Type of the article (Article, Review, Communication, etc.)

Safety-Critical Policy Iteration Algorithm for Control under Model Uncertainty
Navid Moshtaghi Yazdani1,*,
Reihaneh Kardehi Moghaddam2 and
Mohammad Hasan Olyaei3
1 PhD, Department of Electrical Engineering, Mashhad branch, Islamic Azad University, Mashhad, Iran
 2 PhD, Department of Electrical Engineering, Mashhad branch, Islamic Azad University, Mashhad, Iran
3 M. Sc., Department of Electrical Engineering, Sadjad University of Technology, Mashhad, Iran.
*Corresponding Author: Navid Moshtaghi Yazdani, PhD, Department of Electrical Engineering, Mashhad branch, Islamic Azad University, Mashhad, Iran; Email: navid.moshtaghi@ut.ac.ir
Abstract: Safety is an important aim in designing safe-critical systems. To design such systems, many policy iterative algorithms are introduced to find safe optimal controllers. Due to the fact that in most practical systems, finding accurate information from the system is rather impossible, a new online training method is presented in this paper to perform an iterative reinforcement learning based algorithm using real data instead of identifying system dynamics. In addition, in this paper the effect of model uncertainty is investigated on control Lyapunov functions and control barrier functions dynamic constraints. The Sum of Square program is used to iteratively find an optimal safe control solution. The simulation results which are applied on a quarter car model show the efficiency of the proposed method in the fields of optimality and robustness.

Keywords: safe-critical, optimal controller, reinforcement learning, Lyapunov, Sum-of-Square.

1. Introduction
Safety is an integral part and a central requirement for any safe-critical system such as power systems, automatic devices, industrial robots, and chemical reactors. Considering the increasing demand for safe systems in the future generation of industrial systems, and also the importance of an interaction with systems` surroundings and uncertainties, there is a real need for the development of safe controllers, which can meet the already-mentioned demand. In the absence or violation of these safety conditions, the system is likely to suffer from some faults, including the system stabilization problem and its simultaneous survival in the given safety system; which lead to the rise of multiple serious challenges to designing controllers. The optimal control design, as well as the safe control design for the feedback state, are discussed separately in the literature review. Developing such safe controllers to optimize the performance of dynamic systems with uncertainties, primarily resulted from lack of safe optimal controllers with uncertainty conditions.

1.1. Related works
The official design for the stabilization of non-linear dynamic systems is often obtained by employing the Control Lyapunov Functions (CLFs). , The optimal feedback controllers necessary for general non-linear systems can be designed by solving Hamilton-Jacobi-Bellman equations (HJB), which have been done approximately by through the use of Galerkin method [1] and neural networks method [2-8]. However, due to the lack of robustness and computational infeasibility for online performance, the open-loop form of calculating these solutions seems problematic. Consequently, in this paper the optimal control of constrained systems equipped with penalty functions in the performance function. [9]. However, the application of these methods is only limited to linear state constraints.
Real-time safety in dynamic systems has gained large attention in [10-14], followed by the introduction of the barrier functions in [15]; through which the risk of the system states entering the given non-safety zones can be removed. Also, control methods using Control Lyapunov function (CLF) and control barrier function (CBF) have been considered as successful methods to achieve safety-stability control. References [16-17] have shown that for the performance of movement tasks (manipulation and locomotion), CLF-based quadratic programs (CLF-QP) with constraints can be solved online. They have also combined CBFs with CLF-QP in [10] to effectively for the effective management of safety constraints in real time. Nevertheless, a detailed knowledge of the system model is required for all these CLF-based and CBF-based methods.
Taylor et.al [18-19] addressed how a minimization method for experimental risk can lead to the uncertainties in CLF and CBF constraints, respectively. Westernbroek et al. [20] have also proposed an RL-based method to learn model uncertainty compensation for the input-output linearization control. In references [21, 22], learning-based control is obtained in dynamical systems with high uncertainty regardless of the safety constraint. Moreover, in references [23-24], probabilistic models such as Gaussian process can be used to learn about model uncertainties. Through the use of these methods, the detailed analysis of the learned model or policy is allowed; however, they can scale poorly with state dimension and using them in high-ordered systems will not be easy.

1.2. Contributions and Outline
In [25], a policy iteration algorithm is introduced as a way to build the safe optimal controller for a class of certain nonlinear systems. However, due to the difficulty of practically obtaining accurate system information, an online training method is presented in this study to replace identifying system dynamics with an iterative algorithm featured with real data. In this paper, the effect of model uncertainty is, also, investigated on CLF and CBF dynamic constraints. For each of them, the purpose of the RL agent and the policy to be learned will be defined. The Sum-of-Square program is utilized to iteratively discover an optimal safe control solution. Finally, in order for the efficiency of the proposed method to be validated, a simulation example is employed.
The remaining part of the present paper is organized as follows: Section 2 formulates the problem and presents a new safe optimal control framework. Section 3 presents reinforcement learning for optimal safe control under uncertain dynamics, and Section 4 provides the numerical examples to validate the efficiency of the proposed method.

1.3. Notations

The term denotes the set of all continuous differential functions. Then, denotes the set of all existing functions in that are positive, definite and proper. The polynomial is Sum-of-Squares (SOS) (i.e., in whichis a set of SOS polynomials, where) . Function is an extended class function and. Alludes to the gradient of the V function: .The Li derivative of function with respect to f is defined as . For any positive integer and where , is the vector of all distinct monic monomial sets in with minimum degree of and maximum degree of . Moreover, represents a set of all polynomials in with degrees less than and greater than .

2. Problem Formulation and details
In this part, we talk about safety, stability and optimization of the control systems. The initial results of each are also mentioned. Then the formulas of the optimal safe control design will be performed.
2.1. Optimal control of dynamical systems
Consider the following nonlinear system:

 (1)

In which is the system state vector, is the control input vector, and are both locally Lipschitz continuous with . We expect the system as a stabilizable one.
The main goal of standard optimal control design is to find a control policy to minimize the predefined performance index over the system trajectories (1) defined as follows:

 (2)

In relation (2), , and can be considered as reward function, positive definite function and positive definite matrix, respectively. The reward function is defined such that optimizing (2) guarantees the achievement of control objectives (e.g., minimizing the control effort to achieve the desired transient response) as well as system stability.
The existence of an optimal stabilizing solution is guaranteed under mild assumptions about the system dynamics and reward function [24].

Assumption 1. Considering system (1), there exists a Lyapunov function and a feedback control policy u which satisfies the following inequality:

 (3)

The system stability conditions are guaranteed by this assumption, implying that the cost is ﬁnite

Theorem 1. [26, Theorem 10.1.2] Consider system (1) with performance function (2), there must be a positive semi-definite function satisfying the Hamilton-Jacobi-Belman (HJB) equation as follows:

In which

 (4)
Therefore, the following feedback control

 (5)

Optimizes the performance index (2) and results in the achievement of asymptotic stability of the equilibrium. Also, the optimal value function is given as follows:

 (6)
[bookmark: _GoBack]Assumption 1 appears that it is vital to solve the HJB equation (4) to find an optimal control solution.

Assumption 2: There are proper mappings and, such that and are SOS.

2.2. About Control barrier functions and its relation with safe control of dynamical systems

In a safety-critical system, it is important to prevent its state starting from any initial conditions in set to enter some special unsafe regions like. To design a safe controller, control barrier functions (CBF), inspired by Control Lyapunov Function (CLF), can be employed. Now Equation (1) and the function can be considered as follows:

 (7)
The following function is also defined as:

 (8)

 having ZCBF the admissible control space is defined as follows:

 (9)
The following theorem demonstrates the way a controller is designed using the ZCBF concept to ensure that the forward invariance of the safe set and system stability.

Theorem 2. For given in (8) and a ZCBF defined by h in (9), each controller for the system (1) presents a safe set L forward invariant.
Proof: see [27]
The barrier functions for exponential controls are introduced in [12]. They are improved in a work by Ams et.al [28].

This translates to the time-derivative of

The authors expanded the CBFs having an arbitrary relative degree to functions. To do so, we define . As well, we assume that u can be selected so that for which is a slack input. We have:

Where, are,

If a set is defined as the super level set for an r-times functions which are continuously differentiable , then h is considered as an exponential control barrier function (ECBF) for the control system (1). Therefore, the acceptable space SE(x) (if exists) is defined as follows,

Where,

As Assumption 3, the admissible control space S (x) can be considered not empty.

3. Reinforcement learning for safe optimal control under uncertain dynamics

In this section, the potential mismatch between the model and the plant dynamics is discussed, while there is paucity of accurate knowledge of the true plant vector fields ,. Moreover, its effects on the dynamics of CLF and CBF will be examined.
Let the nominal model used in the controller be defined as follows:

 (10)

Assume that the vectors are Lipschitz continuous.and Where,
Problem 1. (Safe Optimal Control under uncertainty dynamics): Find a controller that solves the following equation:

 (11)

 In relation (11), is an area in which the system performance is expected to be improved, is the design parameter that acts as a trade-off between the system aggressiveness toward performance and safety, and is the Stability relaxation factor. Note that can be defined as the Aspiration level for a performance that shows the level of performance sacrificed as a result of failure in satisfying safety and performance. However, this parameter is minimized to achieve the highest possible performance.

First, the relaxed optimal control problem for system (1) with performance (2) is examined as follows:

 (12)

In Which is defined by Equation (4) and is an arbitrary compact set containing the origin. Problem 1 actually solves a relaxed version of HJB (4) in which the HJB equation is relaxed with the HJB inequality. In Reference 29, researchers have shown that the solution of problem 1 is unique and if is a solution for (9), then, through

 (13)

the stability of the system is guaranteed and plays the role of an upper bound or an overestimate for the actual cost. The superscript is used here to indicate that is a performance-oriented controller. However, with a safe control policy, ، and are derived to solve the following optimization problem.
 This control policy does not verify system safety.

 (14)
In SOS framework, this optimization problem is defined as follows:

Based on Assumption 1, there is a safe control policy u. Now we can write the control policy as in which is a part of the controller that is applied to optimize performance regardless of safety and has been added to in order to guarantee safety.

3.1. Deriving under uncertainty situation

Lemma 1: Consider system (10). Suppose that is a global safe control policy and is also existed. Then the system (11) is feedforward.

Proof: According to the assumptions 1 and 2, . Then by sum of squares, we conclude that

 (15)
According to [24, Result 2.11], system (11) is feed forward:

There is a fixed matrix in which such that . It is also assumed that there is a fixed vector in which so that . Then, the following terms can be defined along with the solutions of the system (11):

Note that two terms and , depend on and. Since there is uncertainty in these terms, we should solve them without identifying and.

For a similar abovementioned pair , we can find a fixed vector , in which and is a fixed matrix, such that

 (16)

 (17)

Therefore, and are calculated to find and By substituting equations (16) and (17) in equation (15), we have:

 (18)
By integrating (18) into the time interval [t, t + δt]:

 (19)

Now, and can be calculated without having accurate information about and by using real online data.
1) Initial value:

Find the pair that satisfies Assumption 1. Consider a fixed vector such that , and.
2) Online data collection:

First, apply to the system and then find an optimal solution for the following SOS program.

 (20)

So, we have .Then, we can derive the value of and proceed to step 2) where

3.2. Reinforcement learning for CBFs

The control rule for the computed input-output linearization has the following form based on the nominal model and :

 (21)
In which μ is also an auxiliary input.
Under the uncertainty situation, it can be written:

 (22)

Where are

Terms obtained from the mismatch existing between model and plant. It should also be noted that if α, β are zero, we have the same equation as (22).

Using an estimator made of that in the form

RL's goal is to learn policies so that is close to .as much as possible. Thereby, using RL, the uncertainty terms for CBF can be estimated. Therefore, there is a need for designing the reward function to minimize policy estimation errors. Therefore, it can be defined as follows:

The RL factor embraces a policy that considers the uncertainty terms in CBF, which are summed with the SOS constraints as they are extracted from the nominal model, resulting in accurate estimates. One can consider the focal RL problem with the considered reward for a given state as the summation of the negative objective functions plus an arbitrary penalty (s) selected by the user

 (23)
Where b is the number of CBFs. One can solve RL, using common algorithms
4. Applications
The reason of this part is to demonstrate that our proposed system can make possible the critical safe control, even in the presence of uncertain conditions. Two simulation examples are presented in this section in order to approve the efficiency of the proposed model.
 Example1:
Consider the car quarter suspension model shown in figure 1. Its non-linear dynamic is defined as follows [30]. However, it is worth mentioning that while the training experiences or the simulations are operating, the car quarter suspension model is assumed to be under the proper dynamics (given its uncertainties)

 (24)

[image:]Where, , , and are the car position, velocity, and its mass, respectively. , , and are also the wheel position, velocity, and their total mass. , , , and shows the tire hardness, the linear suspension system, the non-linear suspension hardness, and the damping rate of the suspension system, respectively.
Figure 1- Quarter car model

The uncertainty for the significant model in this experiment is introduced by weighing all the components with a weighing coefficient of 2. During the training (process) of the RL agent, we only know the nominal model.

Let, , , ,, , .Then, it can be easily observed that the system establishment has been done in a global level asymptotically, with an absence of input control. The purpose of the proposed method is to design an active suspension control system which reduces the performance index, while retains the global asymptote stability, simultaneously. As well, reducing the disorder effects in the set can improve the system performance.

The reinforcement learning factor is taught using a Deep Deterministic Policy Gradient algorithm (DDPG, Silver et al. [31]). The 4 observed state variables, and the CBF component of the simulation constitute the inputs for the actor neural network. The output dimension is equal to which corresponds to, and.

There exist hidden layers as wide as 200 and 300 in both the actor and the critic neural networks in example 1. This agent is trained by simulation in the interval between , and .

A time step of is employed (in this regard). The simulations have been carried out on a 6-core laptop with Intel Core™ i7-9400 (2.7 GHz) processor and 4 GB RAM.
Use SOSTOOLS [32] to obtain an initial cost function, V0 for the simulated system having non-determined parameters.

Then, we apply the proposed method in which u1=0. The primary condition has been selected randomly. To do the training, we apply the noise from to till the convergence is obtained after 8 repetitions.
The obtained control policy is as follows,

 (25)
To test the trained controller, we choose the road disorder as a single-impact as follows,

 (26)

In addition, as an indication of a car carrying a load, an overweight of 260 kg is applied to the vehicle assembly.

[image: G:\PHD\tez-1\application for article 2\article 3\maghale 3\3-2 - Copy.jpg]So that,the departure of position is relative to the origin. The proposed control policy performance is compared to the primary system performance without any control, as shown in figure 2. In figure 3, these two performances of the costs are compared by the constraint wheel position, wheel velocity When they are zero. As can be seen, has been reduced significantly compared to .
Figure 2- Comparison of performance car position and car velocity

[image: G:\PHD\tez-1\application for article 2\article 3\maghale 3\3-2-2 - Copy.jpg]Figure 3- Comparison of performance wheel position and wheel velocity
[image: G:\PHD\tez-1\application for article 2\article 3\maghale 3\3-3 - Copy.jpg]
Figure 4- Comparison of learned value functions

Example2:
Now consider the following system equations:

 (27)

In which are uncertain parameters, and and are mode and system control, respectively. The unsafe space was coded with a polynomial inequality
With the following details:

Using SOS techniques, it has been shown in [33] that the following robust control policy can stabilize the system (27) at the source level globally and asymptotically.

 (28)
However, the optimality of the closed-loop system has not been fully addressed.
The primary goal of the control is to find more improved safeguard policies under uncertainty using the iterative safeguard policy algorithm. By solving the following feasibility study using SOS-TOOLS we have:

 (29)

The function is obtained as follows:

If we put and , the initial condition is arbitrarily set to and .

 (30)

The function is as follows:

The indefinite cost function and the initial cost function are compared in Figure 5.

[image: G:\PHD\tez-1\application for article 2\article 3\maghale 3\fig5.png]Figure 5- Comparison of learned value functions

Both operator and critical neural networks in example 2 have hidden layers with a width of 100 and 200. The training environment using the learning environment was the same as the previous example, the proposed method was learning took 2 seconds per episode. Control policy Obtained after 5 episodes.
In addition, the safe set is equal to:

In which:

 (31)

Note that it is necessary for the safe set to be a member of the complementary set of the unsafe set, as well as being invariable in a way that it never leaves the set in the future. The safe set is obtained using CBF . Be attention that barrier certificate is bounded to a second-order polynomial. In Figure 6, the estimated safe sets for both the initial control policy and the optimal control policy are shown.
[image: G:\PHD\tez-1\application for article 2\article 3\maghale 3\fig6 - Copy.jpg]Figure 6- Estimated safe area using the proposed optimal safe controller in the presence of uncertainty

5. Conclusions
A safe optimization is proposed for the control of dynamics systems under model uncertainty. In order for the performance and safety to be guaranteed, a Hamilton-Jacobi-Bellman (HJB) inequality replaces the HJB equality; besides, a safe policy iteration algorithm is presented certifying the safety of the improved policy and finding a value function corresponding to it. Also, the RL factor was also presented in the proposed method to reduce model uncertainty. The effectiveness of the proposed method is illustrated through two simulation examples.

References
[1] Beard, R. W., Saridis, G. N., & Wen, J. T. (1997). Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation. Automatica, 33(12), 2159-2177. https://doi.org/10.1016/S0005-1098(97)00128-3.
[2] K. G. Vamvoudakis and F. L. Lewis, “Online actor–critic algorithm to solve the continuous-time infinite horizon optimal control problem, ”Automatica, vol. 46, no. 5, pp. 878 – 888, 2010.
[3] F. L. Lewis and K. G. Vamvoudakis, “Reinforcement learning for partially observable dynamic processes: Adaptive dynamic programming using measured output data,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 41, pp. 14–25, Feb 2011.
[4] B. Kiumarsi and F. L. Lewis, “Actor–critic-based optimal tracking for partially unknown nonlinear discrete-time systems,” IEEE Transactions on Neural Networks and Learning Systems, vol. 26, pp. 140–151, Jan 2015.
[5] H. Modares, F. L. Lewis, and M.-B. Naghibi-Sistani, “Integral reinforcement learning and experience replay for adaptive optimal control of partially-unknown constrained-input continuous-time systems,” Automatica, vol. 50, no. 1, pp. 193 – 202, 2014.
[6] D. Wang, D. Liu, Y. Zhang, and H. Li, “Neural network robust tracking control with adaptive critic framework for uncertain nonlinear systems,” Neural Networks, vol. 97, pp. 11 – 18, 2018.
[7] S. Bhasin, R. Kamalapurkar, M. Johnson, K. Vamvoudakis, F. Lewis, and W. Dixon, “A novel actor–critic–identifier architecture for approximate optimal control of uncertain nonlinear systems,” Automatica, vol. 49, no. 1, pp. 82 – 92, 2013.
[8] W. Gao and Z. Jiang, “Learning-based adaptive optimal trackingcontrol of strict-feedback nonlinear systems,” IEEE Transactions on Neural Networks and Learning Systems, vol. 29, pp. 2614–2624, June 2018.
[9] M. Abu-Khalaf and F. L. Lewis, “Nearly optimal state feedback control of constrained nonlinear systems using a neural networks hjb approach,” Annual Reviews in Control, vol. 28, no. 2, pp. 239 – 251, 2004.
[10] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs with application to adaptive cruise control,” in 53rd IEEE Conference on Decision and Control, 12 2014, pp. 6271–6278.
[11] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs for safety critical systems,” IEEE Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 8 2017.
[12] Q. Nguyen and K. Sreenath, “Exponential control barrier functions for enforcing high relative-degree safety-critical constraints,” in 2016 American Control Conference (ACC), 7 2016, pp. 322–328.
[13] M. Z. Romdlony and B. Jayawardhana, “Uniting control Lyapunov and control barrier functions,” in 53rd IEEE Conference on Decision and Control, 12 2014, pp. 2293–2298.
[14] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of control barrier functions for safety critical control,” IFACPapersOnLine, vol. 48, no. 27, pp. 54 – 61, 2015, analysis and Design of Hybrid Systems ADHS.
[15] S. Prajna and A. Rantzer, “On the necessity of barrier certiﬁcates,” IFAC Proceedings Volumes, vol. 38, no. 1, pp. 526 – 531, 2005, 16thIFAC World Congress
[16] A. D. Ames and M. Powell. “Towards the uniﬁcation of locomotion and manipulation through control lyapunov nctions and quadratic programs”. In Control of CyberPhysical Systems, pages 219–240. Springer, 2013.
[17] Galloway, K., Sreenath, K., Ames, A. D., & Grizzle, J. W. Torque saturation in bipedal robotic walking through control Lyapunov function-based quadratic programs. 2015. 323-332. https://doi.org/10.1109/ACCESS.2015.2419630
[18] A. J. Taylor, V. D. Dorobantu, H. M. Le, Y. Yue, and A. D. Ames. Episodic learning with control lyapunov functions for uncertain robotic systems. arXiv preprint arXiv:1903.01577, 2019. URL https://arxiv.org/abs/1903. 01577.
[19] A. J. Taylor, A. Singletary, Y. Yue, and A. D. Ames. Learning for safety-critical control with control barrier functions. arXiv preprint arXiv:1912.10099, 2019. URL https://arxiv.org/abs/1912.10099.
[20] T. Westenbroek, D. Fridovich-Keil, E. Mazumdar, S. Arora, V. Prabhu, S. S. Sastry, and C. J. Tomlin. Feedback linearization for unknown systems via reinforcement learning. arXiv preprint arXiv:1910.13272, 2019. URL https://arxiv.org/abs/1910.13272.
[21] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter. Learning agile and dynamic motor skills for legged robots. Science Robotics, 4(26):eaau5872, 2019.
[22] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-toend training of deep visuomotor policies. J. Mach. Learn. Res., 17(1):13341373, January 2016. ISSN 1532-4435.
[23] S. Bansal, R. Calandra, T. Xiao, S. Levine, and C. J. Tomlin. Goal-driven dynamics learning via Bayesian optimization. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pages 5168–5173, Dec 2017. doi: 10.1109/CDC.2017.8264425.
[24] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, and C. J. Tomlin. A general safety framework for learning-based control in uncertain robotic systems. IEEE Transactions on Automatic Control, 64 (7):2737–2752, July 2019. ISSN 2334-3303. doi: 10. 1109/TAC.2018.2876389. URL https://ieeexplore.ieee. org/abstract/document/8493361.
[25] Prajna, S., & Jadbabaie, A. (2004, March). Safety verification of hybrid systems using barrier certificates. In International Workshop on Hybrid Systems: Computation and Control. Springer, 477-492.
[26] Navid Moshtaghi Yazdani ; Reihaneh Kardehi Moghaddam ,et al,” A Safety-Certified Policy Iteration Algorithm for Control of Constrained Nonlinear Systems”, IEEE Control Systems Letters (Volume: 4 , Issue: 3 , July 2020)
[27] F. L. Lewis, D. L. Vrabie, and V. L. Syrmos, Optimal Control. John Wiley, 2012
[28] L. Wang, A. Ames, and M. Egerstedt, “Safety barrier certiﬁcates for heterogeneous multi-robot systems,” in 2016 American Contro Conference (ACC), pp. 5213–5218, IEEE, 2016.
[29] Ames, A.D., Coogan, S., Egerstedt, M., Notomista, G., Sreenath, K., and Tabuada, P. (2019). “Control barrier functions: Theory and applications. ” In Proc. 2019 European Control Conference. Naples, Italy.
[30] Y. Jiang and Z. Jiang, “Global adaptive dynamic programming for continuous-time nonlinear systems,” IEEE Transactions on Automatic Control, vol. 60, pp. 2917–2929, Nov 2015.
[31] P. Gaspar, I. Szaszi, and J. Bokor, “Active suspension design using linear parameter varying control,” International Journal of Vehicle Autonomous Systems, vol. 1, no. 2, pp. 206–221, 2003.
[32] Silver, David, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. , “Deterministic policy gradient algorithms” 2014.
[33] A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, and P. A. Parrilo, “SOSTOOLS: Sum of squares optimization toolbox for MATLAB,” 2013. [Online]. Available: http://arxiv.org/abs/1310.4716
[34] J. Xu, L. Xie, and Y. Wang, “Simultaneous stabilization and robust control of polynomial nonlinear systems using SOS techniques,” IEEE Transactions on Automatic Control, vol. 54, no. 8, pp. 1892–1897, 2009.

image1.wmf
1

C

image43.wmf
u:

nm

®

RR

oleObject49.bin

image44.wmf
[

]

0

2,2

r

Vx

ÎÇ

P

R

oleObject50.bin

image45.wmf
(

)

0

,

Vu

L

oleObject51.bin

image46.wmf
0

X

oleObject52.bin

image47.wmf
u

Î

XX

oleObject53.bin

oleObject1.bin

image48.wmf
:

n

hRR

®

oleObject54.bin

image49.wmf
(

)

(

)

0

x0,,

x0,

u

hx

hx

³"Î

<"Î

X

X

oleObject55.bin

image50.wmf
(

)

{x|x0}

h

=Î³

LX

oleObject56.bin

image51.wmf
(

)

,

hx

oleObject57.bin

image52.wmf
(

)

Sx

oleObject58.bin

image2.wmf
P

image53.wmf
(

)

(

)

(

)

(

)

(

)

{

}

|0,

fgb

S

h

xuULxLxuKx

h

hx

=Î++³Î

X

oleObject59.bin

image54.wmf
n

R

Ì

L

oleObject60.bin

image55.wmf
(

)

uSx

Î

oleObject61.bin

image56.wmf
th

r

oleObject62.bin

image57.wmf
(

)

hx

oleObject63.bin

oleObject2.bin

image58.wmf
(

)

(

)

(

)

(

)

1

.

r

rr

fgf

hxuLhxLLhxu

-

=+

oleObject64.bin

image59.wmf
1

r

³

oleObject65.bin

image60.wmf
(

)

hx

oleObject66.bin

image61.wmf
(

)

(

)

(

)

(

)

(

)

21

,,,...,

r

fff

colhxLhxLhxLhx

z

-

=

oleObject67.bin

image62.wmf
(

)

(

)

1

rr

fgf

LhxLLhxu

m

-

+=

oleObject68.bin

oleObject3.bin

image63.wmf
U

m

m

ÎÌ

R

oleObject69.bin

image64.wmf
()()

()()

bb

b

zxfzxg

hxpzx

m

=+

=

&

oleObject70.bin

image65.wmf
,,

bbb

fgp

oleObject71.bin

image66.wmf
[

]

01000

00100

,,100

00010

00001

bbb

fgp

éùéù

êúêú

êúêú

êúêú

===

êúêú

êúêú

êúêú

ëûëû

L

L

L

MMMOMM

L

L

oleObject72.bin

oleObject73.bin

image67.wmf
r

K

a

Î

R

image3.wmf
()

px

oleObject74.bin

image68.wmf
[()]0

sup

SEAKzx

uU

a

=+³

Î

oleObject75.bin

image69.wmf
1

()()

rr

fgf

ALhxLLhxu

-

=+

oleObject76.bin

image70.wmf
g

oleObject77.bin

image71.wmf
f

oleObject78.bin

image72.wmf
(

)

(

)

xxx

fgu

=+

)

)

&

oleObject4.bin

oleObject79.bin

image73.wmf

oleObject80.bin

image74.wmf
)

)

nnnn

,

::

fg

®®

RRRR

oleObject81.bin

image75.wmf
1

ˆˆ

ˆ

ˆ

ˆ

()()

rr

g

ff

ALhxLLhxu

-

=+

oleObject82.bin

image76.wmf
(

)

*2

δ

uargminVdx+k

δ

s

ˆ

t.H

)

V

0

(

δ

AKzx

a

W

+

=

£

³

ò

oleObject83.bin

image77.wmf
W

image4.wmf
()

SOS

px

Î

P

oleObject84.bin

image78.wmf
δ

k

0

>

oleObject85.bin

image79.wmf
d

oleObject86.bin

image80.wmf
(

)

(

)

min

0

V

Vxdx

HV

V

W

£

Î

ò

P

oleObject87.bin

image81.wmf
)

(

HV

oleObject88.bin

image82.wmf
n

Ω

Ì

R

oleObject5.bin

oleObject89.bin

image83.wmf
*

V

oleObject90.bin

image84.wmf
1*

1

()()()(x)

2

optT

g

uxRxLV

-

=-

oleObject91.bin

oleObject92.bin

image85.wmf
opt

oleObject93.bin

image86.wmf
opt

u

oleObject94.bin

image5.wmf
SOS

P

image87.wmf
i

u

oleObject95.bin

image88.wmf
i

V

oleObject96.bin

image89.wmf
i

d

oleObject97.bin

image90.wmf
(

)

2

1

V,

0

minVdx +k

(,),

ii

i

i

iiiiii

g

i

n

fi

i

VuV

VV

LLVurxux

d

d

d

d

-

W

=---³

-

"Î

³

-

ò

L

R

oleObject98.bin

image91.wmf
1

2

V,

minVdx +k

(,)isSOS

isSOS

ii

i

i

h

ii

i

ii

n

Vu

V

x

V

d

d

d

W

-

+"Î

-

ò

L

R

oleObject99.bin

oleObject6.bin

image92.wmf
optsafe

uuu

=+

oleObject100.bin

image93.wmf
1*

1

()()(x)

2

optT

g

uRxLV

-

=

oleObject101.bin

image94.wmf
safe

u

oleObject102.bin

image95.wmf
opt

u

oleObject103.bin

image96.wmf
opt

u

oleObject104.bin

image6.wmf
2

1

()()

m

i

pxpx

=

å

image97.wmf
u

oleObject105.bin

image98.wmf
1

i

V

-

Î

P

oleObject106.bin

image99.wmf
1

i

V

-

Î

P

oleObject107.bin

image100.wmf
(

)

22

1

22

1

2

TT

Toptsafeoptoptoptsafeoptsafesafe

i

RR

safesafe

i

RR

VfguguuRuuRuuuu

uuV

-

-

++£--=-++

££+

oleObject108.bin

image101.wmf
t

mn

i

W

´

Î

R

oleObject109.bin

oleObject7.bin

image102.wmf
1

t

mt

m

t

æö

=-

ç÷

èø

+

oleObject110.bin

image103.wmf
(

)

1,

t

opt

i

n

xuW

=

ur

oleObject111.bin

image104.wmf
t

n

p

Î

R

oleObject112.bin

image105.wmf
1

t

mt

m

m

t

æö

=--

ç÷

èø

+

oleObject113.bin

image106.wmf
(

)

2,2

T

t

Vpx

n

=

ur

oleObject114.bin

image7.wmf
()1,...,

i

pxim

Î=

 P

image107.wmf
(

)

(

)

(

)

(

)

(

)

1

(()())()

,,(),,

optsafe

fgg

T

optoptsafeoptoptTsafe

g

VLVxLVxuLVxu

rxuVuLVxurxuVuRgVRu

-

=++=

--+=--+Ñ

&

LL

oleObject115.bin

image108.wmf
(

)

,

opt

Vu

L

oleObject116.bin

image109.wmf
1

T

RgV

-

Ñ

oleObject117.bin

image110.wmf
f

)

oleObject118.bin

image111.wmf
)

g

oleObject119.bin

oleObject8.bin

oleObject120.bin

oleObject121.bin

image112.wmf
(

)

,

opt

Vu

oleObject122.bin

image113.wmf
2

t

n

p

b

Î

R

oleObject123.bin

image114.wmf
2

2

1

2

t

m

nt

m

t

+

æö

=--

ç÷

èø

oleObject124.bin

image115.wmf
t

mn

p

W

´

Î

R

oleObject125.bin

image8.wmf
nn

K:

®

RR

image116.wmf
(

)

(

)

2,2

,

optT

t

p

Vubx

n

=

ur

L

oleObject126.bin

image117.wmf
(

)

1

1,

1

2

T

t

p

RgVWx

n

-

-Ñ=

ur

oleObject127.bin

image118.wmf
(

)

,

opt

Vu

L

oleObject128.bin

image119.wmf
1

T

RgV

-

Ñ

oleObject129.bin

image120.wmf
p

b

oleObject130.bin

oleObject9.bin

image121.wmf
p

W

oleObject131.bin

image122.wmf
(

)

(

)

(

)

2,21,

,2

T

optTT

tt

pp

Vrxubxnx

n

W

=---

ur

ur

&

oleObject132.bin

image123.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

2,22,2

2,21,

,2

T

tt

tt

T

TTsafe

td

ipp

t

pxtxtt

rxubxnxWRudt

nn

n

d

d

+

éù

-+=

ëû

++

ò

ur

urur

ur

oleObject133.bin

image124.wmf
p

b

oleObject134.bin

image125.wmf
p

W

oleObject135.bin

image9.wmf
K

oleObject136.bin

oleObject137.bin

image126.wmf
(

)

0

,

Vu

oleObject138.bin

image127.wmf
0

p

oleObject139.bin

image128.wmf
(

)

002,2

T

t

Vpmx

=

r

oleObject140.bin

image129.wmf
1

i

=

oleObject141.bin

oleObject10.bin

image130.wmf
optsafe

uuu

=+

oleObject142.bin

image131.wmf
(

)

1

,

ii

pW

+

oleObject143.bin

image132.wmf
(

)

(

)

(

)

(

)

2

2,2

,

2,2

2,2

1

min

p

T

t

i

pW

T

t

p

T

t

ii

nxdxpK

bnxisSOS

ppnxisSOS

d

d

W

-

+

-

ò

r

r

r

oleObject144.bin

image133.wmf
(

)

2,2

iT

t

i

Vpx

n

=

ur

oleObject145.bin

image134.wmf
(

)

1,

opt

t

p

n

xuW

=

ur

oleObject146.bin

image10.wmf
(

)

00

K

=

image135.wmf
1

ii

¬+

oleObject147.bin

oleObject148.bin

oleObject149.bin

image136.wmf
(

)

(

)

)

)

(

)

(

)

1

*

x,

μxLLxμ

gf

u

h

u

-

=+

))

oleObject150.bin

image137.wmf
1

ˆˆ

ˆ

ˆ

ˆ

()()

rr

g

ff

ALhxLLhxu

-

=+

oleObject151.bin

image138.wmf
)

AA

abm

=++

oleObject152.bin

oleObject11.bin

image139.wmf
,

ab

oleObject153.bin

image140.wmf
111

ˆˆˆ

111

ˆ

ˆ

()()(())()

()(())

rrrr

fgf

fff

rr

gfg

f

LhxLLhxLLhxLhx

LLhxLLhx

a

b

=-

=

oleObject154.bin

image141.wmf
A

oleObject155.bin

oleObject156.bin

image142.wmf
,

ab

oleObject157.bin

image143.wmf
)

A

image11.wmf
V

Ñ

oleObject158.bin

oleObject159.bin

image144.wmf
ˆ

lAA

=-

oleObject160.bin

image145.wmf
x

oleObject161.bin

image146.wmf
,

1

(,)

b

ii

i

rlxwls

q

q

=

=--

å

oleObject162.bin

image147.wmf
12

xx

=

&

oleObject163.bin

oleObject12.bin

image148.wmf
(

)

(

)

(

)

3

2131324

1

n

aa

b

xkxxkxxxxu

c

M

éù

=--+--+

ëû

+

&

oleObject164.bin

image149.wmf
34

xx

=

&

oleObject165.bin

image150.wmf
(

)

(

)

(

)

3

41313243

1

nt

us

aa

xkxxkxxxxkxu

M

c

éù

=-+--+-

ëû

+

&

oleObject166.bin

image151.emf

image152.wmf
1

x

oleObject167.bin

image153.wmf
2

x

image12.wmf
nn

®

RR

oleObject168.bin

image154.wmf
b

M

oleObject169.bin

image155.wmf
3

x

oleObject170.bin

image156.wmf
4

x

oleObject171.bin

image157.wmf
us

M

oleObject172.bin

image158.wmf
t

K

oleObject13.bin

oleObject173.bin

image159.wmf
a

K

oleObject174.bin

image160.wmf
n

K

oleObject175.bin

image161.wmf
a

C

oleObject176.bin

image162.wmf
[

]

b

250,350

M

Î

oleObject177.bin

image163.wmf
[

]

55,65

us

M

Î

image13.wmf
h

oleObject178.bin

image164.wmf
[

]

450,550

a

c

Î

oleObject179.bin

image165.wmf
[

]

7500,8500

a

k

Î

oleObject180.bin

image166.wmf
[

]

750,850

n

k

Î

oleObject181.bin

image167.wmf
[

]

t

k90000,10000

Î

oleObject182.bin

image168.wmf
{

}

4

1234

| 0.03,5,0.03,5

xxandxxxx

W=Î££££

¡

oleObject14.bin

oleObject183.bin

image169.wmf
41

B

q

a

´

oleObject184.bin

image170.wmf
11

B

q

b

´

oleObject185.bin

image171.wmf
0

t

=

oleObject186.bin

image172.wmf
80

t

=

oleObject187.bin

image173.wmf
 1

Ts

=

image14.wmf
()()

f

h

LVxfx

x

¶

=

¶

oleObject188.bin

oleObject189.bin

oleObject190.bin

image174.wmf
32222

811213134112123

228

124131414

3222

122324232342

2

12123

1.765.337.73.2212.14.43.87

0.5944.616.36.190.1742.8110

18.10.730.0062.264.071.714.55

0

uxxxxxxxxxxxxxx

xxxxxxxxxxxxx

xxxxxxxxxxx

x

x

=--++-+

+----´

--+-

-

+

+

-+

3

2222

242434334

82332

34333444

1.354.942.84.470.241

2.621011.1.6261

1

6

1

.390.334.10.4

x

xxxxxxxxx

xxxxxxxx

--++

+´+++

-

-+

+

oleObject191.bin

image175.wmf

oleObject192.bin

image176.wmf
0.003(2cos(2))60

0

tt

otherwise

p

ì

í

î

-=

oleObject193.bin

image177.jpeg
[Wi no contoler
| = = =win Propose contokr
e
] 101 102 103 104 105 106
Time (sec)
10
[Wi no controler
| = = =win Propose contolsr
S obf % i\ TRR S ERe
i’ N
401
0 101 102 103 104 105 106

Time (sec)

oleObject15.bin

image178.wmf
8

V

oleObject194.bin

image179.wmf
0

V

oleObject195.bin

image180.jpeg
02
R
01 = = —ienPropose cork
© 0 =
ke? ~_7
01
02
o or 02 03 104 105 105
Time (sec)
5
B Tp—
— = —inpropose corto

o o1 102 103 104 105 106
Time (sec)

image181.jpeg

image182.wmf
22

11

11212

221

12

0

2

x

xxxxx

u

x

xx

a

aa

éù

+-

éùéù

=+

êú

êúêú

-

ëûëû

ëû

&

&

oleObject196.bin

image183.wmf
[

]

12

,0.25,1

aa

Î

oleObject197.bin

image15.wmf
1

t

image184.wmf
[

]

12

,

xxx

=

oleObject198.bin

image185.wmf
u

oleObject199.bin

image186.wmf
{

}

2

|()0,1,2,3

ui

XxRbfxi

=Î<=

oleObject200.bin

image187.wmf
22

112

22

212

22

312

0.5(1)(2)0

0.5(1.5)(1.5)0

0.5(1.5)(1)0

bfxx

bfxx

bfxx

=-++++<

=-+++-<

=-+-+-<

oleObject201.bin

image188.wmf
1

12

1

1

1

12

2

1.1923.568

1.72.905

opt

xx

u

u

xx

u

+

éù

éù

==

êú

êú

-

ëû

ëû

oleObject202.bin

oleObject16.bin

image189.wmf
(

)

[

]

112

,,,0.25,1

opt

VuisSOS

aa

"Î

L

oleObject203.bin

image190.wmf
V

oleObject204.bin

image191.wmf
2232

11122112

243224

12112122

V7.6626x4.264xx6.5588x0.1142x1.7303xx

1.0845xx3.4848x0.361xx4.6522xx1.9459x

=-+-+

--++

oleObject205.bin

image192.wmf
1

0.5

a

=

oleObject206.bin

image193.wmf
2

 0.4

a

=

oleObject207.bin

image16.wmf
2

t

image194.wmf
(

)

1

01

x

=

oleObject208.bin

image195.wmf
(

)

2

 01

x

=-

oleObject209.bin

image196.wmf
63223

1112112122

0.040.670.07470.04690.9860.0672.698

uxxxxxxxxx

=---+---

oleObject210.bin

image197.wmf
63222

2112112121

32

222

u0.067x0.09xx0.201x0.025xx0.187xx1.436x

0.1396x0.345x2.27x

=---+--

oleObject211.bin

image198.wmf
V

oleObject212.bin

oleObject17.bin

image199.wmf
223223

61122112122

32234

1212122

1.48780.87094.49630.01310.24910.07820.06

39

0.00120.01110.01230.0314

Vxxxxxxxxxx

xxxxxxx

=++++-+

++-+

oleObject213.bin

image200.png
Vo(x1,x2)

image201.wmf
{

}

2

|()0

xhx

=Î³

l¡

oleObject214.bin

image202.wmf
22

112122

()0.4520.00230.03820.0140.00670.0077

hxxxxxxx

=-----

oleObject215.bin

image203.wmf
(

)

hx

oleObject216.bin

image204.jpeg

image17.wmf
21

tt

³

oleObject18.bin

image18.wmf
(

)

12

,

x

t

t

n

uv

oleObject19.bin

image19.wmf
21

21

1

1

m

tt

tmt

++-

æöæö

-

ç÷ç÷

-

èøèø

oleObject20.bin

image20.wmf
n

x

Î

R

oleObject21.bin

oleObject22.bin

oleObject23.bin

image21.wmf
[

]

12

,

t

t

x

R

oleObject24.bin

oleObject25.bin

oleObject26.bin

oleObject27.bin

image22.wmf
(

)

(

)

xfxgxu

=+

&

oleObject28.bin

image23.wmf
n

x

Î

R

oleObject29.bin

image24.wmf
m

u

Î

R

oleObject30.bin

image25.wmf
nn

f:

®

RR

oleObject31.bin

image26.wmf
nnm

g:

´

®

RR

oleObject32.bin

image27.wmf
(

)

00

f

=

oleObject33.bin

image28.wmf
(

)

(

)

(

)

(

)

0

0

,,

Jxurxtutdt

¥

=

ò

oleObject34.bin

image29.wmf
(

)

(

)

,

T

rxuqxuRu

=+

oleObject35.bin

image30.wmf
()

q

x

oleObject36.bin

image31.wmf
()

R

x

oleObject37.bin

image32.wmf
(

)

,

rxu

oleObject38.bin

image33.wmf
V

Î

P

oleObject39.bin

image34.wmf
(

)

(,)(()()),0

n

fg

VuLVxLVxurxux

=-+-³Î

L

R

oleObject40.bin

image35.wmf
00

(,)

,

n

xRJxu

Î

"

oleObject41.bin

image36.wmf
(

)

*1

VxC

Î

oleObject42.bin

image37.wmf
(

)

*

H0

V

=

oleObject43.bin

image38.wmf
1

1

H()=()()()()(())0, (0)0

4

T

fgg

VqxLVxLVxRxLVxV

-

+-==

oleObject44.bin

image39.wmf
1*

1

*()()()(x)

2

T

g

uxRxLV

-

=

oleObject45.bin

image40.wmf
 0

x

=

oleObject46.bin

image41.wmf
(

)

(

)

(

)

**

0000

 Vmin,,,

n

u

xJxuJxux

=="Î

R

oleObject47.bin

image42.wmf
0

:

n

V

®

RR

oleObject48.bin

