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The Generalized Markov Fluid Model (GMFM) is assumed for modeling 
sources in the network because it is versatile to describe the traffic 
fluctuations. In order to estimate resources allocations or in other words the 
channel occupation of each source, the concept of effective bandwidth (EB) 
proposed by Kelly is used. In this paper we use an expression to determine 
the EB for this model which is of particular interest because it allows 
expressing said magnitude depending on the parameters of the model. This 
paper provides EB estimates for this model applying Kernel Estimation 
techniques in data networking. In particular we will study two differentiated 
cases: dispatches following a Gaussian and Exponential distribution. The 
performance of the proposed method is analyzed using simulated traffic 
traces generated by Monte Carlo Markov Chain algorithms. The estimation 
process worked much better in the Gaussian distribution case than in the 
Exponential one.
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1. Introduction

The need to aggregate several services in a telecomm- 
unication network leads to the emergence of the concept of 
integrated services digital network. Integration means that 
the network is able to transport many kinds of information 
as voice, video, data, all of them in digital form, using 
a single infrastructure. Therefore, the technical problem 
that motivates this work is the question of working in an 
environment of shared resources.

Variable Bit Rate (VBR) font multiplexing poses a 
mathematical and statistical problem: estimating the 
resource requirements of a font or set of fonts and, as 
sources are variable, statistical gain is to be expected. 
Through statistical multiplexing, the different requirements 
of each service can be explored during the connection. The 

development of statistical tools for studying the behavior of 
a network link arises with greater force from the notion of 
effective bandwidth introduced by Kelly in 1996 [5], which 
allows finding expressions to estimate the probability of 
loss in a link. The EB concept can be applied to sources or 
to aggregated traffic, as it can be the networks core link, but 
also it can be used for any shared resource models.

The price to pay for multiplexing sources is that the 
probability that many sources decide to dispatch the 
maximum rate, in which case there would be an overflow, is 
not zero. To minimize the effects of data loss and maintain 
quality of service (QoS) for both, current and future 
sources, it is necessary to have mechanisms of admission 
control that can decide whether to accept a new connection. 

For this we need mathematical models to describe the 
behavior of the sources. Making models traffic carried by 
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the network services is a necessary goal for dimensioning 
of its components and to evaluate its performance. Through 
traffic models, the appropriate descriptors can be found that 
characterize the service and facilitate management tasks 
such as establishing admission control criteria (CAC).

This paper is structured as follows. Section 2 introduces 
the Generalized Markov Fluid Model, and provides an 
expression to determine the EB for this model, a tool that 
will be used to measure the channel occupancy of each 
source. Section 3 studies the kernel estimation technique, 
its scope and properties, with the objective of using this 
tool to estimate the EB for our model. Section 4 presents 
the parameters of the simulated model and provides 
kernel estimates of the EB of the GMFM from traces, for 
two different cases: dispatches following a Gaussian and 
Exponential distribution. Conclusions are drawn in Section 
5, together with some considerations on future work.

2. Mathematical Model and Calculation of 
the EB

2.1 Model

Within the most user-friendly source models, Markov 
models are used as they capture temporal correlation. These 
processes are characterized by a set of states, which form 
a Markov chain, and the transition times between them. 
In our case we use the Generalized Markov Fluid Model, 
introduced in [1]. 

This model is modulated by a continuous time, homog- 
eneous and irreducible Markov chain, and in each state  
of the chain, the generation rate is a random variable, 
distributed according to a probability law , that do not 
change during the time interval in which the Markov 
chain is in that state.

To interpret the model, we could think that each state in 
the chain is interpreted as the activity performed by a user, 
like chat or video conferences, so an abrupt change in the 
transfer speed report a change of state in the chain. Within 
a state, the speed data transfer assumes values that depend 
specifically for such activity, according to some probability 
distribution.

2.2 Effective Bandwidth

When variable rate sources are multiplexed on a link, 
a capacity greater than the average rate but less than the 
maximum transmission rate is reserved for each one. 
Indeed, the mean rate would be a too optimistic estimation, 
that would cause frequent losses, and on the other side, 
the peak rate would be too pessimistic and would lead to a 
resource waste. Effective bandwidth defined by F. Kelly in [5] 

is a measure, useful and realistic, of channel occupancy. 
In order to estimate EB for a given GMFM, formulas of 

the type obtained by Kesidis, Walrand and Chang [6] were 
obtained. The advantage of this type of formula is that its 
parameters can be estimated from traffic traces.

Let us consider  a GMFM, then the effective 
bandwidth has the following expression:

 （1）
where 1 is a column vector with all entries equal to 1,  

is the invariant distribution, Q the infinitesimal generator 
for the modulating chain and H is a diagonal matrix 
of dimension k, whose non-zero elements are the first 
moments, , of the law governing the generation rate in 
state i.

The importance of this result is that provides an 
expression for the EB that depends on elements that can be 
estimated with traffic traces, like the infinitesimal generator 
of the modulating chain, its invariant distribution and the 
average transfer rate. The properties of this estimator can be 
seen in [1].

3. Invariant Distribution Estimation

In this section the estimators  and  of the parameters 
in (1) are calculated using kernel methods techniques.

3.1 Kernel Density Estimation Methods

Given a simple random sample  of the random 
variable of interest  with density, the most common method 
in nonparametric density estimation is the so-called kernel-
type estimator, used since the 1960s and whose expression 
is as follows:

 （2）
where  is the window (or smoothing parameter), 

and  is a kernel function, i.e., a non-negative bounded and 
real-valued integrable function with , unimodal and 
symmetric around .

The estimator (2) has two unknown elements. On the 
one hand,  the parameter usually referred to as bandwidth, 
but which in this paper we will call it window size to 
avoid confusion, whose choice will significantly affect the 
estimated curve. In addition, this smoothing parameter must 
verify that it tends to zero “slowly”, i.e.,  to 
ensure that  tends to the true density  And on the other 
hand the kernel function , which there are different types 
to use and whose selection is usually set by the researcher. 
More details about kernels are discussed in [2].

To assign a density to the value  in (2) where we want 
to calculate  we open an interval of length  centered on 
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. The more data in that interval  is higher, but it is not 
a value directly proportional to the number of data in that 
interval, rather these are weighted as a function of distance, 

by the function . The way  is constructed 
ensures that the final curve obtained is a smooth continuous 
curve.

It is important to note that, this estimation technique is 
widely used due to its properties, including an asympto-
tically optimal kernel estimate in  and strong convergence 
in  for kernel density estimates, which can be appreciated 
in more detail in [3,4].

3.2 Considerations in the Kernel Density Esti-
mation Implementation

Having into account that GMFM is a process with 
ergodic properties and time averages and spatial averages 
converges, if the process evolves enough time, we can 
analyze the traffic rates. The traffic speeds values can be 
considered as a random variable with distribution . Hence 
we can estimate its probability density function (p.d.f.) by 
means of kernel methods.

As mentioned above, the window size parameter h 
is an important aspect of these techniques, its general 
behavior is that the larger the window, the smoother the 
p.d.f. estimated. Therefore, a “large” h could lead to joining 
nearby peaks into one and drawing incorrect conclusions, 
but a “small” h could show too many peaks leading to false 
highs.

Using an appropriate window size, we find that this 
p.d.f. is multimodal, and based on the shape of this 
distribution we will estimate the ranges and average rates 
of dispatch. Finally, we estimate the probability  of each 
state, with the area under the p.d.f. within each range. 
With this information we reconstruct the modulating chain 
by assigning each instant to the corresponding state, and 
compute the estimators presented in [1]. This can be done 
because both, spatial and time behavior converges in the 
GMFM. Analyzing the minima and maxima we estimate 
both the elements of H and the range of values associated 
with each state of the modulating chain.

3.3 Infinitesimal Generator Estimation

To obtain  there are different approaches, the method 
used in this work is to recover the state of the modulating 
chain by comparing the trace with the estimated ranges 
from . Once the modulating chain is reconstructed, we can 
estimate the elements in  by the ratio between the number 
of transitions from state  to state  and the time that the 
chains remains at time .

4. Simulation and Numerical Results

In this section we will carry out the analysis with 
simulated traffic traces generated by simulations to perform 
the kernel estimations. Simulations were performed in 
Python 3.7 using sklearn.neighbors library [7] and codes can 
be provided by asking to the authors.

4.1 Parameters to Simulation

Several traffic simulations were performed according to 
the presented model were performed where the modulating 
Markov chain has k = 9 states and each state is associated 
with a data transfer rate interval shown the table below. 

To design the infinitesimal generator of the chain we 
took into account some considerations like that, it is desired 
that the usual state be that of the highest transfer rate 
available in the transmission channel, so the most probable 
state is the ninth. It is also more common in the actual 
behavior of a transmission channel to jump from one state 
to the adjacent ones, to the maximum transfer rate, or to the 
minimum rate of transfer, so 

State Transfer speed (Mbps)
1  
2  
3  
4  
5  
6  
7  
8  
9

(0, 1024] 
(1024, 2048] 
(2048, 3072] 
(3072, 4096] 
(4096, 5120] 
(5120, 6144] 
(6144, 7168] 
(7168, 8292] 
(8292, 10240]

Q  

Within each of these intervals, how much is actually 
dispatched is drawn by means of a probability distribution, 
in the first case by a Gaussian distribution and in the second 
case by an Exponential.

The simulated trace is a succession of pairs , with 
 from 0 to 20000, where  is the transfer speed,  is the 
moment when the chain jumps to another state and 20000 
is the number of jumps in the chain, so the link transfers at 
the speed  while ti-1 .

4.2 Estimations from Traces

4.2.1 Gaussian Distribution Case

Parameters for the modulating chain were introduced 
in section 4.1. In this case we consider that within 
each interval the dispatched is drawn from a Gaussian 
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distribution centered to its midpoint and deviation equal to 
one sixth of the length of the interval.

Figure 1 shows the first 150 jumps of a trace as an 
example, to visualize with which data we are going to 
work.

For each simulated trace we estimate the EB through the 
following steps:

(1) Apply a Gaussian kernel to all ,  ,with 
h = 200, to obtain  for . This is possible 
because GMFM are ergodic, and time and spaces averages 
converge. See Figure 2. 

(2) Find minima for . These minima are an estimate 
for the extremes of the dispatch ranges, which in turn 
allow us to determine the state of the modulating chain. 
As Gaussian distribution is symmetric, we determine rate 
averages using the estimated rank middle points. Finally, 
area under  between two consecutive minima estimates 

. 

Figure 1. Gaussian distribution traces examples.

(3) Go through the trace comparing each vi with the rank 
estimated to assign the corresponding state, to obtain the 
estimated chain .

(4) Estimate infinitesimal generator from  where 
 are cumulative so first order difference of  gives 

permanence time in state .
(5) Calculate the estimated EB with , ,and , as in (1).
The choice over the value of 200 for the width of the 

kernel window is somewhat heuristically determined. 

Smaller values generate an estimated trace with much more 
local maxima, making this search difficult to automate. 

Figure 2 shows the theoretical and estimated density; 
Table 1 shows the estimated ranges of dispatch and Table 2 
the estimated average dispatch rates. 

Figure 2. Theoretical and estimated density, using Kernel 
Estimation techniques.

The estimation of the infinitesimal generator is as 
follows

Q

The heat map for the error in the estimation of 
infinitesimal generator shown in the Table 3, help us to 
evaluate the performance of the estimator.

Table 3. Heatmap for error estimation in the infinitesimal 
generator.

In addition, the confusion matrix M that we show below, 
Table 1. Theoretical and estimated ranges of dispatch using Kernel Estimation techniques.

Theoretical range 0 1024 2048 3072 4096 5120 6144 7168 8192 10240

Estimated range 0 1091.74 2076.63 3083.74 4099.60 5125.89 6152.85 7020.94 8321.57 10240

Error 0 67.74 28.63 11.74 3.6 5.89 8.85 147.06 129.57 0

Table 2. Theoretical and estimated average dispatch rates.

Theoretical 
Average rates 512 1536 2560 3584 4608 5632 6656 7680 9216

Estimated average 
rates 516.16 1537.06 2548.88 3585.94 4607.19 5629.44 6653.37 7678.99 9213.89

Error 4.16 1.06 11.12 1.94 0.81 2.56 2.63 1.01 2.11
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allow us to evaluate the performance in the estimation of 
the states. 

Rows are the actual states and columns are the predicted 
or estimated states. For example, the 260 in matrix M at 
row 3, column 2 indicates that two hundred and sixty times 
the chain was in state 3 but was estimated to be in state 2. 

Figure 3 shows the comparison of the estimated EB for a 
trace with the theoretical value.

Figure 3. Theoretical bandwidth (blue) vs. Estimated 
bandwidth (red)

We can see that estimated EB is always above real one. 
This is not a problem because overflow probability and 
other QoS estimation, are conservative calculated, i.e., real 
probability is less than the estimated.

4.2.2 Exponential Distribution Case

Parameters for the modulating chain were introduced 
in section 4.1, in this case we consider that within each 
interval the dispatched is drawn from an exponential 
distribution with mean value is 100 MB from interval 

origin. If the interval is [1024, 2048), the exponential mean 
parameter is at 1124 MB.

Figure 4 shows the first 150 jumps of a trace as an 
example, to visualize with which data we are going to work.

Figure 4. Exponential distribution traces examples.

For each simulated trace we estimate the EB through the 
following steps:

(1) Apply a Gaussian kernel to all , 0 ≤ i ≤ 20000, with 
h = 20, to obtain  for 0 < x < 1024. This is possible 
because GMFM are ergodic, and time and spaces averages 
converge. See Figure 5.

(2) Find maxima for . These maxima are an estimate 
for the extremes of the dispatch ranges, which in turn 
allow us to determine the state of the modulating chain. 
Exponential distribution is not symmetric. So, we determine 
rate averages empirically calculating mean value of all 
the times that dispatch was within interval determinate 
by this maximum. Finally, area under  between two 
consecutive maxima estimates . 

(3) Go through the trace comparing each vi with the rank 
estimated to assign the corresponding state, to obtain the 
estimated chain  0 ≤ i ≤ 20000.

(4) Estimate infinitesimal generator from  where 
 are cumulative so first order difference of  gives 

permanence time in state .
(5) Calculate the estimated EB with ,  and  as in (1).
The choice over the value of 20 for the width of the 

kernel window is somewhat heuristically determined. 
Table 4. Theoretical and estimated ranges of dispatch using Kernel Estimation techniques.

Theoretical range 0 1024 2048 3072 4096 5120 6144 7168 8192 10240

Estimated range 0 1052.14 2074.48 3101.50 4124.17 5155.21 6175.87 7198.54 8221.54 10240

Error 0 28.14 26.48 29.50 28.17 35.21 31.87 30.54 29.54 0

Table 5. Theoretical and estimated average dispatch rates.

Average theoretical 
rates 100 1124 2148 3172 4196 5220 6244 7268 8292

Estimated average 
rates 200.93 1318.37 2389.62 3418.37 4461.25 5459.18 6839.68 7613.36 8321.96

Error 100.93 194.37 241.62 246.37 265.25 239.18 595.68 345.36 29.96
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Bigger values generate an estimated trace with less local 
maxima, but more “normalized”, so estimation of area 
under the curve fall far from actual values.

Figure 5 shows the theoretical and estimated density; 
Table 4 shows the estimated ranges of dispatch and Table 5 
the estimated average dispatch rates.

In this case the estimation of the infinitesimal generator 
is as follows

Q=

The heat map for the error in the estimation of infini-
tesimal generator shown in the Table 6, help us to evaluate 
the performance of the estimator.

Figure 5. Theoretical and estimated density, using Kernel 
Estimation techniques.

Table 6. Heatmap for error estimation in the infinitesimal 
generator

The confusion matrix M that we show below, allow us 
again to evaluate the performance in the estimation of the 
states

Figure 6 shows the comparison of the estimated EB for a 
trace with the theoretical value.

Figure 6. Theoretical bandwidth (blue) vs. Estimated 
bandwidth (red).

We can see that estimated EB is always under real one. 
This behavior is opposite than the Gaussian case, but this is 
also not a problem because convergence is fast enough, in 
order that overflow probability and other QoS estimation, 
are near enough to its real values.

5. Conclusions 

In this paper we have proposed a non-parametric 
methodology to estimate effective bandwidths from traffic 
traces of a GMFM source with expected properties. These 
results allow us to estimate the effective bandwidth from 
traffic traces with very little prior knowledge of the GMFM. 
Of course, we pay for the versatility of this method with a 
slightly larger estimation gap. 

The estimation involves the calculation of the maxima 
and minima of the estimated density function. This process 
is easy for the human eye but it is perhaps the most 
complicated part to implement computationally because 
noise can generate spurious maxima or minima. 

Numerical examples of simulated traces were presented 
showing the results obtained. The estimation process 
worked much better in the Gaussian distribution case than 
in the Exponential one, which can be seen in both the heat 
map and the confusion matrix presented for each case. 

It is expected to extend the statistical calculation to the more 
realistic case where the number of dispatch classes is not known, 
distributions are not of the same family, and also where the 
supports of each probability law have bigger intersection, in 
order to develop the estimation to real data scenarios.
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