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ABSTRACT

Grammatical acceptability, the extent to which a sentence conforms to the structural and usage norms of a language,

has long been recognized as a gradient phenomenon rather than a binary distinction. Linguistic research on gradient

grammaticality has examined how factors such as syntactic configuration, word order, and clause integration influence

native speaker judgments. This study adopts a fuzzy grammar framework to model such gradience and investigates how

the design of membership functions influences the evaluation of sentence acceptability. A curated dataset of five English

sentences was selected to represent a range of linguistic structures, including canonical declaratives, syntactic inversion,

passive voice, and clausal subordination. For each sentence, rule-based violation scores were assigned for three linguistic

dimensions: subject–verb agreement, phrase structure and word order, and clause integration and cohesion. Four types

of membership functions, Linear, Sigmoid, Gaussian, and Trapezoidal, were applied to transform these scores into fuzzy

membership degrees, which were then aggregated into overall acceptability judgments. Results reveal that while the

relative ranking of sentences by acceptability remains stable across functions, the absolute scores vary substantially, with

Gaussian producing the most conservative evaluations and Trapezoidal yielding plateau effects. These differences have
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direct implications for how fuzzy models capture subtle linguistic variation and for the interpretability of computational

tools used in grammaticality assessment. The findings highlight the necessity of treating membership function selection as

a theoretically motivated decision in fuzzy linguistic modeling, thereby contributing to more transparent and linguistically

grounded applications in both theoretical and applied language studies.

Keywords: Fuzzy Grammar; Fuzzy Logic; Grammatical Acceptability; Interpretability; Linguistic Modeling; Membership

Function Design; Natural Language Processing; Rule-Based Evaluation

1. Introduction

Fuzzy logic has long been recognized as a powerful

framework for modeling vagueness and uncertainty inherent

in natural language processing (NLP) tasks [1]. Unlike clas-

sical logic, which deals with binary true/false evaluations,

fuzzy logic enables the representation of partial truth val-

ues, allowing for more flexible and human-like reasoning [2].

One domain where this advantage becomes particularly ap-

parent is grammaticality judgment, where acceptability is

not always binary, but rather exists on a spectrum of well-

formedness [3].

Grammatical acceptability—the extent to which a sen-

tence conforms to the rules and norms of a language—is

a complex construct that often defies rigid classification.

Sentences can be fully acceptable, marginal, or outright un-

acceptable depending on factors such as syntactic complexity,

semantic coherence, contextual appropriateness, and native

speaker intuition [4]. To model this gradience, fuzzy grammar

models have emerged as an alternative to classical rule-based

or probabilistic grammars, enabling researchers to assign de-

grees of membership to linguistic units and constraints [5].

At the heart of fuzzy grammar models lies the

membership function, which defines how linguistic ele-

ments map to degrees of rule satisfaction [6]. The shape

of this function—whether linear, sigmoid, Gaussian, or

trapezoidal—determines the sensitivity and interpretability

of the resulting grammaticality score [7]. Despite its foun-

dational role, the choice of membership function is often

treated as a neutral or secondary modeling decision, with

many studies defaulting to linear forms without justifica-

tion [8].

This oversight is significant because different member-

ship functions embody distinct assumptions about linguistic

gradience. A linear function assumes a uniform rate of transi-

tion from low to high membership, while a sigmoid function

implies a threshold-based transition with soft boundaries [9].

A Gaussian function emphasizes centrality and penalizes

deviations symmetrically, and a trapezoidal function intro-

duces flat regions to model categorical plateaus [10,11]. These

characteristics can have meaningful effects on the final gram-

maticality judgments produced by a model.

In previous work, fuzzy grammars have been used to

model syntactic categories [12], semantic compatibility [13],

grammatical violations [14], and even pragmatics [15]. How-

ever, few studies systematically compare the impact of mem-

bership function design on the outputs of these models. This

raises a crucial methodological question: Is the final fuzzy

grammar output robust to the choice of membership function,

or does the function act as a silent biasing factor?

To address this gap, the present study investigates the

impact of membership function shape on fuzzy grammat-

ical acceptability scores. Using a fixed dataset of natural

language sentences and a consistent set of syntactic and se-

mantic rules, we apply four widely-used types ofmembership

functions—linear, sigmoid, Gaussian, and trapezoidal—and

compare the resulting outputs. We hypothesize that certain

functions will yield higher sensitivity to borderline cases,

while others will produce more stable or conservative evalu-

ations.

The contributions of this paper are threefold. First, we

provide an empirical evaluation of how different member-

ship functions affect fuzzy grammatical acceptability model-

ing. Second, we highlight the methodological importance of

choosing an appropriate function based on linguistic context

and model goals. Third, we offer practical recommendations

for researchers designing fuzzy grammar systems, encourag-

ing a more transparent and justified selection of membership

functions.

Overall, this work challenges the assumption of func-

tion neutrality in fuzzy linguistic modeling. By demonstrat-

ing that the design of the membership function is not a trivial
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modeling choice, we aim to promote a more reflective and

rigorous use of fuzzy logic in computational linguistics. In

doing so, we contribute to ongoing discussions about inter-

pretability, reproducibility, and the epistemological founda-

tions of fuzzy grammar models [16].

This paper is structured as follows. Section 2 reviews

relevant literature on fuzzy sets, grammatical acceptability,

and the role of membership functions in NLP. Section 3

presents the methodology, including the dataset, rule sets,

and implementation of the four membership functions. Sec-

tion 4 reports the results of our experiments and provides

a comparative analysis of the outputs. Section 5 discusses

the implications of our findings for future fuzzy grammar

research, and Section 6 concludes with key takeaways and

suggestions for further work.

2. Related Work

The integration of fuzzy logic into natural language pro-

cessing (NLP) and linguistic modeling has been a prominent

research trajectory since the late 20th century [17]. Fuzzy set

theory, introduced by Zadeh in 1965, provides the mathemat-

ical basis for reasoning under uncertainty—a key aspect of

linguistic interpretation where grammaticality and acceptabil-

ity are not binary but often gradual and context-sensitive [18].

A number of studies have employed fuzzy logic to

model various linguistic phenomena, including phonological

rules [19], syntactic parsing [20], semantic similarity [21], and

pragmatic interpretation [22]. In particular, fuzzy grammar

models have emerged as a flexible framework for capturing

the graded nature of grammatical acceptability, where tradi-

tional rule-based or statistical approaches may fall short [23].

Early models of fuzzy grammar typically defined gram-

matical rules as fuzzy constraints and measured the degree

to which a sentence satisfies these constraints [24]. The ap-

plication of membership functions in these models allows

for nuanced representations of partial rule satisfaction—for

instance, a sentence may be 0.7 acceptable due to minor

syntactic disfluency. Such approaches have been especially

useful in psycholinguistic studies that seek to mirror human

judgments [25].

Despite this growing interest, the role of membership

functions—the core mechanism that maps linguistic input to

degrees of rule adherence—has received relatively limited

scrutiny. Most works adopt standard linear functions for

simplicity and interpretability [26], often without empirical

justification or comparative analysis [27]. However, literature

from adjacent fields, such as fuzzy control systems [28] and

fuzzy expert systems [29], suggests that the choice of mem-

bership function significantly affects system behavior and

output sensitivity [30].

In NLP applications, some attempts have been made

to apply non-linear membership functions such as sigmoid

or Gaussian curves in sentiment analysis [31], information re-

trieval [32], and lexical categorization tasks [33]. These studies

highlight that non-linear functions can better capture bound-

ary cases or semantic overlap, which are common in natural

language [34]. However, their application to grammaticality

judgment tasks remains underexplored.

The design of membership functions has also been

examined from the perspective of human interpretability.

Linguistic models that aim to be interpretable by human

experts—such as educational grammar tools or cognitive

NLP systems—benefit from clear, explainable mappings

from rules to judgments [35,36]. Trapezoidal functions, for

instance, offer intuitive plateaus that correspond to linguis-

tic categories such as “fully grammatical,” “marginal,” or

“ungrammatical” [37,38].

Another relevant body of work concerns the normaliza-

tion and aggregation of fuzzy values in linguistic modeling.

When multiple fuzzy rules apply to a single sentence, their

contributions must be combined into a final acceptability

score. Studies have investigated various aggregation op-

erators, including min, max, weighted average, and OWA

(Ordered Weighted Averaging) operators [39]. While these

affect the final score, they are also influenced by the shapes

of the membership functions involved [40].

Recent advances in fuzzy machine learning have in-

troduced adaptive and data-driven techniques to learn mem-

bership functions from labeled datasets [41]. These methods

offer new opportunities for optimizing function shapes based

on actual linguistic judgments rather than pre-defined as-

sumptions [42]. Nevertheless, their computational complexity

and need for large datasets may limit their applicability in

grammatical modeling scenarios with small or expert-curated

samples.

In educational linguistics, fuzzy logic has been used

to model learner language and grammatical competence, en-
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abling adaptive feedback in intelligent tutoring systems [43].

Here again, the granularity and accuracy of feedback depend

heavily on how fuzzy rules and functions are designed [44].

In psycholinguistics, fuzzy modeling of acceptability judg-

ments has been proposed as a means to bridge the gap be-

tween binary grammaticality and scalar intuitions observed

in human raters [45].

In summary, while fuzzy grammar models are well es-

tablished, and fuzzy logic has permeated multiple areas of

NLP and linguistic analysis, the design choices surrounding

membership functions remain under-theorized and under-

tested. Few studies conduct direct comparisons of function

types in controlled experiments, especially in the context

of grammaticality judgments [46]. This paper contributes to

closing this gap by evaluating the influence of four major

membership function types—linear, sigmoid, Gaussian, and

trapezoidal—on fuzzy grammatical acceptability scores.

By situating our study at the intersection of fuzzy mod-

eling theory and applied linguistics, we respond to a growing

call for greater transparency, reproducibility, and method-

ological rigor in the design of interpretable language models.

3. Materials and Methods

This section describes the experimental design used

to investigate the impact of membership function choice

on fuzzy grammatical acceptability. To ensure both trans-

parency and readability, we streamlined the methodological

presentation. All parameter specifications are consolidated

into a single summary table, and the overall experimental

procedure is presented in a compact pseudocode format. This

structure avoids unnecessary textual redundancy while pre-

serving the level of detail required for reproducibility.

3.1. Dataset

This study employs a curated dataset consisting of five

English sentences, each varying in syntactic structure, word

order, and grammatical complexity. The sentences are listed

below [47]:

S1: “The cat sat on the mat.”

S2: “On the mat sat the cat?”

S3: “The dog chased the ball in the park.”

S4: “In the park, the ball was chased by the dog.”

S5: “Despite the rain, she managed to complete the run.”

These sentences were selected to represent a diverse

range of linguistic constructions, including declarative, in-

verted, passive, and subordinated forms. They reflect both

canonical and marked grammatical patterns, allowing for a

more nuanced evaluation of fuzzy acceptability under vary-

ing membership function configurations.

Each sentence is evaluated with respect to a fixed set

of linguistic rules (r), particularly focusing on:

1. Subject–Verb Agreement

2. Phrase Structure and Word Order

3. Clause Integration and Cohesion

In this study, we distinguish between grammaticality

and acceptability. Grammaticality refers to binary confor-

mity to syntactic rules (well-formed vs. ill-formed), while

acceptability captures gradient judgments influenced by syn-

tax, semantics, discourse context, and pragmatic markers

such as punctuation. For example, Sentence S2 (“On the

mat sat the cat?”) was treated as syntactically marked due

to inversion and interrogative punctuation, and accordingly

assigned higher violation scores for phrase structure. This

operationalization reflects the broader notion of acceptability

that goes beyond strict grammaticality.

Rather than assigning binary grammatical labels, each

rule violation is assessed using a fuzzy value in the interval [1],

reflecting the degree of violation or conformity. For example,

a partial subject–verb disagreement may receive a violation

score of 0.4, while a complete mismatch may be rated 0.9.

The goal is to compute a global grammatical acceptability

score for each sentence by aggregating its rule-wise violation

degrees.

These rule violation degrees serve as the input to the

fuzzy evaluation system, where membership functions trans-

form raw scores into linguistic membership degrees, which

are then aggregated to yield the final acceptability judgment.

The assigned violation scores for each sentence are

heuristically defined to capture plausible linguistic devia-

tions under the three evaluation criteria. The scoring is as

follows:

violation_scores =

“S1”: [0.1, 0.0, 0.1],

“S2”: [0.3, 0.5, 0.2],

“S3”: [0.0, 0.1, 0.0],
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“S4”: [0.1, 0.2, 0.1],

“S5”: [0.0, 0.2, 0.3].

The rationale for these scores is summarized below:

• S1 is a canonical sentence with minimal violations.

• S2 contains word-order inversion and interrogative

punctuation, resulting in higher structural violations.

• S3 is a well-formed declarative sentence with negligible

issues.

• S4 features passive voice and fronted prepositional

phrase, incurring slight penalties for structure and com-

plexity.

• S5 includes clausal subordination, leading to moderate

violations in cohesion and integration.

This configuration ensures a controlled yet diverse test

set for evaluating the effect of different membership function

designs on fuzzy grammatical acceptability computation.

Although the curated dataset of five English sentences

provides a controlled testbed for our analysis, we acknowl-

edge its limited size as a potential threat to generalizability.

Future studies should incorporate larger and more diverse

corpora to evaluate the robustness of membership function

effects. In particular, extending the analysis with human

acceptability ratings would provide valuable ground truth.

Such ratings could be validated through inter-annotator agree-

ment metrics (e.g., Krippendorff’s α) to ensure reliability and

comparability with fuzzy-model outputs.

To ensure transparency and reproducibility, Table 1

presents the rubric used to assign violation scores across

linguistic dimensions. For consistency, all rules employ a

three-level scale: 0 for no violation, 0.3–0.4 for minor viola-

tion, and 0.7–0.9 for major violation.

Table 1. Rubric for assigning violation scores across linguistic dimensions.

Rule Dimension Score Range Interpretation/Example Cases

Subject–Verb Agreement

0 Full agreement (e.g., She runs).

0.3–0.4 Minor mismatch (e.g., She run).

0.7–0.9 Clear disagreement (e.g., He go yesterday).

Phrase Structure &Word Order

0 Canonical structure (e.g., The cat sat on the mat).

0.3–0.4 Marked but interpretable order (e.g., On the mat the cat sat).

0.7–0.9 Disrupted or ill-formed order (e.g., Mat the on sat cat).

Clause Integration & Cohesion

0 Smooth clause integration (e.g., She said that he left).

0.3–0.4 Moderate complexity/ambiguity (e.g., Although raining, she run).

0.6–0.9 Severe incoherence or fragmentation (e.g., Because raining. She run).

3.2. Experimental Setup

To investigate the impact of membership function de-

sign on fuzzy grammaticality evaluation, we apply four dis-

tinct types of membership functions to the rule violation

scores of each sentence.

3.2.1. Linear Membership Function

The Linear Membership Function provides a direct and

uniform mapping from the input value (e.g., rule violation

score) to a membership degree. It assumes a consistent rate

of change in membership, where the degree of ungrammati-

cality increases proportionally with the violation score. In

its simplest form, the linear membership function is defined

as:

µ(x) = x, for x ∈ [0, 1].

Figure 1 implies that the membership degree is directly

proportional to the input value. For example, a rule violation

score of 0.7 corresponds to a 70% degree of ungrammatical-

ity. Alternatively, the linear function can be expressed in a

more general parameterized form as a piecewise function:

µ(x) =


0 , if x ≤ a

x− a

b− a
, if a < x < b

1 , if x ≥ b

where a and b define the lower and upper bounds of the

transition region, respectively. When a =0 and b = 1, this

piecewise formulation simplifies exactly to µ(x) = x, rein-

forcing the idea of a linear and continuous progression in

membership across the input space.

This function is often used as a baseline in fuzzy mod-

eling due to its simplicity, transparency, and lack of bias

toward any particular threshold. However, it does not pro-

vide enhanced sensitivity at specific ranges and treats all
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deviations equally across the entire domain.

Figure 1. Linear membership function.

3.2.2. Sigmoid Membership Function

The Sigmoid Membership Function introduces a

smooth and nonlinear transition in membership degree from

0 to 1. Unlike the linear function, it emphasizes changes

around a central point, making it suitable for modeling grad-

ual boundary conditions or soft thresholds in fuzzy systems.

Mathematically, it is defined as:

µ(x) =
1

1 + e−α(x−c)

where x is the input variable (e.g., rule violation score), α is

the steepness parameter (also called the slope factor), and c

is the center or inflection point of the function.

Figure 2 yields a characteristic S-shaped curve. When

x = c, the membership degree is exactly 0.5, indicating max-

imum uncertainty. The parameter α controls how sharply the

function transitions:

• A large α results in a steeper curve, closely approximat-

ing a binary threshold.

• A small α produces a gentler slope, enabling broader

transition zones.

The sigmoid function is widely used in fuzzy logic ap-

plications where soft, probabilistic, or gradual interpretations

of rule satisfaction are desired. It provides better sensitivity

near the decision boundary compared to linear or trapezoidal

functions.

Figure 2. Sigmoid membership function.

3.2.3. Gaussian Membership Function

The Gaussian Membership Function models fuzzy

membership using a symmetric, bell-shaped curve centered

around a specific input value. It is particularly useful in

scenarios where uncertainty is distributed normally around

a central tendency, and where extreme deviations from the

center are progressively penalized.

Mathematically, it is defined as:

µ(x) = exp

(
− (x− µ)

2

2σ2

)
where x is the input variable (e.g., rule violation score), µ is

the center of the curve (mean of the distribution), and σ is

the spread or standard deviation, which controls the width

of the curve. Figure 3 illustrates the Gaussian membership

function, which provides a smooth, bell-shaped curve cen-

tered around the mean value. This function assigns high

membership degrees to input values near the center and grad-

ually decreases the membership degree as the input moves

away from the mean. The smoothness of the curve makes

the Gaussian membership function particularly suitable for

representing uncertainty and gradual transitions between lin-

guistic terms.

The Gaussian function achieves maximum member-

ship of 1 when x = c, and the membership value decreases

symmetrically as x moves away from c. A smaller σ results

in a narrower and sharper peak, making the function more

sensitive to deviations near the center. Conversely, a larger

σ produces a wider curve with a more gradual decline.

This function is advantageous when modeling natural,

noise-tolerant, or probabilistic relationships in fuzzy sys-
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tems. It offers smoothness and differentiability, making it

suitable for integration with machine learning models and

optimization algorithms.

Figure 3. Gaussian membership function.

3.2.4. Trapezoidal Membership Function

The Trapezoidal Membership Function defines mem-

bership degrees using a piecewise linear function with a flat

top, allowing for a region of full membership. It is particu-

larly well-suited for representing fuzzy concepts with clearly

bounded core regions and gradual transitions at the bound-

aries. Mathematically, the trapezoidal function is defined

as:

µ(x) =



0 , if x ≤ a
x− a

b− a
, if a < x ≤ b

1 , if b < x < c
x− a

b− a
, if c ≤ x < d

0 , if x ≥ d

where a and d are the feet of the trapezoid (points

where membership is 0), b and c are the shoulders of the

trapezoid (start and end of full membership, where μ(x) =

1). Figure 4 shows the trapezoidal membership function,

which is characterized by a flat region where the member-

ship degree remains at its maximum value. This function

increases linearly from zero to one, stays constant over a

certain range, and then decreases linearly back to zero. The

trapezoidal membership function is useful for modeling

concepts with a well-defined core and gradual boundaries,

offering flexibility in representing fuzzy sets with both pre-

cise and imprecise regions.

Figure 4. Trapezoidal membership function.

The function increases linearly from 0 to 1 between

a and b, remains at 1 between b and c, and then decreases

linearly from 1 to 0 between c and d. This shape makes

it highly interpretable for linguistic terms like “medium,”

“acceptable,” or “moderate,” where a core range is clearly

defined and surrounded by transitional zones. Trapezoidal

membership functions are computationally efficient, easy

to parameterize, and widely used in rule-based fuzzy sys-

tems, especially where boundaries are known and need to be

explicitly encoded.

Each membership function is applied to the same rule

violation scores to ensure fair comparison across sentence

evaluations.

To evaluate the sensitivity of fuzzy modeling to param-

eterization, we systematically explored parameter grids for

each membership function. Table 2 summarizes the parame-

ter ranges tested.

The parameter values were selected heuristically to en-

sure stable and interpretable mappings of violation scores

to ungrammaticality values. In addition, sensitivity anal-

yses were conducted (Figure 8, Figure 9) to demonstrate

how varying parameters (e.g., sigmoid steepness, Gaussian

spread) influences acceptability outcomes. While future

work could optimize parameter selection against human ac-

ceptability ratings (e.g., by minimizing RMSE), the present

study focuses on methodological comparison across mem-

bership function types.
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Table 2. Membership function parameters used in the experiments. The table lists the specific values adopted for each function: Linear

(a, b), Sigmoid (α, c), Gaussian (µ, σ), and Trapezoidal (a, b, c, d). These parameters were determined through sensitivity analysis to
ensure stable and interpretable mappings of rule-violation scores to acceptability degrees.

Function Parameters Grid Explored Values Used

Linear a, b a = 0, b = 1 (fixed) 0, 1
Sigmoid α, c α ∈ {5, 10, 15, 20} , c = 0.5 α = 10, c = 0.5
Gaussian µ, σ µ ∈ {0.1, 0.2, 0.3, 0.5} , σ = 0.2 µ = 0.5, σ = 0.2
Trapezoidal a, b, c, d a = 0.2, b = 0.4, c = 0, 6, d = 0.8 0.2, 0.4, 0.6, 0.8

3.3. Definition of Membership Degree (μ)

In this study, the membership degree µ is explicitly de-

fined as a measure of ungrammaticality. That is, µ increases

monotonically with the severity of a rule violation. A value

of µ = 0 indicates full conformity to a grammatical rule,

while µ = 1 represents maximal violation.

For example, a mild word-order deviation may yield

µ = 0.2, whereas a strong subject–verb disagreement may

result in µ = 0.8. This convention ensures monotonic be-

havior across all membership functions: stronger violations

always produce higher values of µ.

Accordingly, the overall acceptability of a sentence is

computed as the complement of the average ungrammatical-

ity across all rules:

Acceptability(s) = 1− 1

r

r∑
r=1

µr(s)

where r is the number of rules and µr(s) denotes the viola-

tion degree for rule r. This explicit definition avoids hidden

modeling bias and makes the interpretation of all subsequent

results transparent.

In general fuzzy set theory, membership functions such

as Gaussian, triangular, or trapezoidal are not necessarily

monotonic, since they are often used tomodel categories with

a central peak. However, in this study we explicitly define µ

as ungrammaticality, which by definition must increase as

violation severity increases. To maintain this semantic con-

sistency, all membership functions—including Gaussian and

Trapezoidal—were parameterized in a monotone-increasing

form with respect to violation scores. This ensures that

stronger violations always yield higher values of µ, and con-

sequently lower acceptability scores under the aggregation

formula.

Algorithm 1. Experimental pipeline for fuzzy

grammatical acceptability (pseudocode)

Input:

• Sentence set S = {s1, s2, · · · , sN}
• Violation scores V [s][r] ∈ [0, 1] for each sentence

s ∈ S and rule r ∈ {agreement, structure, cohesion}
• Membership functionsMF = {Linear, Sigmoid, Gaus-

sian, Trapezoidal}

Output:

• Acceptability scores A[s][r] for each sentence ss and

membership function f∈ F

Procedure

1. Initialize table A as empty

2. For each sentence s in S do

3.   For each membership function f in ∈ F do

4.     sum_mu ← 0
5.     For each rule r in {agreement, structure, co-

hesion} do

6.       x ← V[s][r]   // violation score

in [0,1]

7.       µ ← MF(f,x)   // membership

degree in [0,1]

8.       sum_mu ← sum_mu + µ

9.     End For

10.     avg_mu ← sum_mu / 3
11.     A[s][f] ← 1 − avg_mu // higher viola-

tions → lower acceptability

12.   End For

13. End For

14. Return A

In this study, we adopt the simple mean as the aggre-

gation operator across the three rule dimensions (agreement,

structure, cohesion). This choice ensures comparability

across membership functions and maintains focus on their

relative effects. Alternative aggregation operators (e.g., min,

max, OWA) were not repeated here, as they have already

been systematically analyzed in our previous work (A Com-

parative Study of Fuzzy Aggregation Strategies in Modeling
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the Syntax–Pragmatics Interface).

4. Results

The results of the experiments are presented in this

section. We first report the sentence-level acceptability

scores obtained under each membership function. Ta-

ble 3 summarizes the grammatical acceptability scores

across the four functions—Linear, Gaussian, Sigmoid, and

Trapezoidal—for the five test sentences (S1–S5). This

provides a baseline comparison of how different function

shapes influence the magnitude of acceptability scores de-

spite being applied to the same set of rule-based violation

inputs.

Table 3. Grammatical acceptability scores across membership functions for each of the five test sentences (S1–S5). The table shows how

Linear, Gaussian, Sigmoid, and Trapezoidal functions yield different magnitudes of acceptability despite applying the same rule-based

violation scores.

Sentence Linear Gaussian Sigmoid Trapezoidal

S1 0.933 0.895 0.986 1.000

S2 0.667 0.356 0.778 0.500

S3 0.967 0.926 0.990 1.000

S4 0.867 0.802 0.972 1.000

S5 0.833 0.675 0.942 0.833

Figure 5 and Figure 6 present the grammatical accept-

ability scores for each sentence under four different member-

ship function configurations. Figure 5 displays the results as

bar charts, highlighting how score magnitudes differ across

functions, with Gaussian generally producing lower values

and Sigmoid higher ones. Figure 6 provides a heatmap repre-

sentation, which makes it easier to visually compare scoring

patterns across sentences and functions at a glance.

Figure 7 illustrates rank divergence across membership

functions. While Linear, Sigmoid, and Gaussian produced

identical sentence rankings, Trapezoidal introduced ties for

highly acceptable sentences due to its plateau effect. This

visualization emphasizes that although overall ranking pat-

terns are broadly consistent, Trapezoidal behaves differently

in cases of near-perfect grammaticality.

Figure 5. Grammatical acceptability scores by membership func-

tion, displayed as a bar chart. The figure illustrates variation across

functions, with Gaussian generally producing lower scores, Sigmoid

yielding higher scores, and Trapezoidal creating plateau effects.

Figure 6. Heatmap of grammatical acceptability scores by mem-

bership function. Each row represents a membership function and

each column a sentence, enabling visual comparison of scoring

patterns across functions.

Figure 7. Rank divergence across membership functions. The

figure highlights consistency in sentence ranking among Linear,

Sigmoid, and Gaussian, while Trapezoidal introduces ties for highly

acceptable sentences due to its plateau.
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4.1. Function-Specific Behavior and Score Dis-

persion

Each membership function exhibits a distinct scoring

profile, as seen in Figure 5 (bar chart) and further quantified

in the heatmap of Figure 6. The Gaussian function consis-

tently yields lower acceptability scores relative to the others,

suggesting that it imposes stricter penalties on moderate vi-

olations due to its bell-shaped curve centered at mid-range

values. In contrast, the Trapezoidal function displays polar-

izing behavior—it either assigns full acceptability (1.000)

or a substantially lower value (e.g., 0.500 for S2), reflect-

ing its step-like plateaus and sharp transitions. Linear and

Sigmoid functions produce more graded responses, with Sig-

moid showing higher sensitivity around the midpoint, and

Linear offering proportional changes.

4.2. Sentence S2 as a Diagnostic Case

Sentence S2 (“On the mat sat the cat?”), which fea-

tures an inverted structure and interrogative punctuation,

serves as a stress test for the fuzzy evaluation system. Its

score sharply diverges across membership functions, as

clearly shown in Table 3 and Figure 6. It receives the low-

est acceptability score overall under Gaussian (0.356) and

the second-lowest under Trapezoidal (0.500), while Sig-

moid and Linear offer more moderate evaluations (0.778

and 0.667, respectively). This divergence highlights that

S2 lies near the decision boundary, and that membership

functions differ significantly in how sharply they penalize

intermediate violations.

4.3. Robustness on Canonical Forms

Sentences S1 (“The cat sat on the mat.”) and S3 (“The

dog chased the ball in the park.”) are syntactically canoni-

cal. All membership functions assign them high scores (be-

tween 0.895 and 1.000), as evident in Figure 5 and Figure 6,

demonstrating that fuzzy models agree when violations are

minimal. Trapezoidal outputs perfect scores (1.000) for both,

confirming its insensitivity to minor infractions due to its

full membership plateau. This agreement across functions in

the high-acceptability regime suggests that function choice

is less critical when evaluating unambiguously grammatical

sentences.

4.4. Sensitivity to Gradual Complexity

Sentences S4 and S5 introduce more syntactic and dis-

course complexity—passive construction in S4 and clausal

subordination in S5. Their scores, visible in Figure 6, reveal

how different functions react to moderate linguistic devi-

ations. While Trapezoidal still assigns a perfect score to

S4 (1.000), it lowers the score for S5 to 0.833. In contrast,

Gaussian and Sigmoid provide more differentiated gradience

(e.g., S5: Gaussian = 0.675, Sigmoid = 0.942), as seen also

in Figure 5, supporting the claim that they better capture

syntactic complexity through smooth penalization.

4.5. Relative Ranking Preservation with Abso-

lute Shifts

Despite score differences, the rank ordering of sentence

acceptability remains broadly consistent across all functions:

S3 ≥ S1 ≥ S4 ≥ S5 > S2. This consistency is clearly visualized

in Figure 7, which maps sentence ranks across functions. It

suggests that the relative severity of violations dominates

the ranking, even though the magnitude of differences varies

significantly. For instance, under Gaussian, the gap between

S3 and S2 is about 0.57, while under Sigmoid it narrows

to 0.21, highlighting how some functions amplify contrast

while others compress distinctions.

4.6. Implications for Model Interpretability

The variation in scores across membership functions

(Figure 5, Figure 6) and the shift in sentence rankings

(Figure 7) underscore that membership function choice is

not a neutral modeling decision. Linear and Sigmoid offer

more interpretable gradience but may underestimate sharp

syntactic anomalies. Gaussian introduces stricter evaluation,

beneficial for applications that simulate human-like sensitiv-

ity to core grammatical norms. Meanwhile, Trapezoidal—

though intuitive—may oversimplify acceptability judgments

and introduce threshold effects that obscure subtle linguistic

variation. Therefore, membership function selection should

be guided by the desired interpretability and application goals

of the fuzzy grammar system.

To further substantiate these observations, we con-

ducted additional quantitative analyses to examine the ro-

bustness and sensitivity of the results. Specifically, we re-
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port the per-sentence acceptability scores across member-

ship functions, rank consistency measured by Spearman’s ρ

and Kendall’s τ, and pairwise non-parametric statistical tests

(Friedman test, Wilcoxon signed-rank with Holm correction,

and Cliff’s δ effect sizes). In addition, sensitivity analyses

were performed by varying the steepness parameter α in the

Sigmoid function and the spread parameter σ in the Gaussian

function to assess how parameterization influences accept-

ability outcomes. The results of these extended analyses are

summarized in Table 4, Table 5 and Figure 8, Figure 9.

Table 4. Rank consistency among membership functions measured by Spearman’s ρ and Kendall’s τ. Results show perfect consistency

among Linear, Sigmoid, and Gaussian, with slightly lower correlations involving Trapezoidal.

MF1 MF2 Spearman’s ρ Kendall’s τ

Gaussian Linear 1.000 1.000

Gaussian Sigmoid 1.000 1.000

Gaussian Trapezoidal 0.894 0.837

Linear Sigmoid 1.000 1.000

Linear Trapezoidal 0.894 0.837

Sigmoid Trapezoidal 0.894 0.837

Table 4 reports the rank consistency among member-

ship functions based on acceptability scores across the five

sentences. Spearman’s ρ and Kendall’s τ correlations be-

tween Linear, Sigmoid, and Gaussian reached 1.000, indi-

cating identical rankings. In contrast, correlations involving

Trapezoidal were slightly lower (ρ = 0.894; τ = 0.837), re-

flecting the plateau effect of the Trapezoidal function, which

produced ties among highly grammatical sentences.

Table 5. Pairwise Wilcoxon signed-rank tests with Holm correction and Cliff’s δ effect sizes across membership functions. While no

comparisons reached statistical significance at α = 0.05, moderate-to-large effect sizes indicate practical differences, particularly between

Sigmoid and Gaussian.

MF_A MF_B W Statistic p (Raw) p (Holm) Significant (α = 0.05) Cliff’s δ (A vs. B)

Gaussian Linear 0.0 0.0625 0.375 No −0.36
Gaussian Sigmoid 0.0 0.0625 0.375 No −0.76
Gaussian Trapezoidal 0.0 0.0625 0.375 No −0.52
Linear Sigmoid 0.0 0.0625 0.375 No −0.60
Linear Trapezoidal 4.0 0.7150 1.000 No −0.32
Sigmoid Trapezoidal 6.0 0.8125 1.000 No −0.28

Table 5 presents the results of non-parametric

Wilcoxon signed-rank tests comparing acceptability scores

across membership functions, with Holm correction applied

to control for multiple testing. While no pairwise differences

reached statistical significance at the conventional threshold

of α = 0.05, this outcome is primarily attributable to the small

dataset size (five sentences), which limits statistical power.

Nevertheless, effect size estimates using Cliff’s δ reveal mod-

erate to large practical differences across several membership

function pairs. In particular, Sigmoid yielded consistently

higher acceptability scores than Gaussian (δ = −0.76), and

Linear also tended to exceed Gaussian (δ = −0.36). These

findings suggest that although statistical significance was not

achieved, the choice of membership function exerts a mean-

ingful influence on acceptability outcomes, especially when

practical rather than purely inferential criteria are considered.

Figure 8. Sensitivity analysis of the Sigmoid membership function

across different steepness values (α = 5, 10, 15, 20). Increasing k

steepens the curve, leading to higher mean acceptability scores as

the function approaches a threshold-like behavior.
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This table shows how varying the steepness parameter

α in the Sigmoid function affects mean acceptability scores.

Increasing α sharpens the transition around the midpoint (c

= 0.5), which consistently raises acceptability scores (from

0.834 at α = 5 to 0.964 at α = 20). This demonstrates that

steeper Sigmoid curves behave more like threshold functions,

exhibiting higher tolerance toward mild violations.

Figure 9. Sensitivity analysis of the Gaussian membership function

across different spread values (σ = 0.10–0.50). Larger σ values

flatten the curve and reduce mean acceptability scores, showing

that Gaussian becomes more conservative as σ increases.

This table reports the sensitivity of acceptability scores

to changes in the spread parameter σ\sigmaσ of the Gaus-

sian function. Smaller σ values (σ = 0.10) result in higher

acceptability (0.913), as penalties are concentrated near the

central point (μ = 0.5). Conversely, larger σ values (σ =

0.50) broaden the curve and substantially lower acceptability

(0.239). Thus, Gaussian functions become more conserva-

tive as σ increases, penalizing violations across a wider input

range.

5. Discussion

The results of this study confirm that the design of

the membership function plays a significant and non-trivial

role in shaping fuzzy grammatical acceptability judgments.

Although all four membership functions—Linear, Sigmoid,

Gaussian, and Trapezoidal—operate over the same input vio-

lation scores and utilize a common aggregation mechanism,

they yield notably different outcomes in terms of both abso-

lute scores and sensitivity patterns. This section discusses

the implications of these findings in terms of model behavior,

linguistic interpretability, and the broader use of fuzzy logic

in natural language modeling.

5.1. Function Shape and Judgment Sensitivity

The first major insight is that the shape of the member-

ship function directly governs the sensitivity of the system

to mid-level violations. The Sigmoid function, with its char-

acteristic “S” curve, shows heightened responsiveness near

the decision boundary (around 0.5), allowing it to magnify

differences between mildly acceptable and mildly unaccept-

able structures. This is useful in scenarios where nuanced

gradience is critical—such as second language learning as-

sessments or acceptability rating studies in psycholinguistics.

In contrast, the Gaussian function, due to its central

peak and symmetrical decay, disproportionately penalizes

moderate violations. As observed in the score drop for Sen-

tence S2 (0.356), as visualized in Figure 6, the Gaussian

function behaves conservatively, whichmay be advantageous

for systems that need to prioritize precision and penalize

structural ambiguity. However, its rigidity may also suppress

subtle acceptability nuances, making it less suitable for ex-

ploratory linguistic modeling. The Linear function offers

proportionality and simplicity. It responds predictably to

increasing violation severity and provides moderate differen-

tiation without amplifying boundary effects. This makes it

appropriate for general-purpose fuzzy grammar applications

where interpretability and smooth behavior are prioritized

over expressiveness.

The Trapezoidal function, by contrast, introduces hard

transitions between full membership and rejection zones,

which leads to score plateaus (e.g., perfect scores for S1,

S3, and S4 regardless of slight violations). This behavior,

shown in Figure 5, is appealing for rule-based systems that

enforce linguistic thresholds (e.g., diagnostic tools or auto-

mated feedback systems), but it may mask gradual linguistic

deterioration and underestimate variability in real-world lan-

guage use.

5.2. Linguistic Interpretability and Model

Transparency

From an interpretability standpoint, each function im-

plicitly encodes a linguistic philosophy. Gaussian and Sig-

moid align with continuous, scalar interpretations of accept-

ability, consistent with findings from gradient grammaticality

research. Linear preserves a neutral, assumption-free map-

ping, while Trapezoidal mimics categorical grammar models
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that treat acceptability in quasi-discrete bands. Thus, the

selection of a membership function should be guided by the

intended linguistic framework. For example, if a model aims

to reflect native speaker intuition in acceptability rating tasks,

sigmoid or linear functions may be more appropriate. Con-

versely, educational tools that must offer clear, rule-based

feedback might benefit from trapezoidal definitions.

Furthermore, this study reveals that membership func-

tions not only affect final outputs but also shape the peda-

gogical narrative a system presents to its users. For instance,

under a Trapezoidal function, learners might receive con-

sistent positive feedback on borderline sentences, whereas

a Gaussian-based system might flag the same sentence as

marginally acceptable. Such discrepancies—highlighted by

color-coded score differences in Figure 6—can influence

learner perception, feedback quality, and downstream behav-

ior, highlighting the epistemological impact of seemingly

technical modeling decisions.

5.3. Model Robustness and Consistency

Despite functional differences, the consistency in sen-

tence ranking across all functions—S3 > S1 > S4 > S5 >

S2—is visualized clearly in Figure 7. This consistency

suggests that the underlying violation profile dominates

the general ordering. It implies that membership functions

mostly affect the magnitude rather than the direction of

judgments.

Nevertheless, the magnitude of variation is critical

when fuzzy outputs are interpreted quantitatively (e.g., for

thresholding, grading, or clustering). For instance, Sentence

S2’s acceptability score ranges from 0.356 (Gaussian) to

0.778 (Sigmoid), as seen in both Figure 5 and Figure 6—a

difference of over 0.4, which could materially affect down-

stream decision-making. This further reinforces the need for

function-aware calibration in fuzzy NLP systems.

5.4. General Implications for Fuzzy Grammar

Modeling

This study contributes to the broader discourse on trans-

parency and methodological rigor in fuzzy linguistic model-

ing. The frequent adoption of default or linear membership

functions in prior research often overlooks the functional

assumptions and behavioral consequences these choices en-

tail. By demonstrating that different function shapes yield

systematically different outputs—even under fixed input and

aggregation—this work challenges the notion of member-

ship function neutrality and calls for greater methodological

reflectiveness.

In practical terms, researchers and developers should

consider integrating membership function selection as a tun-

able component during model development, rather than treat-

ing it as a static design choice. Comparative experiments,

such as the one presented here, should become standard prac-

tice, especially in applications where model outputs inform

high-stakes decisions or user feedback. Figure 5, Figure 6,

and Figure 7 together illustrate how the choice of member-

ship function can introduce significant divergence in scores,

heatmap patterns, and ranking structures—even when all

other components of the fuzzy system remain unchanged.

These findings have practical implications for grammar-

checking systems, where membership function choice may

influence the granularity of error feedback. In second lan-

guage assessment and tutoring, fuzzy acceptability models

can providemore nuanced evaluations than binary judgments,

helping learners understand partial correctness. Similarly,

in NLP system calibration, carefully chosen membership

functions can improve the interpretability of probabilistic

predictions by aligning them with human-like gradient judg-

ments.

5.5. Threats to Validity

The present study is limited by the use of a small, cu-

rated dataset of five sentences, which may restrict general-

izability. While this setup allows for controlled comparison

of membership function behaviors, it does not capture the

full diversity of natural language usage. This design choice

reflects the methodological scope of the paper, which aims

to isolate the impact of membership function design under a

controlled testbed rather than to provide a large-scale corpus

study.

To partially mitigate this limitation, we introduced a

transparent violation scoring rubric (Table 1, Section 3.1),

which specifies how fuzzy values were assigned to rule vi-

olations. This rubric ensures reproducibility of the inputs

and provides a clear rationale behind the violation scores.

Nevertheless, the absence of human judgment data prevents

direct validation of model outputs against ground-truth ac-
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ceptability ratings. We recommend future work to address

this limitation by collecting larger annotated corpora and

evaluating inter-annotator reliability (e.g., Krippendorff’s α).

Finally, while our operationalization of acceptability

includes syntactic, structural, and pragmatic factors, there

remains a risk of construct overlap with grammaticality that

should be further refined in subsequent studies. Despite these

limitations, we conducted a series of robustness checks and

sensitivity analyses to ensure that our findings remain inter-

pretable and practically meaningful. These complementary

evaluations are reported in the following subsection.

5.6. Robustness Checks and Parameter Sensi-

tivity

To complement the descriptive findings and address

potential concerns regarding the robustness of our results,

we conducted additional statistical analyses. Rank con-

sistency measures confirmed that sentence orderings were

largely stable across membership functions, with only mi-

nor deviations observed for the Trapezoidal function due

to its plateau effect. Non-parametric statistical tests (Fried-

man and Wilcoxon signed-rank with Holm correction) did

not yield significant differences at α = 0.05, primarily

due to the limited sample size. However, effect size es-

timates (Cliff’s δ) indicated moderate to large practical

differences, particularly between Sigmoid and Gaussian

functions. In addition, sensitivity analyses demonstrated

how parameterization—specifically the steepness parame-

ter α in the Sigmoid function and the spread parameter σ

in the Gaussian function—directly influences acceptability

scores, underscoring the importance of careful function tun-

ing. These robustness checks highlight that, even under a

small dataset, the impact of membership function design on

fuzzy grammatical modeling is both systematic and practi-

cally meaningful. Overall, these robustness checks confirm

that the observed differences across membership functions

are systematic and practically relevant, even under a limited

dataset. Nevertheless, future studies should extend these

analyses to larger corpora and incorporate human accept-

ability ratings to empirically validate the statistical patterns

reported here. Such extensions would provide stronger

evidence for the generalizability of the findings and estab-

lish a more comprehensive framework for modeling fuzzy

grammatical acceptability.

6. Conclusions

This study investigated the impact of membership func-

tion design on fuzzy grammatical acceptability judgments by

systematically comparing four widely usedmembership func-

tions: Linear, Sigmoid, Gaussian, and Trapezoidal. Using

a controlled dataset of five linguistically varied sentences

and a fixed set of rule-based violation scores, we demon-

strated that the choice of membership function significantly

affects the magnitude and behavior of acceptability scores,

despite a shared aggregation strategy. Our findings highlight

that membership function design is not a neutral modeling

choice. Instead, it shapes model sensitivity, interpretability,

and feedback behavior. Sigmoid and Gaussian functions

emphasize mid-range differences, making them suitable for

capturing gradient intuitions, while Linear offers stable pro-

portionality. Trapezoidal, though useful for rule-like cut-

offs, may obscure nuanced grammatical variations. These

functional differences carry practical implications for lin-

guistic modeling, second language assessment, and fuzzy-

based grammar-checking systems. Importantly, while sen-

tence ranking remained relatively consistent across functions,

score divergence was substantial, underscoring the need for

careful selection, justification, and possibly empirical cali-

bration of membership functions in fuzzy NLP applications.

We therefore advocate for the explicit treatment of member-

ship function selection as a core methodological decision

in fuzzy linguistic modeling, rather than a secondary or de-

fault parameter. Nevertheless, the study has limitations. It

relies on a small, curated dataset of five sentences, which,

although controlled, cannot fully represent the diversity of

natural language. Future work should incorporate larger and

more varied corpora to enhance robustness. Moreover, inte-

grating human acceptability ratings as ground truth would

provide a critical validation step, with inter-annotator agree-

ment metrics (e.g., Krippendorff’s α) employed to assess

reliability. Such extensions would improve the empirical

grounding of fuzzy grammar models and help clarify the

construct boundary between grammaticality and acceptabil-

ity in real-world linguistic contexts. Beyond larger corpora

and human annotations, future research should also explore

adaptive or data-driven approaches to membership function

learning, which can optimize function shapes based on em-

pirical linguistic judgments. Another promising direction

is the adoption of Type-2 fuzzy sets and generalized bell
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membership functions, which provide richer representational

flexibility and can better capture uncertainty in gradient ac-

ceptability judgments. Incorporating these advanced designs

would not only strengthen the theoretical grounding of fuzzy

grammar models but also enhance their applicability in di-

verse natural language processing scenarios. Ultimately, this

research contributes to the growing movement for greater

transparency, rigor, and explainability in computational mod-

els of language.
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