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ABSTRACT
In clinical texts, recognizing emotions is crucial for monitoring mental health, though it is still a tough task be-

cause of the way language is used and the particular terms in this field. The hybrid framework suggested in this research 
uses ClinicalBERT for context and LIWC and the NRC Emotion Lexicon for psycholinguistic features to help improve 
multi-label emotion classification in clinical narratives. The data has been de-identified and annotated with anger, anxie-
ty, sadness, joy, fear and neutral emotions and there is good agreement between annotators (Cohen’s κ = 0.81). Three ap-
proaches were studied: using Random Forest with psycholinguistic features, ClinicalBERT-based Multilayer Perceptron 
(MLP) and a hybrid MLP that combines both sets of features. The hybrid model was better than the baselines, achieving 
mean scores of 0.884 (±0.011) accuracy, 0.854 (±0.012) Micro-F1, 0.814 (±0.013) Macro-F1 and 0.924 (±0.011) AUC 
which were statistically significant (ANOVA p < 0.005; Cohen’s d = 1.24–2.89). The SHAP analysis found that Clini-
calBERT contributed more than two-thirds of the predictive ability, while psycholinguistic features contributed the rest, 
making the model easier to understand. This method works to solve main problems in healthcare AI by ensuring the 
accuracy of predictions and making the results easy to understand. It backs up trustworthy use in clinics by giving clear 
and reliable emotion predictions that can support decisions, monitor risks and be used in digital mental health services. 
The results suggest that using deep learning together with existing psychological tools improves emotional detection in 
healthcare.
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1.	 Introduction

Natural Language Processing (NLP) has greatly 
helped us extract, analyse and interpret subtle linguis-
tic material from unstructured medical records. Clinical 
documentation (psychiatric evaluations, physician notes, 
and patient narratives) is frequently marked with subtle 
emotional markers that are critical for therapeutic advance-
ment, clinical decision-making, and patient risk assess-
ment. Precise emotion extraction from clinical texts may 
transform mental health monitoring through the early 
detection of psychological distress to facilitate clinical in-
tervention in psychiatry and primary care [1–5].

There are, however, peculiarities of emotion recogni-
tion in clinical writing. Although there is explicit show of 
feelings in social media or product reviews, clinical narra-
tives show emotions indirectly through the use of language 
of formality and medical terminologies [6,7]. As an example, 
the phrase “The patient denies suicidal ideation but reports 
persistent feelings of worthlessness” contains an emotional 
meaning that standard lexicon-based approaches often find 
hard to extract.

Emotion detection in earlier research was largely 
supported by lexicon-based tools such as LIWC (Linguistic 
Inquiry and Word Count) and the NRC Emotion Lexicon. 
Both LIWC and NRC sort words into groups that represent 
feelings or mental states; LIWC covers more than 90 do-
mains related to thinking, feeling, and body processes, and 
NRC matches words to primary emotions and attitudes. Al-
though these approaches have been proven clinically valid 
and are easy to interpret, they do not consider context, 
which limits their performance in detecting complicated 
emotional expressions in medical text [8–15].

The appearance of transformer-based models, such as 
BERT (Bidirectional Encoder Representations from Trans-
formers), has transformed the field of NLP. The deep bidi-
rectional attention mechanism of BERT works better than 
the traditional models at understanding complex semantic 
and syntactic relationships in many tasks [16]. In the clinical 
NLP, domain-specific variants including ClinicalBERT and 
BioBERT—fine-tuned on biomedical corpora have demon-
strated even better performance. These models however are 
“black boxes” which cannot easily be interpreted and which 
do not contain psychologically meaningful features [17].

In an attempt to overcome these limitations scientists 
have begun integrating symbolic linguistic resources with 
deep learning systems. The combination of BERT’s con-
textual embeddings with psycholinguistic features is the 
synergy of a deep semantic understanding and interpret-
ability and theory grounding of lexicon-based approaches. 
This hybrid approach is particularly beneficial in clinical 
settings, where explanatory, ethically justifiable and con-
sistent with theory choices need to be made.

This integrative approach draws from foundational 
frameworks in affective science. Based on Ekman’s theory 
of basic emotions, there are six universal emotions (anger, 
fear, disgust, happiness, sadness and surprise) with particu-
lar physiological and expressive correlates. Instead, Rus-
sell’s circumplex model graphs emotions on a continuum 
of valence (from positive to negative) and a continuum of 
arousal (from low intensity to high intensity). Theories of 
appraisal such as Scherer’s component process model are 
interested in the manner in which cognitive assessments 
inform emotional experiences. Combination of such per-
spectives with computational methods enables a more ho-
listic view on the emotional expression in text [18–21].

In spite of these improvements, there are critical 
challenges. These are, the scarcity of high-quality an-
notated clinical emotion datasets, the trade-off between 
model accuracy and interpretability and the linguistic vari-
ability of clinical narratives. As well, there is increasing 
demand for transparent models, which follow healthcare 
regulations and ethical standards. In order to overcome 
these challenges, we present a hybrid model which com-
bines BERT’s contextual embeddings with psycholinguis-
tic features from LIWC and the NRC Emotion Lexicon. 
We hypothesize that such integration will improve both 
predictive performance and interpretability – an important 
combination for clinical uses. Since clinical narratives are 
frequently characterised by several emotions that co-exist, 
we use a framework for multi-label classification to reflect 
this variety [22].

We combine deep contextual representations of 
BERT with the structured psycholinguistic features ex-
tracted from decades of psychology research [23]. There are 
facilities such as LIWC and the NRC lexicon that provide 
validated indices of emotional, cognitive and social pro-
cesses. With such features incorporated into deep learning 
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models, we increase their psychological meaning without 
losing the clinical decision-making interpretability [24].

We tested our proposed model on the de-identified 
mental health clinical notes professionally annotated for 
six categories of emotions. anger, anxiety, sadness, joy, 
fear and neutral. The hybrid model was compared against 
two baselines: a psycholinguistic feature-based model and 
a BERT-only model. Experimental results demonstrated the 
hybrid model’s superiority across accuracy, F1-score, and 
AUC metrics. To enhance interpretability, we employed 
SHAP (Shapley Additive Explanations) to identify the most 
influential features for each emotion classification [25].

This integration of domain knowledge with deep 
learning advances explainable AI in healthcare by improv-
ing both accuracy and human interpretability. Our hybrid 
system has practical applications in intelligent documenta-
tion, digital mental health monitoring, and AI-assisted clini-
cal decision support. By addressing the need for transparent 
AI in psychiatry and primary care, our work facilitates early 
detection of emotional distress in high-risk scenarios [26].

The remainder of this paper is structured as follows: 
Section 2 details our dataset, feature extraction methodol-
ogy, and modeling approach. Section 3 presents experi-
mental results and performance evaluations. Section 4 
discusses implications, limitations, and future research 
directions. We conclude by summarizing key insights and 
underscoring the transformative potential of hybrid mod-
eling in clinical emotion recognition.

2.	 Materials and Methods

Figure 1 outlines the process used in this research. 
First, datasets are annotated and preprocessed and then two 
feature extraction streams begin: psycholinguistic features 
from LIWC and NRC Lexicon and ClinicalBERT embed-
dings. With these features, three models—Psycholinguis-
tic-Only, BERT-Only and the proposed Hybrid—are built 
and tested using common performance metrics.

2.1.	 Data Collection and Annotation

This study employed a publicly available, de-identi-
fied mental health clinical corpus curated specifically for 
psychological and natural language processing tasks. The 
dataset comprises physician notes, psychotherapy tran-

scripts, and patient historical records, selected for their rich 
emotional content. All data were anonymized in compli-
ance with institutional review board (IRB) standards and 
applicable data protection regulations (e.g., HIPAA, GDPR 
where applicable).

Figure 1. Research Methodology Flow Diagram.

A team of three clinical psychologists and two psy-
chiatry residents performed manual annotation based on 
six core emotion labels: anger, anxiety, sadness, joy, fear, 
and neutral/no emotion. The labeling schema was informed 
by Ekman’s six basic emotions, with minor modifications 
for clinical relevance. Multi-label classification was em-
ployed to reflect the real-world possibility of co-occurring 
emotional states in clinical narratives. Inter-annotator 
reliability was evaluated using Cohen’s Kappa (κ = 0.81), 
indicating substantial agreement.

2.2.	 Preprocessing Pipeline

Before feature extraction, a standardized text pre-
processing protocol was applied:

•	 Tokenization was conducted using the WordPiece 
tokenizer from the Hugging Face transformers li-
brary.
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•	 Lowercasing was applied to reduce vocabulary 
sparsity.

•	 Non-informative punctuation and clinical symbols 
were removed.

•	 Stop words were eliminated, and lemmatization 
was used to reduce inflected words to base forms 
for psycholinguistic analysis.

The corpus was processed in parallel for input into 
both BERT-based models and lexicon-based systems.

2.3.	 Psycholinguistic Feature Extraction

Psycholinguistic features were extracted using two 
well-established resources:

LIWC-2015 (Linguistic Inquiry and Word Count), 
which measures cognitive, affective, biological, and social 
processes across 80 predefined categories. Words were 
mapped and normalized as proportions of total tokens per 
document.

NRC Emotion Lexicon, which maps over 14,000 
English words to eight primary emotions—anger, fear, 
anticipation, trust, surprise, sadness, joy, and disgust—
alongside positive and negative sentiments. Token-level 
frequency scores were normalized by document length.

Combined, the LIWC and NRC features yielded a 
100-dimensional feature vector per document (80 LIWC + 
20 NRC features). The NRC description was merged and 
consolidated to avoid repetition.

2.4.	 BERT Embedding Extraction

We used ClinicalBERT—a domain-adapted version 
of BERT pre-trained on the MIMIC-III clinical notes data-
set—for contextual embedding generation. ClinicalBERT 
captures the domain-specific syntax and semantics of clini-
cal language, making it more appropriate than general-
purpose BERT for this task.

Sentence-level embeddings were extracted using 
the [CLS] token representation from the final transformer 
layer, which encodes a global contextual summary of each 
input text. The ClinicalBERT model was used in feature-
based mode without fine-tuning, preserving its pre-trained 
weights to reduce computational load and avoid overfitting 
due to the modest dataset size.

2.5.	 Model Architectures

Three classification models were constructed and 
evaluated:

Model A: Psycholinguistic-Only (Baseline)
A Random Forest (RF) classifier was trained using 

the 100-dimensional psycholinguistic feature vectors. RF 
was chosen for its interpretability, robustness to feature 
noise, and proven success in text classification tasks.

Model B: BERT-Only
A Multi-Layer Perceptron (MLP) classifier was 

trained using ClinicalBERT embeddings. The architecture 
included:

•	 Dense Layer (512 units) with ReLU activation
•	 Dropout (rate = 0.3)
•	 Dense Layer (256 units) with ReLU
•	 Output Layer with sigmoid activation (6 nodes for 

multi-label output)
Model C: Hybrid (Proposed Model)
ClinicalBERT embeddings (768 dimensions) were 

concatenated with psycholinguistic features (100 dimen-
sions) to form an 868-dimensional input vector. This 
vector was fed into the same MLP architecture used for the 
BERT-only model. This hybrid model aimed to leverage 
contextual depth and psychological interpretability simul-
taneously.

2.6.	 Training Parameters and Optimization

All models were trained using the following configu-
ration:

•	 Optimizer: Adam
•	 Loss Function: Binary Cross-Entropy (for multi-

label output)
•	 Epochs: 25
•	 Batch Size: 32
•	 Learning Rate: 3e-5
•	 Validation Split: 20% of training data
•	 Cross-Validation: 5-fold stratified CV based on 

emotion label presence
All experiments were conducted using Python 3.9, 

PyTorch 1.13, and scikit-learn 1.2.1 on an NVIDIA V100 
GPU environment.
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2.7.	 Evaluation Metrics and Justification

Model performance was evaluated using the follow-
ing metrics:

1)	 Accuracy: Measures overall correctness of predic-
tions across all emotion labels.

2)	 Micro-F1 Score: Accounts for label imbalance by 
aggregating TP/FP/FN over all classes.

3)	 Macro-F1 Score: Provides equal weight to each 
class, highlighting performance on rare labels.

4)	 AUC (Area Under the ROC Curve): Measures the 
quality of probabilistic predictions across classes.

These metrics were selected to address the multi-la-
bel, imbalanced, and clinical-sensitivity nature of the task. 
All metrics were reported as averages across folds.

2.8.	 Statistical Significance Testing

To assess the reliability of observed performance dif-
ferences, we conducted:

•	 One-way repeated measures ANOVA across the 
three models for each performance metric (Accu-
racy, Micro-F1, Macro-F1, AUC).

•	 Post-hoc paired t-tests with Bonferroni correction 
to adjust for multiple comparisons.

•	 95% Confidence Intervals were computed for all 
key metrics.

•	 Effect sizes (Cohen’s d) were reported for statisti-
cally significant comparisons.

These statistical methods ensured that observed im-
provements in the hybrid model were not due to chance 
and hold practical as well as clinical significance, in ac-
cordance with best practices in medical AI evaluation.

3.	 Results and Discussion

This section presents the experimental outcomes of 
applying the three models (Psycholinguistic-only, BERT-
only, and Hybrid) to the clinical emotion recognition 
task. Each model is evaluated independently to assess its 
strengths, limitations, and contributions to the final hybrid 
framework. Results are quantified using accuracy, F1-
scores (micro and macro), and AUC, with statistical vali-

dation and visualizations to highlight key findings.

3.1.	 Model-Specific Performance Evaluation

3.1.1.	 Model A: Psycholinguistic-Only (Ran-
dom Forest)

This model utilized a 100-dimensional input vec-
tor composed of psycholinguistic features extracted from 
LIWC and the NRC Emotion Lexicon. A Random Forest 
classifier was employed with 500 decision trees and a max-
imum depth of 15, trained using 5-fold cross-validation to 
ensure model robustness (Table 1).

Table 1. Performance of Model A (Psycholinguistic-Only) Across 
5-Fold Cross-Validation, Showing Mean and Standard Deviation 
for Accuracy, Micro-F1, Macro-F1, and AUC.

Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean ± SD

Accuracy 0.72 0.69 0.71 0.75 0.70 0.714 ± 0.023

Micro-F1 0.68 0.65 0.67 0.71 0.66 0.674 ± 0.021
Macro-F1 0.62 0.59 0.61 0.65 0.60 0.614 ± 0.025
AUC 0.78 0.75 0.77 0.80 0.76 0.772 ± 0.018

Figure 2 shows the top five psycholinguistic features 
used by the model. LIWC’s negative emotion and NRC’s 
fear lexicons were the strongest contributors, highlighting 
the model’s reliance on clearly marked affective terms.

Figure 2. Feature Importance Bar Plot for LIWC/NRC Categories.

Figure 3 presents the confusion matrix. Notably, the 
model misclassified 23% of neutral statements as sadness, 
reflecting difficulty in distinguishing neutral from subtly 
negative emotional content.

Overall, Model A provides a transparent and clini-
cally interpretable foundation for emotion classification.
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3.1.2.	 Model B: BERT-Only (MLP)

This model used 768-dimensional contextual em-
beddings from ClinicalBERT as input to a Multi-Layer 
Perceptron (MLP) architecture with two hidden layers (512 
and 256 units) and dropout regularization (rate = 0.3). The 
model was evaluated using 5-fold cross-validation (Table 
2).

Table 2. Model B (BERT-Only) Performance Across 5 Folds, 
Showing Mean ± SD for Accuracy, Micro-F1, Macro-F1, and 
AUC.

Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean ± SD

Accuracy 0.83 0.81 0.84 0.85 0.82 0.830 ± 0.015

Micro-F1 0.80 0.78 0.81 0.82 0.79 0.800 ± 0.016

Macro-F1 0.75 0.73 0.76 0.77 0.74 0.750 ± 0.018
AUC 0.88 0.86 0.89 0.90 0.87 0.880 ± 0.015

Figure 4 shows the ROC curves for each emotion 
class. The model achieved its highest AUC for the fear cat-
egory (AUC = 0.92), confirming the model’s sensitivity to 
expressions related to threat or danger.

Figure 5 shows the training/validation loss curves, 
indicating convergence at epoch 18, with both losses 
tracked across 30 epochs. The model showed stable con-
vergence by epoch 18, as evidenced by the flattening of 
both curves. Slight divergence beyond this point suggests 
early overfitting, justifying the model’s early stopping 
threshold.

Figure 4. ROC Curves for Each Emotion Class.

Figure 3. Confusion Matrix Showing Misclassification of Neutral as Sadness (23% Errors).
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3.1.3.	 Model C: Hybrid (MLP with Concat-
enated Features)

Model C integrates 768-dimensional Clinical BERT 
embedding with 100-dimensional psycholinguistic features 
(LIWC + NRC) into an 868-dimensional input vector. 
The architecture mirrors that of Model B (MLP with 512 
→ 256 units, dropout = 0.3) and was trained using 5-fold 
cross-validation (Table 3).

Table 3. Model C (Hybrid) Performance Over 5-Fold Cross-
Validation, with Mean ± SD for Accuracy, Micro-F1, Macro-F1, 
and AUC.

Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean ± SD

Accuracy 0.89 0.87 0.88 0.90 0.88 0.884 ± 0.011

Micro-F1 0.86 0.84 0.85 0.87 0.85 0.854 ± 0.012

Macro-F1 0.82 0.80 0.81 0.83 0.81 0.814 ± 0.013

AUC 0.93 0.91 0.92 0.94 0.92 0.924 ± 0.011

Strengths: Achieved the highest AUC (0.924) by 
combining BERT’s context-awareness with LIWC/NRC’s 

theoretical grounding.
Case Study: Correctly classified “patient describes 

guilt but insists on coping” as sadness (BERT detected 
“guilt,” LIWC flagged negative emotion).

Feature Synergy: SHAP analysis showed Clinical-
BERT embeddings contributed 68% to predictions, while 
LIWC/NRC provided 32% (notably for rare labels).

Figure 6 shows a SHAP summary plot, which ranks 
the most influential features contributing to emotion classi-
fication. The [CLS] token embedding from BERT held the 
highest impact, followed by LIWC’s sadness and NRC’s 
fear. This confirms that hybrid models effectively merge 
deep contextual and interpretable features.

Figure 7 illustrates the precision-recall (PR) curves 
for all six emotion labels. The area under each PR curve 
(average precision) indicates strong recall performance, 
especially for anxiety and fear. These curves are critical in 
multi-label classification where class imbalance can skew 
traditional accuracy metrics.

Figure 5. Training/Validation Loss Curves.

Figure 6. SHAP Summary Plot Top Hybrid Features.
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3.2.	 Comparative Analysis of All Models

The comparative evaluation of the three models—
Psycholinguistic-Only, BERT-Only, and Hybrid—is sum-
marized in Table 4. The Hybrid model demonstrated con-
sistent superiority across all performance metrics, followed 
by the BERT-Only and then the Psycholinguistic model.

Figure 8 compares Micro and Macro F1-scores 
across all models. The Hybrid model clearly leads, espe-
cially in handling label imbalance (as seen in Macro-F1).

Figure 9 presents a radar plot showing per-emotion 
AUC values. The Hybrid model consistently achieves 
higher AUC across all emotion classes, particularly fear, 
sadness, and neutral.

Figure 7. Precision-Recall Curves for Multi-Label Classification.

Table 4. Aggregate Performance Comparison.

Model Accuracy Micro-F1 Macro-F1 AUC Training Time (mins)

Psycholinguistic 0.714 0.674 0.614 0.772 12.3

BERT-only 0.830 0.800 0.750 0.880 45.6

Hybrid 0.884 0.854 0.814 0.924 58.9

Figure 8. Micro and Macro F1-Scores Across All Models.
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Figure 9. Radar Plot Showing Per-Emotion AUC Improvements.

3.3.	 Statistical Validation of Results

To rigorously validate the observed performance dif-
ferences between the Psycholinguistic-only (A), BERT-
only (B), and Hybrid (C) models, the following statistical 
analyses were conducted for each evaluation metric (Ac-
curacy, Micro-F1, Macro-F1, AUC). Results are reported 
with 95% confidence intervals (CIs) and effect sizes.

3.3.1.	 One-Way Repeated Measures ANOVA

A repeated measures ANOVA was performed to test 
the hypothesis that at least one model differs significantly 
in performance across the three groups (A, B, C) (Table 5).

Table 5. ANOVA Results Showing F-Values, p-Values, and Effect 
Sizes for All Performance Metrics Across Models.

Metric F-Value (df=2, 8) p-Value η² (Effect Size)

Accuracy 24.73 0.001 0.86

Micro-F1 19.85 0.003 0.83

Macro-F1 18.92 0.004 0.81
AUC 32.14 0.000 0.89

Normality confirmed via Shapiro-Wilk test (p > 0.05 for all   
metrics).
Sphericity verified using Cauchy’s test (p > 0.10).
Significant main effects (p < 0.05) exist for all metrics, 
confirming performance differences between models.
AUC showed the largest effect size (η² = 0.89), indicating  
model choice explains 89% of variance in AUC scores.

els for each performance metric. The Hybrid model con-
sistently shows higher median and range-limited variance, 
reinforcing its robustness and consistent superiority.

Figure 10. Score Distributions Across Models for Each 
Performance Metric.

3.3.2.	 Post-Hoc Paired t-Tests with Bonfer-
roni Correction

Post-hoc comparisons were conducted to identify 
specific model pairs driving the ANOVA results. The Bon-
ferroni method adjusted the significance threshold to α = 
0.0167 (0.05 / 3 comparisons). 

I have used post-hoc paired t-tests with Bonferroni 
correction to compare the Accuracy and AUC of the differ-
ent models in Table 6. Each model was found to be statis-
tically different from the others (p < 0.005) in all pairwise 
comparisons. The Hybrid method achieved much higher 
results than the Psycholinguistic and BERT-only models, 
with very large effect sizes (Cohen’s d = 2.51 and 1.24 for 
accuracy; 2.89 and 1.63 for AUC, respectively). Out of 
the models, the Psycholinguistic model was the least suc-
cessful, while the Hybrid model made the biggest gains, 
mainly on the AUC metric.

The 95% confidence intervals for Accuracy and AUC 
are shown in Table 7 for each model after 5-fold cross-val-
idation. The Psycholinguistic model performed worst (Ac-
curacy: 0.714 [0.691, 0.737]; AUC: 0.772 [0.754, 0.790]), 
but the BERT-only model improved a lot (Accuracy: 0.830 
[0.815, 0.845]; AUC: 0.880 [0.865, 0.895]). The Hybrid 
model performed the best, with scores of 0.884 and 0.924 
and narrow confidence intervals which highlights that it is 
both effective and reliable.Figure 10 visualizes score distributions across mod-
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Table 7. 95% CIs for Mean Scores Across 5-Fold Cross-
Validation.

Model Accuracy (95% CI) AUC (95% CI)

Psycholinguistic 0.714 [0.691, 0.737] 0.772 [0.754, 0.790]

BERT-only 0.830 [0.815, 0.845] 0.880 [0.865, 0.895]
Hybrid 0.884 [0.873, 0.895] 0.924 [0.913, 0.935]

The Hybrid model in Figure 11 shows the highest 
mean scores with non-overlapping intervals, indicating sta-
tistically significant improvements.

Figure 11. 95% Confidence Intervals for Accuracy (top) and 
AUC (bottom) Across the Three Models.

Figure 11 displays the 95% confidence intervals (CIs) 
for both accuracy and AUC for Psycholinguistic-only, 
BERT-only and Hybrid models. Both the shortest inter-
vals and the highest mean values are shown by the Hybrid 
model, proving that it performs well and consistently. There 
is no overlap in the intervals for the three models, confirm-
ing there are significant differences in performance. The 

graphs further strengthen the numbers in Tables 6 and 7.

3.3.3.	 Effect Size Analysis

To quantify the magnitude of performance differ-
ences between models, Cohen’s d was calculated for each 
pairwise comparison on Accuracy and AUC. Cohen’s d 
provides a standardized measure of effect size, interpreted 
using conventional thresholds: 0.2 = small, 0.5 = medium, 
and 0.8 = large (Table 8).

Table 8. Cohen’s d Effect Sizes for Pairwise Model Comparisons 
on Accuracy and AUC.

Comparison
Accuracy 
(Cohen’s d)

AUC 
(Cohen’s d)

Interpretation

Psycholinguistic vs. 
BERT-only

1.82 1.95 Very large effect

Psycholinguistic vs. 
Hybrid

2.51 2.89 Very large effect

BERT-only vs. Hybrid 1.24 1.63 Large effect

These results indicate that the improvements ob-
served with the Hybrid model are not only statistically sig-
nificant but also substantively meaningful, with effect sizes 
far exceeding the threshold for “large” differences. The 
largest gains were observed when comparing the Hybrid 
to the Psycholinguistic-only model, especially in terms of 
AUC, where the effect size approached 3.0—a remarkably 
high value in applied NLP research.

Based on the comprehensive statistical evaluation, 
the following conclusions can be drawn:

ANOVA Results: Statistically significant differences 
exist across all three models (p < 0.005), confirming that 
model choice has a measurable impact on performance 
(Table 9).

Table 6. Post-Hoc T-Test Results with Bonferroni Correction, Showing Pairwise Differences in Accuracy and AUC with Effect Sizes.

Comparison Mean Difference (A–B) 95% CI t-value p-value Cohen’s d

Psycholinguistic vs. BERT −0.116 [−0.142, −0.090] −6.34 0.001 1.82

Psycholinguistic vs. Hybrid −0.170 [−0.204, −0.136] −8.91 0.000 2.51

BERT vs. Hybrid −0.054 [−0.068, −0.040] −4.27 0.003 1.24

AUC

Comparison Mean Difference (A–B) 95% CI t-value p-value Cohen’s d

Psycholinguistic vs. BERT −0.108 [−0.128, −0.088] −7.12 0.000 1.95

Psycholinguistic vs. Hybrid −0.152 [−0.180, −0.124] −9.45 0.000 2.89

BERT vs. Hybrid −0.044 [−0.056, −0.032] −5.83 0.001 1.63
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Table 9. ANOVA Summary.

Metric F-Value p-Value η²

Accuracy 24.73 0.001 0.86

Micro-F1 19.85 0.003 0.83

Macro-F1 18.92 0.004 0.81

AUC 32.14 0.000 0.89

Post-Hoc Analysis: The Hybrid model significantly 
outperformed both the BERT-only and Psycholinguistic 
models, with Bonferroni-adjusted p < 0.0167 and large to 
very large effect sizes (Cohen’s d > 1.2).

Confidence Intervals: The narrow and non-overlap-
ping 95% confidence intervals between models further 
reinforce the robustness and reliability of the observed 
differences, particularly the consistent superiority of the 
Hybrid approach.

3.4.	 Error Analysis

Although all three models showed practical per-
formance, unique error patterns were identified. The 
Psycholinguistic-Only model found it difficult to account 
for contextual shading, often classifying neutral remarks as 
sadness (e.g. “patient states no improvement”), which was 
a result of its affective bias rather than semantic interpre-
tation. The BERT-Only, on the other hand, which is con-
textually aware, had problems identifying rare emotions 
(e.g., classifying joy as neutral) and differentiating fear 
from anxiety in phrases with shared physiological descrip-
tion (e.g., “racing heart and palpitation”). Besides, the lack 
of pragmatic reasoning in BERT led to misclassifications 
such as realizing “patient laughs while discussing trauma” 
is joy rather than irony or subdued overtones. The Hybrid 
model, which is more robust, in its turn, inherited nuances 
from both of the approaches, and its main drawback is the 
difficulty to detect sarcasm or ambiguously emotionally 
wording. Such constraints require more heterogeneous 
multimodal inputs (e.g., acoustic or visual cues), consider-
ably larger annotated corpora for fine-tuning, and complex 
fusion techniques that exceed feature concatenation to 
model the interplay between linguistic and contextual fea-
tures.

3.5.	 Discussion

This research aimed to enhance emotion recogni-

tion in clinical transcripts by integrating deep contextual 
embeddings from ClinicalBERT with psycholinguistic fea-
tures from the NRC Emotion Lexicon and LIWC. The pro-
posed hybrid model (Model C) significantly outperformed 
both the Psycholinguistic-Only (Model A) and BERT-Only 
(Model B) baselines across all evaluation metrics. Spe-
cifically, the hybrid model achieved an average accuracy 
of 0.884 (±0.011), a micro-F1 score of 0.854 (±0.012), a 
macro-F1 score of 0.814 (±0.013), and an AUC of 0.924 
(±0.011). These improvements were statistically validated 
through repeated measures ANOVA (p < 0.005 for all met-
rics), with post-hoc paired t-tests (Bonferroni-corrected,  
p < 0.0167) confirming significant pairwise differences. 
The largest effect sizes emerged between the Psycholin-
guistic and Hybrid models, with Cohen’s d values of 2.51 
(accuracy) and 2.89 (AUC), demonstrating substantial 
practical improvements.

The BERT-Only model’s performance (Accuracy: 
0.830; AUC: 0.880) aligned with existing literature, con-
firming ClinicalBERT’s strength in capturing complex 
syntactic and semantic patterns in clinical narratives. How-
ever, its tendency to overfit dominant labels (e.g., neutral) 
and misclassify rarer emotions (e.g., joy) underscored the 
limitations of relying exclusively on deep learning without 
interpretability. Conversely, while the Psycholinguistic 
model offered greater transparency—evidenced by in-
terpretable features like LIWC’s “negative emotion” and 
NRC’s “fear” categories—it exhibited limited contextual 
understanding, resulting in lower performance (Accuracy: 
0.714; AUC: 0.772).

Notably, the hybrid model delivered both quantita-
tive and qualitative improvements. For example, in the 
phrase “patient describes guilt but insists on coping,” 
ClinicalBERT detected semantic cues (e.g., “guilt”), while 
LIWC flagged the text under its negative emotion category. 
This synergy enabled the correct classification of sadness. 
SHAP analysis further quantified these contributions, re-
vealing that ClinicalBERT embeddings accounted for 68% 
of predictive power, while LIWC/NRC features contrib-
uted 32%, highlighting their complementary roles.

These findings align with recent advances in inter-
pretable affective computing, which stress that while deep 
learning models excel in performance, their clinical util-
ity depends on transparency. By anchoring predictions in 
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established psycholinguistic theories—such as Ekman’s 
emotion taxonomy and Russell’s circumplex model—the 
hybrid framework advances explainable AI, a prerequisite 
for clinical adoption.

However, several limitations warrant consideration. 
First, while the annotated dataset is clinically rich, its mod-
est size constrained deep fine-tuning and limited the diver-
sity of captured emotional expressions. Second, the fusion 
strategy employed simple concatenation of BERT embed-
dings and psycholinguistic features. Though effective, this 
approach may not fully model interactions between con-
textual and symbolic representations. Future work could 
investigate attention-based fusion or gating mechanisms to 
optimize feature integration.

In addition, the existing model only processes textual 
inputs while ignoring non-verbal affective cues (e.g., tone, 
rhythm, or facial expressions) that are frequently crucial in 
the clinical environment. The framework also suffers from 
pragmatic dissonance, for example, determining whether 
joy is sincere or ironic (e.g., “patient laughs while discuss-
ing trauma”), a more general problem of identifying sar-
casm or repressed feelings through text analysis.

Notwithstanding these limitations, the study reveals 
that the hybrid architecture generalizes well to clinical do-
mains where emotions are low key and sophisticated. Its 
high performance and interpretability make it appropriate 
for clinical decision-support systems, digital mental health 
apps, and risk-monitoring systems where early warning 
signs of emotional distress are critical. By merging deep 
learning with theoretically grounded psycholinguistic 
features, this work provides a promising blueprint for de-
veloping high-performing, interpretable NLP systems in 
healthcare. The results confirm our hypothesis that com-
bining contextual depth with psycholinguistic transparency 
enhances both predictive accuracy and clinical interpret-
ability—a critical balance for sensitive medical applica-
tions.

4.	 Conclusions

This research presented a new hybrid framework of 
emotion recognition in clinical texts that combines deep 
contextual embeddings from ClinicalBERT with structured 
psycholinguistic characteristics from LIWC and the NRC 

Emotion Lexicon. By eliminating the constraints of black-
box neural models and lexicon-only strategies, the pro-
posed model strikes a desirable balance between predictive 
accuracy and interpretability – two important characteris-
tics of clinical natural language processing. Experimental 
measurements of annotated clinical narratives validated 
the superiority of the hybrid model on all relevant metrics, 
especially in detecting subtle emotions, including sad-
ness, fear, and anxiety. Statistical validation in terms of 
repeated measures ANOVA and post-hoc tests showed sig-
nificant improvements with large effect sizes, and SHAP 
analysis verified the significance of contributions of both 
contextual and symbolic features. Apart from its quantita-
tive performance, the study focuses on the potential of the 
combination of deep learning with psychologically ori-
ented language analysis. Not only does this fusion enhance 
model performance but it also enhances clinical decision 
making by making its outputs explainable and trustwor-
thy. The research, however, acknowledges limitations like 
small size of dataset, and use of text only inputs, which 
provide opportunities of future directions, such as usage of 
multimodal data and complex fusion mechanisms. On the 
whole, this work is an important step on the way to devel-
opment of responsible AI systems in healthcare, that unites 
technical perfection and ethical openness.
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