnation, compound the

difficulty of making accurate forecasts. Traditional statisti-

cal models, such as linear regression or time series analy-

sis [11–14], have been extensively applied to predict similar

trends. While these models can capture straightforward rela-

tionships, they often fail to handle the nonlinear patterns and

complex interdependencies inherent in pension data [15–18].

For instance, shifts in worker demographics or sudden policy

changes may introduce variabilities that traditional models

struggle to accommodate. In recent years, artificial intelli-

gence (AI) and machine learning (ML) have revolutionized

predictive modeling across domains [19–21]. AI models have

shown remarkable success in uncovering patterns and rela-

tionships within high-dimensional and time-dependent data.

Their ability to adapt to nonlinearity, handle missing values,

and integrate heterogeneous datasets makes them especially

suitable for complex forecasting tasks like pension cover-

age prediction. Given these advantages, adopting AI-driven

approaches is not merely an enhancement—it is a necessity

for improving prediction accuracy and providing actionable

insights [22, 23].

In this study, we propose a hybrid AI framework called

Inception Residual RNN-LSTM to address the limitations

of traditional models and advance the state of pension cov-

erage prediction. Our model incorporates the strengths of

two deep learning architectures: the recurrent neural network

(RNN) [24–26] and the long short-term memory (LSTM) [27–29]

network. RNNs are well-suited for capturing sequential de-

pendencies in time-series data, while LSTMs overcome the

vanishing gradient problem, enabling the model to learn

long-term dependencies effectively. By integrating these

architectures into an Inception-like structure, which com-

bines parallel processing and residual connections [30, 31], we

enhance the model’s capacity to capture diverse temporal

patterns and reduce prediction errors. The architecture of our

proposed model is illustrated in the accompanying Figure 1.

The framework begins with preprocessing the raw pension

data, segmenting it into overlapping sequences to preserve

temporal relationships. These sequences are then fed into the

Inception residual RNN-LSTM module, which consists of

multiple branches. Each branch independently processes the

data using RNN and LSTM units, extracting complementary

features at different temporal scales. The outputs from these

branches are concatenated and passed through a dense fusion

layer, where they are further refined. Residual connections

are employed to stabilize training and ensure gradient flow,

improving the model’s convergence and robustness.

To validate the effectiveness of our framework, we

benchmarked its performance against the single RNN and

LSTM model as well as traditional machine learning models

such as decision trees, k-nearest neighbors (KNN), and linear

regression. Metrics such as mean squared error (MSE), root

mean squared error (RMSE), mean absolute error (MAE),

and R² were used to evaluate model accuracy. Our results

demonstrate that the Inception RNN-LSTM outperforms

these baseline models across all metrics, providing signif-

icantly improved predictions of pension coverage trends
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among private-sector workers in the U.S.

Figure 1. The workflow of the proposed inception residual RNN-

LSTM hybrid model.

2. Literature Review

Recent advancements in predictive analytics have sig-

nificantly enhanced the modeling of pension coverage trends.

Traditional statistical methods, while foundational, often fall

short in capturing the complex, nonlinear patterns inherent

in pension data. To address these limitations, researchers

have increasingly turned to machine learning (ML) and arti-

ficial intelligence (AI) techniques [32–35]. Rocha Salazar and

Boado-Penas applied machine learning algorithms to predict

early retirement decisions, utilizing data from private pension

plans to assess the likelihood of individuals retiring before

or after the age of 65 based on personal and macroeconomic

factors [36]. A survey by Maastricht University highlighted

the applicability of data science techniques in the pension

industry, identifying key areas such as customer focus, or-

ganizational process optimization, and personnel manage-

ment where machine learning can be effectively applied [37].

Furthermore, some other studies also reported that AI tech-

nologies can enhance pension plan governance by facilitating

multi-stakeholder interactions, reducing administrative tasks,

and aiding pension boards with decision-making, including

the optimization of investment strategies.

3. Method

3.1. Dataset Preparation

For our study on pension coverage trends among

private-sector workers in the USA, we utilized a publicly

available dataset sourced from Kaggle [38]. This dataset provides
valuable insights into pension coverage trends spanning 41

years, with information segmented by various demographic

factors, such as race, gender, education level, and recent grad-

uation status. The dataset focuses on employer-provided pen-

sion plans and is based on data collected from the Economic

Policy Institute’s State of Working America Data Library.

For our analysis and prediction tasks, we focused on three

key features shown in Figure 2 from the dataset: ‘all’, rep-

resenting the overall pension coverage rate; ‘high_school’,

denoting pension coverage for high school graduates; ‘bach-

elors_degree’, indicating coverage among bachelor’s degree

holders. By selecting these features, we aimed to investi-

gate not only the overarching pension coverage trends but

also the specific impact of educational attainment on pension

participation. This approach helps us understand dispari-

ties and patterns across different levels of education while

considering the broader context of overall pension trends.

The data was partitioned into a training set, comprising the

years 1979 to 2007, and a testing set, consisting of the years

2008 to 2016. This temporal split ensures that the models are

trained on historical data while being tested on more recent

trends, enabling a realistic evaluation of predictive perfor-

mance. A sliding window method was applied to structure

the dataset into sequences, preserving temporal dependencies

and preparing the data for time-series prediction tasks.

Figure 2. The trend distribution of used variables.

3.2. The Inception Residual RNN-LSTM Hy-

brid Model

1) Preliminaries of the RNN

Recurrent Neural Networks (RNNs) [38–40] are a class

of neural networks designed to process sequential data by

leveraging their inherent temporal dynamics. Unlike feedfor-

ward neural networks, RNNs have loops in their architecture,

allowing them to maintain a hidden state that carries infor-
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mation about previous inputs. This enables RNNs to capture

temporal dependencies, making them suitable for tasks such

as time series prediction, language modeling, and speech

recognition. By processing input one step at a time and

updating their hidden state, RNNs can model sequences of

varying lengths, providing a flexible framework for sequence-

to-sequence tasks like machine translation.

The architecture of an RNN includes a recurrent layer

where the hidden state is updated iteratively. At each

timestep, the hidden state is computed as a function of the

current input and the previous hidden state, typically using

an activation function such as tanh. While this design allows

RNNs to learn dependencies across timesteps, they struggle

with long-term dependencies due to the vanishing gradient

problem during backpropagation through time (BPTT). This

limitation arises when gradients diminish exponentially as

they are propagated backward, making it difficult for the

network to learn relationships between distant timesteps. De-

spite these challenges, RNNs have been successfully applied

to tasks like sentiment analysis, video captioning, and sim-

ple sequence generation, forming the foundation for more

advanced architectures like LSTMs and GRUs. Their ability

to model temporal structures has made them a cornerstone

of sequence modeling in machine learning.

2) Preliminaries of the LSTM

Long Short-Term Memory (LSTM) [41–43] networks, in-

troduced by Hochreiter and Schmidhuber in 1997, are a type

of recurrent neural network (RNN) designed to overcome

the vanishing gradient problem faced by traditional RNNs.

This issue arises during backpropagation in deep networks

when gradients diminish exponentially as they are propa-

gated backward through many layers, making it difficult to

learn correlations between distant events. LSTMs address

this challenge by incorporating memory cells capable of re-

taining information over extended periods. Unlike standard

feedforward neural networks, LSTMs include feedback con-

nections that make themwell-suited for processing sequences

of data. These features make LSTMs highly effective for

tasks such as time series prediction, natural language pro-

cessing, and speech recognition.

The architecture of an LSTM unit includes three gates:

the input gate, forget gate, and output gate, each playing a

distinct role in managing information flow. The input gate

determines which new values can update the memory, using

a sigmoid activation layer to filter relevant inputs and a tanh

layer to create candidate values for addition. The forget gate

enables the model to discard irrelevant information, ensuring

the network focuses only on useful data. Finally, the output

gate regulates how much of the current memory state con-

tributes to the unit’s output. These gates collectively allow

LSTMs to efficiently model sequences with varying inter-

vals and lengths, enabling applications such as stock market

trend prediction, text generation, and even music composi-

tion. Their ability to connect past information with current

tasks, such as predicting movement in videos using previ-

ous frames, sets them apart as a powerful tool for sequence

modeling.

3) Preliminaries of the residual connection

Residual connections, also known as skip connections,

are a significant innovation in neural network architecture

that address the challenges of training very deep networks.

As networks grow deeper, issues such as vanishing gradients

can hinder effective training, where gradients become too

small to update parameters meaningfully. Residual connec-

tions mitigate this by providing shortcuts that allow gradients

to flow directly through the network, bypassing one or more

layers. This ensures that critical information is retained and

gradients remain robust, making training deep architectures

more feasible.

Introduced by He et al. in their groundbreaking ResNet

paper [44], residual connections revolutionized deep learning

by enabling the construction of much deeper networks than

previously possible. The principle is straightforward yet

transformative: instead of learning a direct mapping, each

layer learns the residual, or difference, between its input and

output. Mathematically, this is expressed as F(x)+x, where

x is the input, and F(x) represents the transformation ap-

plied by the layer. By adding the transformation back to the

original input, this setup creates a direct path for gradients

during backpropagation, addressing the vanishing gradient

problem. As a result, layers only need to learn incremental

adjustments, simplifying the training process and improving

network efficiency.

4) The architecture of the proposed model

Our proposed architecture combines the strengths of

RNNs and LSTM networks, leveraging their respective capa-

bilities to process sequential data effectively. The structure

begins with parallel RNN and LSTM modules, each consist-
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ing of 64 neurons, which independently process the input

sequence and extract diverse features. The outputs from

these modules are then concatenated to form a unified fea-

ture representation, capturing both short-term and long-term

dependencies. To enhance the combined representation, a

dense layer with 64 neurons is applied, followed by a resid-

ual connection mechanism. This residual connection maps

the RNN output directly to the combined feature representa-

tion, ensuring that critical features from the RNN branch are

retained and effectively integrated. By adding the residual

representation back to the processed features, the architec-

ture ensures smoother gradient flow and improved feature

learning during training.

3.3. Implementation Details

The model is developed using the TensorFlow frame-

work, configured to train for 80 epochs with a batch size of

32. The Adam optimizer is utilized to enhance the training

process by efficiently adjusting the weights based on the gra-

dients. Mean Squared Error (MSE) is employed as the loss

function, which quantifies the average squared difference

between the predicted and actual values, ensuring effective

optimization.

4. Results and Discussion

4.1. The Performance of the Proposed Incep-

tion Residual RNN-LSTM Hybrid Model

Figure 3 provides the training curves of the three mod-

els including Inception residual RNN-LSTM hybrid model,

LSTM model, and RNN model. It illustrates the progression

of loss values across 80 epochs. The Inception residual RNN-

LSTM hybrid model demonstrates a rapid decline in loss

during the first 10 epochs, followed by a steady decrease as

it converges, reflecting its efficiency in optimizing the loss

function. Similarly, the LSTM model shows a sharp drop in

loss during the initial epochs but exhibits fluctuations around

the 20th epoch before stabilizing. The RNN model, while

also experiencing a steep decline in loss during the early

stages, converges more slowly compared to the other two

models. Overall, the Inception residual RNN-LSTM hybrid

model achieves the most stable convergence, indicating its

superior ability to effectively capture both short-term and

long-term dependencies. In contrast, the LSTM and RNN

models show less consistent loss reduction patterns, high-

lighting the potential benefits of the hybrid architecture.

Figure 3. The training curves of different models.

We initially experimented with traditional machine

learning models, including Decision Tree, K-Nearest Neigh-

bors (KNN), and Linear Regression, to predict coverage

rates (Figure 4). However, the results were unsatisfactory,

with the models failing to accurately capture the trends in

the data, particularly in more complex scenarios. The per-

formance metrics in Table 1 reveal high MSE, MAE, and

RMSE for these models, coupled with negative or extremely

low R² values. The poor results can be attributed to the in-

herent limitations of traditional machine learning algorithms

in capturing temporal dependencies and nonlinear relation-

ships present in sequential data. For example, the predicted

values often deviate significantly from actual values, espe-

cially for the “bachelors_degree” and “high_school” features.

To address these shortcomings, we employed deep learning

models, including RNN, LSTM, and our proposed Inception

residual RNN-LSTM hybrid model (Figure 5). The deep

learning models demonstrated a notable improvement, effec-

tively capturing both short-term and long-term dependencies

in the sequential data. Among them, our hybrid model outper-

formed LSTM and RNN, achieving the lowest MSE, MAE,

and RMSE, along with a higher R² value of 0.33 (Table 1).

This superior performance can be attributed to the fusion of

features from RNN and LSTM branches and the integration

of residual connections, which facilitate efficient gradient

flow and enhance the model’s ability to learn complex pat-

terns. The training curves (Figure 3) further highlight the

hybrid model’s stability during optimization. Compared to

LSTM and RNN, it converges faster and maintains lower
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loss throughout the training process. The comparative vi-

sualization of model performance in Figure 6 underscores

the hybrid model’s advantage, as it consistently surpasses

traditional and other deep learning models across all metrics.

Figure 4. The predicted results compared to real values in the

testing dataset based on traditional machine learning models.

Figure 5. The predicted results compared to real values in the

testing dataset based on various deep learning methods.

Figure 6. The visualization comparison among different models.

4.2. The Impact of the Number of Neurons in

the Fused Output Layer on the Results

We investigated the impact of the number of neurons

in the fused output layer of the proposed Inception residual

RNN-LSTM hybrid model on its performance (Table 2). The

study evaluated neuron configurations of 16, 32, 64, and 128,

examining their effects on several metrics.

The results reveal that the choice of neuron count signif-

icantly influences the model’s performance. A configuration

with 64 neurons achieved the best results. This indicates that

64 neurons provide the optimal balance between model com-

plexity and predictive capability, effectively capturing the

relationships in the data without overfitting. In contrast, both

smaller and larger neuron counts exhibited inferior perfor-

mance. When the neuron count was reduced to 16 or 32, the

metrics slightly worsened, likely due to the reduced capacity

to model complex patterns. For example, the configuration

with 32 neurons resulted in a higher MSE (9.84) and RMSE

(3.13), along with a lower R2 value (0.28). On the other

hand, increasing the neuron count to 128 led to a dramatic

degradation in performance, with an MSE of 26.04 and an

R2 of −0.55, suggesting severe overfitting. These findings
highlight the importance of carefully tuning the number of

neurons in the fused output layer. Selecting an appropriate

configuration ensures that the model effectively generalizes

unseen data while avoiding the pitfalls of underfitting or

overfitting.

4.3. Ablation Study

The ablation study presented in Table 3 examines the

contributions of different components in the proposed Incep-

tion residual RNN-LSTMhybridmodel. By isolating individ-

ual elements and comparing their performance, we can assess

the impact of specific design choices. When comparing the

LSTM and RNN models independently, their performance

metrics indicate limited effectiveness in capturing the com-

plexities of the data, with higher MSE and RMSE values.

Integrating these components into an Inception RNN-LSTM

hybrid model without residual connections improves perfor-

mance significantly, reducing MSE to 8.63 and achieving an

R2 value of 0.37. This highlights the benefits of combining

RNN and LSTM branches, as they complement each other

in learning short-term and long-term dependencies. Further
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Table 1. The performance of different approaches in the testing dataset.

Model Name MSE MAE RMSE R2

Inception residual RNN-LSTM hybrid model 7.13 2.04 2.67 0.33

LSTM model 12.30 2.63 3.50 −0.04

RNN model 15.52 3.02 3.94 −0.21

Decision tree model 43.18 5.04 6.57 −2.15

KNN model 39.64 4.75 6.29 −1.64

Linear regression model 43.04 5.52 6.56 −6.45

Table 2. The performance of different numbers of neurons in the fused output layer of the proposed model.

The Number of Neurons MSE MAE RMSE R2

16 7.38 2.08 2.71 0.30

32 9.84 2.33 3.13 0.28

64 7.13 2.04 2.67 0.33

128 26.04 4.11 5.10 −0.55

enhancing this hybrid model with residual connections leads

to the final Inception residual RNN-LSTM hybrid model,

which achieves the best overall performance. The residual

connections improve gradient flow and allow the model to ef-

ficiently learn adjustments, reducingMSE to 7.13 and RMSE

to 2.67.

Table 3. The ablation analysis of the proposed model.

Model Name MSE MAE RMSE R2

LSTM model 12.30 2.63 3.50 −0.04

RNN model 15.52 3.02 3.94 −0.21

Inception RNN-LSTM hybrid model 8.63 2.25 2.93 0.37

Inception residual RNN-LSTM hybrid model 7.13 2.04 2.67 0.33

4.4. Discussion

While the Inception residual RNN-LSTMhybrid model

demonstrates significant improvements over traditional ma-

chine learning methods and other deep learning architectures,

it is not without limitations. One primary shortcoming lies in

its computational complexity. The fusion of RNN and LSTM

branches, coupled with the addition of residual connections,

increases the model’s parameters and training time. This

makes the model less efficient for deployment in real-time

applications or resource-constrained environments. Future

work could explore methods to reduce model complexity,

such as pruning or quantization, without sacrificing perfor-

mance.

Another limitation is the model’s reliance on exten-

sive hyperparameter tuning. As seen in the neuron count

optimization for the fused output layer, small changes in

hyperparameters can significantly impact performance. Au-

tomating the hyperparameter search process, perhaps through

Bayesian optimization or reinforcement learning, couldmake

the model more adaptable and efficient. Additionally, the

model’s performance could be further validated using larger

and more diverse datasets. The current results are promising

but are limited to specific types of sequential data. Future

work should evaluate the model’s generalizability across

domains such as speech recognition, financial forecasting,

or healthcare data [45–48]. Furthermore, the model could be

extended to handle multi-modal data by incorporating ad-

ditional input types, such as images or categorical features,

to enhance its application scope. Lastly, interpretability re-

mains a challenge. While the residual connections improve

learning efficiency, they also add to the model’s complexity,

making it harder to understand the contribution of individual

components. Developing interpretability methods, such as

attention mechanisms or feature attribution techniques, could

provide insights into the model’s decision-making process
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and improve trustworthiness for critical applications.

5. Conclusions

This study introduces the Inception residual RNN-

LSTM hybrid model to enhance the accuracy of pension

coverage trend predictions. By leveraging the complemen-

tary strengths of RNN and LSTM architectures within an

Inception-like structure, and integrating residual connections,

the model effectively addresses the limitations of traditional

and standalone deep learning models. Benchmarking results

validate its ability to outperform existing approaches across

multiple metrics, demonstrating its applicability for sequen-

tial data prediction. Despite its computational complexity

and dependence on hyperparameter tuning, the model sets a

solid foundation for future advancements. Future work will

focus on optimizing the model’s efficiency, improving inter-

pretability, and validating its generalizability across diverse

datasets and domains.
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