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ABSTRACT 

Real-time personalized ad recommendation systems are crucial for enhancing user engagement and satisfaction. 

To address the challenge of delivering highly relevant ads in a dynamic, large-scale environment, this paper proposes 

a novel approach that integrates real-time user behavior analysis with advanced time series modeling and stream 

processing techniques. Specifically, the system leverages Long Short-Term Memory (LSTM) networks to capture both 

short-term and long-term user preferences, ensuring accurate and personalized ad recommendations. By utilizing 

stream processing frameworks like Apache Kafka and Apache Flink, the system supports high-throughput data 

ingestion and low-latency processing, even under high user concurrency. Experimental results demonstrate that the 

proposed system outperforms traditional methods and state-of-the-art models in terms of recommendation accuracy, 

response time, and user satisfaction. This approach offers significant advantages in real-time ad delivery and provides 

a scalable, efficient solution for personalized advertising in large-scale applications. 
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1. Introduction 

With the rapid growth of digital advertising, delivering 

personalized, relevant advertisements in real-time has 

become increasingly critical for improving user engagement 

and monetizing online platforms. Traditional ad 

recommendation systems typically rely on static user profiles 

and historical data to suggest advertisements. However, 

these systems often fail to capture the dynamic nature of user 

behavior and preferences, leading to suboptimal 

recommendations and reduced user satisfaction. Recent 

advances in machine learning, particularly in time series 

modeling and deep learning, have made it possible to address 

these limitations by modeling the temporal dynamics of user 

behavior. By analyzing real-time user interactions such as 

clicks, searches, and browsing history, modern ad 

recommendation systems can provide more personalized and 

timely suggestions. Additionally, the advent of stream 

processing frameworks has enabled real-time data ingestion 

and low-latency computation, which are essential for 

delivering relevant ads in high-concurrency environments. 

Despite these advances, existing systems still face challenges 

in balancing the need for real-time performance with the 

complexity of accurately modeling user preferences over 

time. This paper proposes a novel approach to personalized 

ad recommendation that combines real-time user behavior 

analysis, time series modeling using Long Short-Term 

Memory (LSTM) networks, and stream processing 

frameworks like Apache Kafka and Apache Flink to deliver 

dynamic, highly relevant ad suggestions. 

The main contributions of this paper are summarized as 

follows: 

⚫ Real-Time Dynamic Ad Recommendation Based on 

User Behavioral Data: This paper proposes a 

dynamic ad recommendation system utilizing real-

time user behavior data (such as clicks, browsing, and 

searches). By leveraging these real-time signals, the 

system enhances recommendation speed and 

improves the relevance of ad suggestions based on 

users’ most recent interactions. 

⚫ Modeling Short-term and Long-term User 

Preferences Using Time Series Analysis: 

⚫ We employ time series analysis methods, particularly 

Long Short-Term Memory (LSTM) networks, to 

model both short-term and long-term user 

preferences. This approach captures temporal 

dependencies in user behavior, allowing for more 

accurate and personalized ad recommendations. 

⚫ High-Throughput Real-Time Advertising with 

Stream Processing Frameworks: The proposed 

system integrates stream processing frameworks, 

such as Apache Kafka or Apache Flink, to support 

high-concurrency real-time ad recommendation. This 

design ensures low-latency computation even under 

large-scale user traffic, thus optimizing the system’s 

real-time performance. 

2. Related Work 

2.1. Personalized Recommendation Systems 

and User Behavior 

Personalized recommendation systems have become 

central to platforms such as e-commerce, social media, and 

advertising. These systems tailor content to individual users 

based on their preferences, which are inferred from their 

interactions, including clicks, likes, and time spent on 

content [1–3]. Algorithms such as collaborative filtering 

leverage these interactions to build user models and generate 

personalized recommendations[4,5]. Recently, social media 

platforms like TikTok and Douyin have integrated advanced 

recommendation algorithms, optimizing user engagement by 

analyzing user behavior beyond simple account following[6-

8]. These platforms heavily rely on behavioral signals, such 

as video engagement and hashtags, to dynamically adjust the 

recommendation feeds [5,9]. However, the opaque nature of 

these algorithms often leads users to develop “folk theories" 

about how recommendations are generated, influencing their 

interactions and behaviors with these platforms [10–12]. 

Understanding these user perceptions is crucial for 

improving recommendation systems, especially when 

incorporating real-time behavioral data to personalize 

recommendations. 

2.2. User Strategies and Interaction with 

Recommendation Algorithms 

Users are increasingly aware that their interactions 

influence the recommendation algorithms. This awareness 

leads to strategic behaviors aimed at manipulating the 

recommendation system to serve their preferences. For 

example, users may alter their engagement patterns by using 

coded language or avoiding certain content to manipulate 

what is recommended[7,13,14]. These behaviors are not only a 

response to perceived biases or unwanted content but also a 

way to assert control over what they see [15,16]. Research 

shows that these strategies may involve subtle actions, such 

as avoiding certain interactions, or deliberate attempts to 

bypass algorithmic moderation[5,17,18]. In the context of ad 

recommendations, users often adjust their interactions to 

influence the types of ads they encounter, reshaping their 

experience in response to perceived algorithmic biases [15,19]. 

Such strategic interactions with recommendation systems are 

central to the design of real-time personalized ad 

recommendation systems, as they impact how 

recommendations align with user intentions [5,20]. 

2.3. Implicit and Explicit User Feedback in 

Real-Time Systems 

Feedback mechanisms, both implicit and explicit, are 
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essential in refining personalized recommendations. Implicit 

feedback, derived from user behaviors like clicks, views, and 

time spent on content, is particularly valuable in real-time 

systems, where user preferences are continuously 

evolving[21,22]. These signals are automatically captured, 

allowing for the dynamic adjustment of recommendation 

algorithms. Explicit feedback, such as ratings or preferences, 

provides more direct insight into user intent but can be costly 

in terms of user effort and engagement [21,23]. In the context 

of real-time personalized ad recommendation systems, 

implicit feedback is especially valuable, as it can be 

processed instantly and used to adjust recommendations on 

the fly. However, challenges arise when interpreting these 

signals, as user behaviors are often complex and context- 

 

dependent, necessitating sophisticated models that can 

accurately capture and respond to real-time feedback[24,25]. 

3. Methodology 

The ad recommendation system leverages a 

combination of cutting-edge technologies to handle large-

scale data streams, model user behavior, and generate 

personalized recommendations in real time. An overview of 

the system’s data flow and key components is provided in 

Figure 1, illustrating the journey from user interaction data 

collection to personalized ad recommendations. The green 

circles labeled 1 to 7 in the diagram represent the following 

steps:  

 

Figure 1. Overview. This diagram shows the process from user interaction data collection to the generation of personalized 

ad recommendations. 

1. User Interaction Data Collection: User behavior 

data (e.g., clicks, searches, browsing history) is 

collected from various platforms. 

2. Data Ingestion (Apache Kafka): Real-time data 

ingestion using Apache Kafka as a message broker. 

3. Stream Processing (Apache Flink): Real-time 

processing of data streams using Apache Flink for 

low-latency analysis. 

4. Time Series Modeling (LSTM Networks): 

Modeling user behavior sequences with LSTM 

networks to capture temporal dependencies. 

5. Feature Extraction: Extracting features from user 

and ad data for further analysis. 

6. Ad Recommendation Algorithm: Integrating DNN, 

collaborative filtering, and content-based methods to 

generate personalized ad recommendations. 

7. Personalized Ad Recommendations: Delivering 

the final list of personalized ad recommendations to 

the user. 

The following sections describe the key components of 

the methodology in detail. 

3.1. Real-Time Data Processing and Stream 

Processing Frameworks 

To enable real-time ad recommendation, the system 

relies on stream processing frameworks such as Apache 

Kafka and Apache Flink to capture and process user behavior 

data in real time. The architecture of the data pipeline is 

designed to efficiently handle high-volume user interactions, 

including clicks, searches, and browsing activities, with 

minimal latency. 

The first step in the process is the real-time ingestion of 

user behavior data. Apache Kafka is used as the message 

broker to handle the streaming data from various user 

interaction sources. Kafka’s distributed nature allows the 

system to scale horizontally, ensuring that it can 

accommodate a large number of concurrent data streams 

with high throughput. Data from different user touchpoints 

is captured and sent to Kafka topics, from where it is 

consumed by downstream processing systems. 

Once the data is ingested, Apache Flink is employed to 

process the streaming data in real time. Flink’s powerful 

stream processing capabilities allow the system to perform 

continuous data analysis and transformation, enabling the 

dynamic adaptation of ad recommendations. Flink processes 

data with low latency, ensuring that the system can respond 

to user behavior as it occurs. This is crucial for providing 

timely and relevant ad suggestions, especially in fast-paced 

environments where user interactions change rapidly. 

The combination of Kafka and Flink ensures a robust 

and highly scalable system. Kafka handles the high-

throughput data ingestion, while Flink provides the low-

latency, real-time computation needed to make immediate ad 
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recommendations. Furthermore, the system’s architecture is 

designed to be fault-tolerant, ensuring that even in the event 

of failures, data is not lost and the recommendation process 

continues seamlessly. 

Overall, the integration of these stream processing 

frameworks supports the key innovation of real-time, 

dynamic ad recommendation by enabling rapid data flow, 

low-latency processing, and high scalability. This 

framework forms the backbone of the recommendation 

system, allowing it to deliver personalized ads based on users’ 

most recent behaviors, while efficiently managing high-

concurrency and large-scale data streams. 

3.2. Time Series Modeling of User Behavior 

Building on the real-time data ingestion and processing 

capabilities, the system further leverages time series 

modeling to capture the temporal dynamics of user behavior. 

In order to capture the temporal dependencies in user 

behavior, we employ Long Short-Term Memory (LSTM) 

networks, a type of recurrent neural network (RNN) that is 

particularly well-suited for modeling time series data. LSTM 

models are capable of learning both short-term and long-term 

dependencies, making them ideal for understanding the 

dynamic nature of user preferences over time. 

The LSTM architecture consists of several key 

components that enable it to retain important information 

over extended sequences of data. Each LSTM unit contains 

three main gates: the forget gate, the input gate, and the 

output gate. The forget gate decides what information should 

be discarded from the cell state, while the input gate controls 

what new information should be added to the cell state. 

Finally, the output gate determines the next hidden state, 

which contains the model’s understanding of the current 

sequence of inputs. 

Given a sequence of user interactions over time, the 

LSTM network learns to map these sequences to user 

preferences. The model is trained on historical user behavior 

data, where each sequence consists of time-stamped user 

interactions such as clicks, searches, and page views. The 

network is designed to predict the probability distribution of 

the user’s next action or preference based on the prior 

sequence of actions. 

Mathematically, the update of the LSTM cell state can 

be expressed as follows: 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

𝑖𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

𝐶
~

𝑡 = 𝑡𝑎𝑛ℎ⁡(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) 

𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ 𝐶
~

𝑡  

𝑜𝑡 = 𝜎 ∙ (𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏0) 

ℎ𝑡 = 𝑜𝑡 ∙ 𝑡𝑎𝑛ℎ⁡(𝐶𝑡) 

Where: 𝑓𝑡 is the forget gate, 𝑖𝑡 is the input gate, 𝐶
~

𝑡is the 

candidate cell state, 𝐶𝑡 is the cell state, 𝑜𝑡 is the output gate, 

ℎ𝑡 is the hidden state, and 𝑥𝑡 is the input at time t. 

The following 3D visualization demonstrates the 

temporal dynamics of LSTM gates (forget gate, input gate, 

and output gate) across time steps. The surface plot illustrates 

how the values of these gates evolve, capturing both short-

term and long-term dependencies in the user behavior 

(shown in Figure 2). 

 
Figure 2. 3D Visualization of LSTM Gates in Time Series Modeling. The plot shows how the forget gate, input 

gate, and output gate evolve over time, helping capture the dynamic nature of user preferences. 



Artificial Intelligence Advances | Volume 07 | Issue 01 | April 2025 

 

14  

By iterating over multiple sequences, the LSTM model 

learns to predict not only immediate user actions but also 

long-term preferences. This makes it capable of recognizing 

patterns in user behavior, such as recurring interests or 

changes in preferences over time. 

Once the model is trained, it can be used to predict a 

user’s future behavior based on their most recent interactions. 

This prediction is used to personalize ad recommendations 

by identifying the most relevant ads that align with the user’s 

evolving preferences. The LSTM model effectively handles  

the sequential nature of user behavior, allowing the 

recommendation system to adjust in real-time as users 

interact with the platform. In summary, the use of LSTM 

networks in modeling time series data provides a powerful 

approach to capturing the underlying temporal dynamics of 

user behavior. By leveraging both short-term and long-term 

dependencies, the model is able to offer more accurate and 

personalized ad recommendations, adapting to the changing 

preferences of users over time. 

3.3. Ad Recommendation Algorithm Design 
and Implementation 

The ad recommendation system utilizes the real-time 

data processing framework and time series modeling 

described above to generate personalized ad suggestions. 

This section describes how the system integrates deep neural 

networks (DNN), collaborative filtering, and content-based 

recommendation methods to generate dynamic, personalized 

recommendations. At the core of this system is the DNN, 

which is responsible for learning complex, non-linear 

interactions between user and ad features. The model is 

trained to predict the relevance of ads for a given user by 

processing input features related to both users and ads. These 

features include user demographic data, historical 

interactions, and ad content. The output is a predicted score, 

indicating how likely the user is to engage with the ad. 

The DNN architecture consists of multiple layers: 

⚫ Input Layer: This layer takes in user and ad feature 

vectors, which are encoded in a way that captures  

their inherent relationships. 

⚫ Hidden Layers: The hidden layers of the network 

allow the model to learn complex patterns between 

user and ad features. Each layer applies an activation 

function, typically ReLU, to introduce non-linearity. 

⚫ Output Layer: The final output is a score for each 

ad, representing the likelihood that the user will 

engage with it. 

The model is trained using a loss function that measures 

the discrepancy between the predicted relevance scores and 

the actual user interactions (e.g., click or no-click). This 

training process allows the DNN to learn how to match ads 

to users based on their preferences and past behavior. 

In addition to the DNN, the system incorporates 

collaborative filtering and content-based recommendation 

methods to further enhance the personalization of the ads. 

Collaborative filtering identifies ads that are likely to be 

relevant based on the interactions of similar users. By 

analyzing user behavior patterns, it finds ads that users with 

similar tastes have engaged with, improving the quality of 

the recommendations. 

Content-based recommendation, on the other hand, 

leverages the characteristics of the ads themselves. It looks 

at attributes like ad categories, keywords, and content 

features to match ads to users who have previously shown 

interest in similar content. This method helps refine the 

recommendations, ensuring that users receive ads relevant to 

their interests, even if they haven’t interacted with similar 

ads before. 

The dynamic nature of the system is another key 

innovation. The recommendation model continuously adapts 

to the latest user behavior, allowing it to provide up-to-date 

recommendations. As users interact with the system (e.g., by 

clicking, browsing, or searching), their preferences are 

captured in real-time and fed back into the model. This 

feedback loop ensures that the ad suggestions reflect the 

most current interests and behaviors of the user. 

The following pseudocode illustrates the overall 

process of generating personalized ad recommendations 

(Algorithm 1): 

Algorithm 1: Real-Time Ad Recommendation Generation 

1: Input: User features U, Ad features A, Historical interactions I 

2: Output: Ad recommendation list R 

3: for each user uin U do 

4:    for each ada in A do 

5:       Xu← User embedding from historical interactions Iu 

6:       Xa← Ad embedding from ad features Aa 

7:       rua← Predict relevance score using DNN(Xu, Xa) 

8:       Ru← Rank ads based on rua 

9:    end for 

10: end for 

11: return Ru 

The algorithm begins by processing the features of each user and ad, calculating the predicted relevance score using 

Throughput 
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the DNN model. Ads are then ranked according to these 

scores, and the top-ranked ads are presented to the user. The 

combination of DNN with collaborative filtering and 

content-based methods allows the system to generate ads that 

are not only relevant to the user’s past behavior but also 

aligned with their broader interests and preferences. 

Furthermore, the dynamic adjustment mechanism ensures 

that the system remains responsive to the user’s evolving 

tastes and behavior, offering a highly personalized and 

timely ad experience. 

By integrating these various techniques, the 

recommendation system is able to provide highly accurate 

and relevant ad suggestions, improving user engagement and 

overall satisfaction with the platform. 

This hybrid approach ensures that users receive ads that 

are tailored to their individual preferences while adapting in 

real-time to their changing behavior. 

3.4. High Concurrency and Low Latency 

Optimization for Ad Recommendation 

To ensure the real-time performance of the ad 

recommendation system, especially in high-concurrency 

environments, we leverage stream processing frameworks 

such as Apache Flink and Spark Streaming. These 

frameworks are designed to handle high-throughput data 

streams with minimal latency, making them ideal for 

delivering timely and accurate ad recommendations to a 

large number of concurrent users. The core challenge in 

high-concurrency systems is to efficiently process a massive 

volume of user interactions in real time. As the number of 

users increases, the system must be able to scale horizontally, 

ensuring that the computational load is evenly distributed 

across multiple processing nodes. Apache Flink and Spark 

Streaming address this challenge by providing distributed, 

fault-tolerant stream processing capabilities that enable the 

system to process data in parallel while maintaining low 

latency. 

3.4.1. Stream Processing Architecture 

The architecture of the system is designed around a 

distributed data processing pipeline, where data flows 

through a series of stages, each responsible for processing 

specific aspects of the recommendation task. The pipeline 

consists of the following main stages: 

Data Ingestion: User interaction data (e.g., clicks, 

searches, page views) is collected in real-time and ingested 

into the system using Apache Kafka. Kafka acts as the 

message broker, ensuring that data is streamed from the users 

to the processing nodes without loss. 

Stream Processing: Once the data is ingested, Apache 

Flink or Spark Streaming processes the data in real-time. 

These frameworks allow the system to perform continuous 

processing of incoming data, such as calculating the 

relevance scores of ads based on user behavior. The data is 

divided into micro-batches, and each micro-batch is 

processed in parallel, ensuring fast data throughput and low 

processing delay. 

Ad Recommendation Generation: The 

recommendation engine dynamically updates the user’s 

profile based on the most recent interactions and uses this 

updated profile to generate personalized ad 

recommendations.  The engine leverages the predictions 

from the deep neural network (DNN) model, collaborative 

filtering, and content-based methods to rank and select the 

most relevant ads for each user. 

Real-Time Feedback: To ensure the system adapts to 

changes in user behavior, real-time feedback is continuously 

fed back into the system. The updated user profiles are 

immediately used to refine future ad recommendations, 

making the system highly responsive to the evolving 

preferences of users. 

3.4.2. Latency and Throughput Considerations 

One of the main advantages of using Apache Flink or 

Spark Streaming is their ability to process data in micro-

batches, significantly reducing the latency of the 

recommendation process. Latency is defined as the time 

delay between receiving a user interaction and generating an 

ad recommendation. By processing data in real-time and 

distributing the workload across multiple nodes, these 

frameworks ensure that the system can handle high volumes 

of concurrent requests while maintaining low latency. 

Mathematically, the latency can be expressed as: 

𝐿 =
𝑇𝑏𝑎𝑡𝑐ℎ
𝑁

 

Where: L is the latency, 𝑇𝑏𝑎𝑡𝑐ℎ  is the time taken to 

process a single micro-batch, N is the number of processing 

nodes. 
As the system scales horizontally by adding more 

processing nodes, the time taken to process each batch 

decreases, which in turn reduces the overall latency and 

increases throughput. 
Moreover, to ensure fault tolerance and reliability, both 

Apache Flink and Spark Streaming support checkpointing 

mechanisms. These mechanisms periodically store the state 

of the system, ensuring that in case of a failure, the system 

can resume processing from the last checkpoint without 

losing data. 

3.4.3. System Scalability and Accuracy 

The system’s scalability is achieved by dynamically 

distributing the processing load across multiple nodes in the 

cluster. As the number of users and interactions increases, 

additional nodes can be added to handle the increased load 

without sacrificing performance. This distributed 

architecture ensures that the system remains responsive even 

under high traffic conditions. 
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To maintain the accuracy of the recommendations in a 

high-concurrency environment, the system uses a 

combination of techniques. First, the DNN model is 

continuously trained on user behavior data to refine its 

predictions. Second, collaborative filtering and content-

based methods are employed to ensure that the 

recommendations are both relevant and diverse. Finally, 

real-time feedback loops ensure that the system adapts 

quickly to changes in user behavior, allowing the 

recommendations to remain accurate and personalized. 

In summary, the integration of Apache Flink or Spark 

Streaming into the ad recommendation system allows for 

high concurrency and low-latency processing. These 

frameworks provide the necessary infrastructure to handle 

large-scale user interactions in real-time, ensuring that ad  

 

recommendations are delivered accurately and efficiently. 

The system’s distributed architecture and fault-tolerant 

design further enhance its ability to scale and maintain 

performance under heavy loads. 

4. Experiments and Evaluation 

4.1. Dataset and Preprocessing 

For the evaluation of our ad recommendation system, 

we use three publicly available datasets: the Criteo Ad 

Dataset, the Avazu CTR Dataset, and the Yahoo! Learning 

to Rank Dataset. Below, we describe the characteristics, data 

scale, and preprocessing steps involved in using these 

datasets (shown in Figure 3). 

 

Figure 3. Dataset Distribution for Ad Recommendation System. The Criteo Ad Dataset constitutes the largest portion, 

followed by the Avazu CTR Dataset and the Yahoo! Learning to Rank Dataset. 

4.1.1. Criteo Ad Dataset 

The Criteo Ad Dataset consists of over 45 million ad 

click logs from a large-scale online advertising platform. 

Each log contains information such as user ID, ad ID, ad 

position, and the interaction timestamp. The dataset includes 

both categorical and numerical features. We perform the 

following preprocessing steps: 

⚫ Data Cleaning: Any missing or corrupt entries are 

removed to ensure the dataset’s integrity. 

⚫ Feature Engineering: Categorical features are one-

hot encoded, and numerical features such as user age 

and ad click-through rates are normalized. 

⚫ Sampling: We apply random sampling to balance the 

dataset, as the number of positive samples (ad clicks) 

is significantly lower than negative samples (no 

click).  

4.1.2. Avazu CTR Dataset 

The Avazu CTR dataset is comprised of around 40 

million ad click-through records, with various features, 

including user demographics, ad content, and placement 

information. Preprocessing includes: 

 

⚫ Data Cleaning: Filtering out incomplete records and 

ensuring proper formatting of categorical and 

continuous data. 
⚫ Feature Extraction: Extracting temporal features 

(e.g., time of day, day of the week) and  
⚫  

ad-specific features. 

⚫ Normalization: Normalizing continuous variables 

such as ad impressions and click-throug rates. 

4.1.3. Yahoo! Learning to Rank Dataset 

This dataset contains data for learning to rank ads based 

on user preferences. It consists of features related to user 

behavior, ad content, and ranking labels. Preprocessing steps 

include: 

⚫ Data Cleaning: Removing duplicate records and 

correcting any inconsistencies. 

⚫ Feature Engineering: Creating interaction features 

between user and ad attributes. 

⚫ Normalization: Scaling numerical features to ensure 

consistent input to the model. 

4.2. Ablation Study 
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In this section, we perform an ablation study to analyze 

the contribution of each key innovation in our ad 

recommendation system. The innovations include time series 

modeling using LSTM, stream processing with Apache 

Kafka and Flink, and high concurrency support with Spark 

Streaming. We compare the performance of the system with 

and without each innovation. The following Table 1 presents 

the results of our ablation study: 

Table 1. Ablation Study Results. 

Model 
Recommendation 

Accuracy 

Latency  

(ms) 

Throughput 

 (req/sec) 

Full Model (with all innovations) 0.85 50 1000 

Without LSTM (No time series modeling) 0.80 55 950 

Without Kafka/Flink (No stream processing) 0.82 70 900 

Without Spark Streaming (No high concurrency) 0.75 90 750 

The ablation study results show that each innovation 

contributes significantly to the system’s overall performance. 

Specifically, removing the LSTM-based time series 

modeling reduces recommendation accuracy by 5%, while 

removing the stream processing framework (Kafka/Flink) 

increases latency by 40%. Similarly, removing Spark 

Streaming for high concurrency processing leads to a notable 

drop in throughput and an increase in latency. 

These results demonstrate that all three innovations are 

essential for achieving the high recommendation accuracy, 

low latency, and high throughput required for real-time, 

personalized ad recommendations. 

4.3. Comparison with Existing Methods 

We now compare our ad recommendation system with 

traditional methods and state-of-the-art (SOTA) approaches 

in the field. Specifically, we compare it against a traditional 

static model based on collaborative filtering, as well as two 

recent SOTA deep learning models: the Time-based 

Sequence Model (TBSM) for personalized recommendations 

and the PALR (Personalization Aware LLMs for 

Recommendation) model. These models represent the latest 

advancements in incorporating temporal dynamics and large 

language models into recommendation systems, respectively. 

The key evaluation metrics include recommendation 

accuracy, response time, and user satisfaction. 

The TBSM model incorporates time-based sequences, 

which enables better prediction of user behavior by explicitly 

modeling temporal patterns in user interactions. It uses an 

attention-like mechanism and a time series layer (TSL) to 

handle sequences more effectively than traditional methods. 

The PALR model, on the other hand, integrates large 

language models (LLMs) with user interaction data to 

generate highly personalized recommendations in real-time, 

performing well in sequential recommendation tasks. 

As shown in Table 2, our proposed model outperforms 

both the traditional collaborative filtering (CF) model and the 

state-of-the-art (SOTA) models—TBSM and PALR—in 

terms of recommendation accuracy, response time, and user 

satisfaction. Specifically, our model achieves a 10% 

improvement in recommendation accuracy compared to the 

CF model, a 3% improvement over the TBSM model, and a 

3% improvement over the PALR model. Additionally, the 

response time is significantly lower in our system, with a 58% 

reduction compared to the CF model, 55% compared to 

TBSM, and 58% compared to PALR. This demonstrates the 

efficiency and real-time capability of our approach. 

Table 2. Comparison with Existing Methods. 

Model Recommendation Accuracy Response Time (ms) User Satisfaction (%) 

Traditional CF Model 0.78 150 70 

TBSM Model 0.83 110 85 

PALR Model 0.85 120 80 

Proposed Model (Full) 0.88 50 90 

In terms of user satisfaction, our system also leads with 

a 15% improvement over the CF model, 5% over TBSM, and 

10% over PALR, indicating that users have a better 

experience with our system. This improvement is likely due 

to the combination of real-time adaptation and personalized 

recommendations generated through the integration of 

advanced deep learning techniques and stream processing 

frameworks. 

 Qualitatively, while the TBSM model excels in 

capturing temporal dependencies in user behavior and the 

PALR model integrates large language models to personalize 

recommendations, our proposed model combines the best of 

both worlds. It incorporates time-based modeling and real-

time data processing to ensure that recommendations are not 

only personalized but also highly responsive to changes in 

user behavior. 
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These results underscore the effectiveness of our real-

time, personalized ad recommendation approach, which 

outperforms existing SOTA methods in both speed and 

accuracy. Our model’s superior performance highlights the 

potential of integrating stream processing with deep learning 

to handle large-scale, dynamic recommendation systems 

efficiently. 

4.4. Case Studies: Real-World Application 

Scenarios 

To illustrate the practical effectiveness of our ad 

recommendation system, we present a detailed case study 

based on a real-world user interaction scenario. This case 

study demonstrates how the system leverages user behavior 

data to generate highly personalized ad recommendations in 

real-time. 

User Profile and Interaction Data 

User Profile: User ID: U12345 Demographics: 28-

year-old male, interested in technology, fitness, and travel. 

Recent Activity: Browsed a tech blog about the latest 

smartphones. Clicked on an ad for a fitness tracker. Searched 

for "best travel destinations in Europe." 

Real-Time Data Ingestion and Processing 

Data Ingestion (Apache Kafka): The user’s interactions 

(clicks, searches, page views) are captured in real-time and 

ingested into the system using Apache Kafka. Each 

interaction is timestamped and sent to a Kafka topic 

designated for user behavior data. 

Example data points: Timestamp: 2024-10-12 14:30:00 

Event: Clicked on “Fitness Tracker X" ad. 

Event: Searched for “best travel destinations in 

Europe." 

Stream Processing (Apache Flink): Apache Flink 

processes the streaming data in real time. The system 

performs continuous analysis on the user’s interactions, such 

as calculating the frequency of clicks on fitness-related ads 

and the topics of searched content. 

The data is divided into micro-batches and processed in 

parallel, ensuring low latency and high throughput. 

Time Series Modeling (LSTM Networks) 

The LSTM model analyzes the sequence of the user’s 

interactions to capture temporal dependencies. 

Short-term Preferences: The model identifies the user’s 

immediate interest in fitness trackers, as indicated by the 

recent click on the "Fitness Tracker X" ad. 

Long-term Preferences: The model also recognizes the 

user’s ongoing interest in technology, based on historical 

data of browsing tech blogs. 

The LSTM model predicts that the user is likely to be 

interested in tech gadgets and fitness-related products. 

Ad Recommendation Generation 

Feature Extraction: User features: Demographic data, 

historical interactions (e.g., clicks on fitness ads, browsing 

tech blogs). Ad features: Categories (e.g., fitness trackers, 

smartphones), keywords (e.g., “travel," “smartphone"), and 

content features (e.g., ad descriptions, images). 

Deep Neural Network (DNN) Prediction: The DNN 

model processes the user and ad features to predict relevance 

scores. 

Example scores: Fitness Tracker X: 0.92 Smartwatch Y: 

0.88 European Travel Package Z: 0.75 

Collaborative Filtering and Content-Based Methods: 

Collaborative Filtering: Identifies ads similar users (age 25–

35, interested in fitness and tech) have engaged with, such as 

a smart home device ad. 

Content-Based Filtering: Matches ads with the user’s 

interests, such as a travel deal for European destinations. 

Dynamic Adaptation: As the user interacts with the 

system (e.g., clicks on a travel deal), the model updates in 

real-time to reflect the user’s evolving preferences. 

Personalized Ad Recommendations 

Recommended Ads: Fitness Tracker X (Relevance 

Score: 0.92) Smartwatch Y (Relevance Score: 0.88) 

European Travel Package Z (Relevance Score:  0.75) Smart 

Home Device (Collaborative Filtering Pick, Score: 0.80) 

User Experience: The user receives personalized ads 

that align with his interests in fitness, technology, and travel. 

The system adapts in real-time if the user interacts with a 

new ad (e.g., clicks on the travel deal), updating future 

recommendations accordingly. 

Performance Metrics 

Response Time: 50 ms  

Throughput: 1000 requests per second  

User Satisfaction: 90 

5. Conclusions 

In this paper, we proposed a novel real-time 

personalized ad recommendation system that integrates user 

behavior analysis, time series modeling with Long Short-

Term Memory (LSTM) networks, and stream processing 

frameworks such as Apache Kafka and Apache Flink. Our 

approach enhances recommendation speed and accuracy by 

modeling both short-term and long-term user preferences, 

enabling highly personalized and dynamic ad suggestions. 

Experimental results demonstrate that our system 

outperforms traditional methods and state-of-the-art models 

in terms of recommendation accuracy, response time, and 

user satisfaction. 

However, there are still limitations in our approach. 

First, the current system relies on historical user interaction 

data, which may not fully capture sudden changes in user 

behavior. Second, while our system supports high-

concurrency environments, the scalability of the system 

could be further improved in extremely large-scale 
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deployments. 

Future work will focus on addressing these limitations. 

We plan to explore the integration of more advanced models 

such as reinforcement learning to adapt to real-time changes 

in user behavior. 

Additionally, we aim to enhance the scalability of the 

system by optimizing the stream processing pipeline and 

incorporating more sophisticated data processing techniques. 

Finally, we will investigate the application of our system in 

various real-world domains, such as e-commerce and social 

media, to validate its performance and generalizability in 

different contexts. 
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