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ABSTRACT

Since there is no known cure for Alzheimer’s disease (AD), early detection is essential to controlling its progression.

Because of the high cost and invasiveness of traditional diagnostic techniques like MRIs and pathological testing, researchers

are looking into less expensive alternatives that use machine learning (ML) and natural language processing (NLP). By

evaluating their performance against traditional ML and deep learning (DL) techniques, this study explores the possibility

of using fine-tuned open-source large language models (LLMs) to identify AD through linguistic analysis. To optimize

models like Qwen1.5–7B and OLMo1.7–7B, we used supervised fine-tuning (SFT) with parameter-efficient techniques

like LoRA and QLoRA on the Pitt Corpus dataset, which consists of speech transcripts from the “Cookie Theft” picture

description task. The findings showed that LLMs performed noticeably better than conventional techniques; Qwen1.5–7B

had an F1-score of 0.8824, which was higher than CNN (0.7987), LSTM (0.7689), and logistic regression (0.83). The

study demonstrates how LLMs can detect subtle linguistic impairments in AD that are difficult for traditional models to

identify, like syntactic errors and repetitions. The comparatively small dataset size and exclusive reliance on textual data

are limitations, though, and it is recommended that future studies include multimodal inputs and more varied datasets.

Despite limitations, the results highlight the potential of optimized LLMs as scalable, non-invasive methods for early AD
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detection, providing a way to enhance patient care and diagnostic precision. Through this study, a novel, accurate,

and reliable method for early diagnosis of Alzheimer’s disease patients can be provided.

Keywords: Alzheimer’s Disease; Large Language Models; Natural Language Processing; Supervised Fine-Tuning

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegen-

erative disorder without effective treatment and irreversibly

affects memory and thinking skills, ultimately interfering

with the ability to perform simple tasks [1]. It mainly mani-

fests itself through blurred or lost memory and impairment

of cognitive, linguistic, and executive functions, which se-

riously affect the independence of daily life and the quality

of life of patients. However, early diagnosis and prevention

can only help to delay the development of Alzheimer’s dis-

ease. Although AD is more common among older adults, it

is not considered a normal part of aging. However, as the

global population ages, the prevalence of it has increased

significantly.

As reported in the 2019WorldAlzheimer’s Disease Re-

port, the Alzheimer’s Disease International (ADI) projected

that over 50 million individuals worldwide were living with

dementia. The estimate for 2050 was expected to reach more

than 150 million. In the same year, the annual cost of de-

mentia in the United States alone was expected to exceed

$600 billion [2], which imposes a huge economic burden on

individuals, families, and society. Therefore, in recent years,

in addition to the common pathological test, magnetic reso-

nance imaging (MRI) [3], researchers have tried to develop

inexpensive non-invasive methods to diagnose Alzheimer’s

patients early. Recent studies have demonstrated the feasibil-

ity of using natural language processing (NLP) and machine

learning techniques to identify early Alzheimer’s disease [4].

These methods are low-cost and non-invasive, making them

accessible to patients and their families. They are also effec-

tive for facilitating the early detection of the disease.

Current methods for diagnosing Alzheimer’s disease

still suffer from limited accuracy and reliability, especially in

early detection. Recent advances in large language models

(LLMs) and their success in text-based tasks have opened

new possibilities for improving diagnostic performance [5].

For example, Yuan et al. suggested using fine-tuned BERT

models to recognize language interruptions (e.g., pauses and

repetitions) in patients with Alzheimer’s disease [6]. This

approach achieved good classification results at Interspeech

2020, indicating that pre-trained language models can cap-

ture features of language disorders. This work laid a founda-

tion for further exploration of large language models in AD

detection. This study aims to evaluate whether optimized

open-source large language models (LLMs) can outperform

traditional machine learning (ML) and deep learning (DL)

methods in Alzheimer’s disease detection tasks [4,7]. This

study will adopt open-source large-scale language models

as transfer learning method models, which are relatively ad-

vanced and better than the basic large-scale language models

of other language models [5]. By fine-tuning LLMs, we ex-

pect them to show better performance for AD diagnostics

than traditional ML and DL models. The purpose of this

study was to evaluate the effectiveness of the fine-tuned

LLMs, including examining their performance in terms of

diagnostic accuracy in terms of post-test f1 scores and relia-

bility and finally comparing it to other existing ML models

and DL models. Our goal is to contribute a scalable and ac-

curate approach to assist early-stage Alzheimer’s diagnosis

based on language features.

2. Literature Review

Ning Liu and his team demonstrated that the use of

transfer learning techniques could improve model perfor-

mance in the field of Alzheimer’s disease (AD) detection [4].

Their team focused on extracting linguistic features from

a speech dataset collected by the team on “A picture of a

Boston Cookie-Theft description task” and then applied trans-

fer learning to the data containing AD features. Their team

found that after applying this training method to the model,

ERNIE+Pause was the champion model, performing the best

in a column of measures, with an Accuracy of 0.896, an

F1-score of 0.889, and a Precision of 0.952. So, using the

transfer learning technique allows the model to focus on de-

tecting AD and perform significantly better than traditional

AD detection techniques. The performance in terms of diag-
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nosing AD is significantly better than traditional methods of

diagnosing AD.

Matosevic and Jovic’s research used BERT model as

a baseline model and compared the results from BERT and

RoBERTa. The dataset is the Pitt Corpus, which asked peo-

ple to describe the Cookie Theft picture, showing that NLP

method performed better in AD detection [7]. In this work,

they used linguistic transcripts, which are in the CHAT for-

mat. The initial preprocessing phase involved extracting the

speech content from the participants. Consequently, they re-

moved the speech from examiners and eliminated any details

pertaining to morphological and grammatical relationships in

the transcripts. Following that, a decision was made regard-

ing which participant speech information should be retained

and which should be discarded. Then the researchers trained

the setup. They both used RoBERTa and BERTwith 256 and

512 tokenizers. In the result, they found that their models are

good at larger text spans. They also showed that pre-trained

transformer models like RoBERTa can deliver substantial

outcomes when it comes to identifying dementia through

speech transcripts. Their top-performing model, trained on

transcripts containing repetitive speech segments, achieved

an accuracy rate of 90.16%.

Liu et al. proposed a transfer learning method for de-

tecting Alzheimer’s disease based on speech and natural

language processing. Their research uses transfer learn-

ing and natural language processing technology to diagnose

Alzheimer’s disease (AD) [8]. Its result improves the AD

prediction with high accuracy and solves the problem of a

lack of datasets. This project mainly consists of the distilBert

and the logistic regression. Although BERT is popular, the

model it chose could be faster and smaller architecture, and

it could “retain 97% language understanding capability of

the BERT model”. In this research, the distilBert model is

employed to capture profound semantic characteristics, and

these extracted features are subsequently fed into a logistic

regression model for the purpose of sentence classification.

The primary procedures can be outlined as follows: Initially,

words are segmented into tokens utilizing the distilBert tok-

enizer, and specific terms (namely, “(CLS)” inserted at the

sentence’s start and “(SEP)” at the conclusion) are incor-

porated into the text. Subsequently, the pretrained model’s

vocabulary is consulted to exchange these tokens with their

corresponding numeric representations, which are then uti-

lized in the Distil Bert model to generate a 768-dimensional

output vector. Finally, this vector is fed into a logistic re-

gression classifier, yielding the ultimate binary classification

outcome. The study used the ADReSS Datasets, which in-

clude 78 AD and 78 Normal controls, and the participants

described the Cookie Theft picture in detail. This research

achieved 0.896 accuracy by Enhanced Language Represen-

tation with the Informative Entities (ERNIE) model, and

to check the influence of different classifiers, it found that

logistic regression performed best.

Liu and Yuan conducted a study using NLP method to

detectAD and explore lexical performance, using the compar-

ison with latest deep learning, with small Chinese datasets [9].

In this study, researchers utilized datasets sourced from the

Predictive Challenge of Alzheimer’s Disease organized by

iFlytek in 2019 for training and validating their model. Their

experimental results show that their model outperforms the

top-performing model in the 2019 binary classification com-

petition, achieving an F1 score of 98% compared to the com-

petition’s score of 75.4%. Additionally, they calculated the

proportion of nouns and verbs in the linguistic descriptions,

aligning with international research on linguistic characteris-

tics in AD patients. The study employed the k-nearest neigh-

bor (KNN) algorithm to differentiate between individuals

with Alzheimer’s disease (AD) and those without (CTRL)

based on their transcripts. This method involves assigning

the unknown data to the category that shares the closest prox-

imity. Initially, all transcripts within the same category are

aggregated. Subsequently, researchers compute the distance

between the unknown data and the two categories under con-

sideration. Ultimately, they determine the unknown category

based on this distance calculation. The training process con-

sists of text preprocessing, word segmentation, keyword ex-

traction, text vectorization, and similarity calculation. The

dataset in this study is Corpus, which is famous for describing

the Cookie Theft picture. There are 68 patients with AD, 144

MCI patients, and 111 controls in this experiment. The result

shows that their model could reach the best 97.77% accuracy

and is stable when the number of features is over 835. It also

compared the results of using deep learning models. How-

ever, the BERTmodel in deep learning performed best, which

was still not as well as their method.
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3. Materials and Methods

3.1. Dataset

In this study, the data set is taken from the Pitt Cor-

pus [8], which is accessed through the DementiaBank web-

site [8]. This dataset consists of descriptive texts related to

the “cookie theft” picture, designed by Goodglass and Ka-

plan [9]. Participants were placed in a quiet room where a

clinician asked them to provide as much detail as possible

in describing the “cookie theft” image. The recordings and

texts of these descriptions were collected by the University

of Pittsburgh. Entries with other dementia diagnoses and

unclear labels were removed, ultimately obtaining data from

242 controls and 256 individuals with possible or probable

Alzheimer’s Disease. Following is a description of the demo-

graphic and clinical characteristics of controls andAD group,

illustrating differences in age, education, sex distribution,

and cognitive performance (reflected by the Mini-Mental

State Exam (MMSE)): The average age of the control group

is 65.2 years, and its standard deviation is 7.8 years, whereas

the possible/probable AD group is older. The average age of

the AD group is 71.8 years, and the standard deviation is 8.5

years. In terms of gender, the control group was composed

of 86 males and 156 females, while the probable suspected

Alzheimer’s disease (AD) group was composed of 90 males

and 166 females. The control group had an average of 14.1

years of education with a standard deviation of 2.4 years,

while the AD group had an average of 12.5 years with a stan-

dard deviation of 2.9 years. Regarding cognitive functioning,

the control group had a higher mean MMSE score of 29.1,

indicating better cognitive functioning, while the AD group

had a mean MMSE score of 18.5, indicating more impaired

cognitive functioning.

The dataset is split into a training subset and a test

subset in a ratio of 80:20. Specifically, 80% of the data is

randomly selected to form the training set for model training

and development, and the remaining 20% data is selected

from the test set to evaluate model accuracy. This approach

follows the well-established methods in the field, and Liu’s

study [4] adopts a similar approach, which also divides the

training set and test set in the ratio of 80:20.

3.2. Traditional Machine Learning

This study selected two widely applied classification

models in machine learning: support vector machine (SVM)

and logistic regression (LR) [9,10]. Among them, SVM is

a supervised learning model mainly for classification and

regression tasks [11]. The core idea of SVM is to find the opti-

mal hyperplane by hyperplane, which separates two types of

data points and maximizes the difference between them [12].

Support vector machine for text classification is implemented

by using the scikit-learn library in Python. Firstly, text and

labels are extracted from the dataset. Then, the text data is

transformed into feature vectors in the form of sparse ma-

trices using the Count Vectorizer’s fit_transform method in

the feature extraction stage. The SVM classifier is initial-

ized once the data is ready, and the model is trained on the

training set. For linearly differentiable data, SVM looks for

a hyperplane that maximizes the interval. For non-linearly

differentiable data, SVM allows data to be linearly differen-

tiable in high-dimensional space by using kernel functions

that map the data into high-dimensional space, such as the

polynomial kernel and the radial basis kernel. After the

model is trained, classification prediction is performed on

the test set, and prediction labels are generated. The accuracy,

F1 score, recall, and precision of the model are calculated

using a weighted average method, and the results of these

model performance metrics are output.

On the other hand, LR is also a supervised learning

model, which is commonly used in binary classification

problems [13]. LR converts the output of a linear model into

probability values by using a logical function, which is the

Sigmoid function, thereby separating the data linearly and

predicting the probability that the sample belongs to a cer-

tain class, thus achieving classification. Especially in binary

classification problems, LR can effectively classify data [14].

In this project, during data loading and preprocessing, text

and labels are first extracted from the dataset, and then the

text data is converted into feature vectors in the form of

sparse matrices, which is a key step in converting the textual

data into a numerical form that the model can handle. In the

model training phase, one instance of the Logistic regression

model is initialized, followed by training the model using

the training set. LR estimates the parameters by maximizing

the likelihood function and maps the output of the linear

model to the probability values for classification using the

Sigmoid function (logistic function). For each sample, LR
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calculates the probability that it belongs to a certain category

and classifies it according to a probability threshold of 0.5.

Once the training is complete, the trained model is used to

predict the test set. The prediction process involves feeding

the features of the test samples into the model and outputting

the predicted categories. Finally, the accuracy, F1 score,

recall, and precision of the model are calculated.

3.3. Deep Learning

Deep learning is a branch of ML [15]. It learns based

on how the human brain works and finds patterns to under-

stand difficult data. It can process images [16], voices, and

do the NLP work [17]. Some different layers are added to

the deep learning model compared to the machine learning

model. Some early layers recognize the characteristics and

representations and feed them to the model. Later layers are

in charge of synthesizing the traits to recognize objects and

forecast the results [15].

LSTM (long short-term memory) is a particular cat-

egory of RNN that solves the problem of exploding and

vanishing gradients when processing long sequences [18]. It

can store information for prolonged durations with developed

memory cells.

The LSTM model used in this project is mainly used to

process time series data in order to extract linguistic features

related to dementia and to accomplish the binary classifica-

tion task. The model structure is as follows:

(1) Embedding Layer

Vocabulary size: 5000

Output dimension: 12

Input sequence length: 100

(2) LSTM Layer

Hidden units: 128

Dopout: 0.2

Recurrent dropout: 0.2

(3) Dense Layer

Units: 1

Activation: Sigmoid

CNN (convolutional neural network) utilizes several

convolutional kernels to extract text features, then passes

through pooling layers and connected layers to the classifier.

CNN has good performance in intention classification [19].

For model performance comparison, this study also

constructs a text classification model based on CNN for ex-

tracting local linguistic features. The structure is as follows:

(1) Embedding Layer

Vocabulary size: 5000

Output dimension: 128

Input sequence length: 100

(2) Conv1D Layer

Filters: 128

Kernel size: 5

Activation: ReLU

(3) MaxPooling1D Layer

Pool size: 2

(4) Dropout Layer

Dropout rate: 0.2

(5) Dense Layer

Units: 128

Activation: ReLU

(6) Dropout Layer (reused)

Dropout rate: 0.2

(7) Final Dense Layer

Units: 1

Activation: Sigmoid

3.4. Fine-tuning LLMs

3.4.1. Supervised Fine-Tuning

In this project, a fine-tuning of the open-source LLMs

is used to train these pre-trained LLMs further using a text

dataset dedicated to the task of describing pictures for de-

tecting AD in order to adapt the model to the task of early

detection. Supervised fine-tuning (SFT) was chosen for

this project, which is the use of training datasets with the

labels “dementia” and “control” to provide target outputs

during fine-tuning to address the low-resource challenges

of Alzheimer’s disease, as it reduces the reliance on large

amounts of labeled data by employing self-supervised learn-

ing, thus reducing the number of pre-trained LLMs [20].

Supervised fine-tuning of the model requires setting

specific parameters, and in this project, the initial learning

rate was set to 5e−4 to allow for larger adjustments to the

model parameters in the early stages of training. To prevent

the gradient explosion phenomenon and improve the training

stability, the gradient trimming was set to 1.0 [21]. In addition,

each dataset contained a maximum of 398 samples to control

377



Forum for Linguistic Studies | Volume 07 | Issue 08 | August 2025

the size and time of training. And bf16 mixed precision train-

ing is selected to improve the computational efficiency [21],

and the truncation length, which is the maximum length of

the input sequence, is set to 512 bytes. Besides, two samples

are processed per GPU to adapt to the GPUmemory capacity.

The gradient accumulation step is set to 8 steps to achieve

a larger effective batch size with memory constraints. The

cosine scheduler was chosen in order to decrease the learn-

ing rate gradually during the training process to improve the

stability and final model performance [22]. LoRA dropout

was set to 0.2 to improve the model’s generalization ability

and reduce the risk of overfitting. During the training, model

performance was also evaluated using 10% of the data as

a validation set, so that the epoch could be selected from

the validation loss values derived from the training, and the

appropriate epoch could ensure that the model had enough

training time to avoid overfitting [23]. In this study, the num-

ber of training rounds was finally chosen to be set to 2.0 after

combining all the tested models, as this gives the best accu-

racy. Furthermore, the fine-tuning training in 4-bit, 8-bit, and

no-quantization experiments was conducted on all models

in order to observe the changes in model performance and

efficiency under different quantization strategies.

3.4.2. Low-Rank Adaptation (LoRa)

The two main techniques used for fine-tuning in this

project are Low-Rank Adaptation (LoRA) and QLORA.

LoRA was proposed by Hu et al. in 2021 [24]. It can

help to efficiently fine-tune large language models. Unlike

traditional methods, it does not completely retrain all param-

eters, but simply freezes the weights with the training model

and applies trainable low-rank matrices to every layer of the

transformer. This enables LoRA to reduce the number of

parameters to be trained for downstream tasks [25]. This not

only maintains the quality of the model but also improves the

throughput of training without leading to inference delays.

The main formula for LoRA is shown below. In the formula,

W_0 represents the original weight matrix, andA and B refer

to the two low-rank matrices, respectively.

h = W0x+BAx (1)

When using LoRA in this project, first take a large

model that has been trained. The weights of this model and

the features it has learned will not change in subsequent

training. While keeping the original weights constant, two

smaller matrices are added to each layer of the model, which

are multiplied together to produce a new weight update. This

update is specifically designed to fit the training task of this

project.

There are three advantages of using the LoRAtechnique

to fine-tune the model in this paper. First, LoRA reduces the

number of parameters that need to be trained. Since it only

adds small matrices and most of the original model’s weights

remain the same, the number of parameters that need to be

trained is greatly reduced. Second, it improves the through-

put in training. Because the training parameters are reduced,

fewer computational resources are required to train themodel.

As a result, more data can be processed during training, and

the training is faster. Third, LoRA also does not increase

inference latency. Using LoRA to fine-tune a large model

does not change the structure of the entire model, so it does

not add computational steps and therefore does not increase

latency.

QLoRA was proposed by Dettmers et al [26]. It com-

bines quantization techniques on top of LoRA to reduce

memory usage. This approach makes it possible to fine-tune

the 65B parameter of the model using only a single 48GB

GPU, greatly reducing the need for expensive hardware re-

sources. QLoRAtakes a large, trained model and compresses

it down to 4-bit (or 8-bit), which itself is not altered during

training. It then passes the training signals into LoRA to tune

these modules. This approach maintains the efficiency of

the original model while allowing fine-tuning for specific

tasks [27].

In this paper, the use of QLORA has the following

benefits: first, it reduces memory usage and supports us

in fine-tuning the LLMs on a single GPU. Second, with re-

duced hardware requirements, the QLORA-fine-tuned model

achieves comparable performance to the unquantized fine-

tuning, as will be shown by specific run results in the subse-

quent sections.

3.5. Evaluation

To assess the performance of the proposed model, we

employed four standard classification metrics: accuracy, pre-

cision, recall, and F1 score. These metrics were computed

based on the counts of True Positives (TP), True Negatives

(TN), False Positives (FP), and False Negatives (FN). The

corresponding formulas are defined as follows:
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Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1score = 2× Precision ∗Recall

Precision+Recall
(5)

The F1 score was chosen as the primary performance

metric because it is highly effective in addressing class imbal-

ance and strikes a balance between false positives and false

negatives — a critical consideration in clinical diagnostic

tasks such as the detection of Alzheimer’s disease.

Accuracy reflects the overall correctness of the clas-

sification; recall indicates the model’s ability to correctly

identify cases of Alzheimer’s disease (sensitivity); and preci-

sion reflects the model’s reliability in predicting a positive

label. Together, these metrics provide a comprehensive as-

sessment of the model’s diagnostic ability.

These metrics are reported for a variety of large-scale

language models and quantitative settings, as discussed in the

next section. In this study, supervised fine-tuning was used

on several open-source large language models (LLMs) to de-

tect Alzheimer’s disease using linguistic transcripts. Models

such as Qwen1.5–7B and OLMo1.7–7B achieved F1 scores

of over 0.88, outperforming traditional machine learning

and deep learning baselines on all metrics. These results

suggest that optimised LLMs can effectively capture the lin-

guistic impairments. This capacity may also generalise to

other neurocognitive conditions with language-related symp-

toms, such as mild cognitive impairment. Unlike earlier stud-

ies [28], which focused on fundamental model adaptation, our

research involved the precise customisation of each model.

This entailed adjusting learning rates, training epochs, batch

sizes, gradient accumulation steps, and LoRA dropout rates

to strike a balance between computational efficiency and di-

agnostic accuracy. These tuning strategies were designed to

enable the models to better capture language-level indicators

of AD, which often include subtle syntactic errors and repe-

tition patterns. These require long-context understanding.

This paper employs parameter-efficient tuning (PET),

which uses newly added parameters to study the scaling. It

further researches its scaling relationship with some factors,

such as model size, data size, or PET parameter size [29]. The

multiplicative joint scaling law for LLMs finetuning is as

follows:

L̂ (X,Df ) = A ∗X−α ∗D−β
f + E (6)

where [A,E, α, β] are parameters to be used,Df is the

data size, and X denotes other parameters [27].

4. Results

In a uniform manner, this study sets the same training

hyperparameters during supervised fine-tuning. The main

parameters include: the learning rate is set to 5e−4, the train-

ing period is 2, the maximum number of samples is 398,

the input truncation length is limited to 512, the number of

warm-up steps is set to 2, the Lora dropout rate is 0.2, and

the rest of the hyper-parameters follow the default settings

of LLaMA.

The F1 scores of the models with different quantiza-

tion accuracies (4-bit, 8-bit, and unquantized) are shown in

Table 1.

Table 1. F1 Scores of Different Models.

Model F1 Score (Q = none) F1 Score (Q = 4) F1 Score (Q = 8)

Qwen1.8B 0.5926 0.7872 0.7356

Qwen1.5–0.5B 0.7174 0.7789 0.8043

Qwen1.5–1.8B 0.7872 0.7778 0.5926

Qwen1.5–4B 0.6250 0.7609 0.6829

Qwen1.5–7B 0.7640 0.8824 0.8041

Qwen1.5–14B 0.5542 0.7209 0.6966

Qwen2–0.5B 0.6897 0.5116 0.5421

Qwen2–1.5B 0.8119 0.6408 0.8431

Qwen2–7B 0.6170 0.7312 0.5417
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Table 1. Cont.

Model F1 Score (Q = none) F1 Score (Q = 4) F1 Score (Q = 8)

Gemma–2B 0.5682 0.6512 0.7191

Gemma–7B 0.7129 0.6604 0.6591

Gemma2–9B 0.5200 0.5200 0.5200

LLaMA–7B 0.4054 0.4872 0.4324

LLaMA2–7B 0.6265 0.5679 0.4865

Llama3–8B 0.6667 0.8785 0.6392

OLMo1.7–7B 0.8381 0.8627 0.8846

Falcon–7B 0.7640 0.7447 0.7527

Mistral–7B–v0.1 0.8515 0.6813 0.3944

Mistral–7B–v0.3 0.6667 0.7708 0.8319

Table 2 summarizes some of the better performing su-

pervised fine-tuning models, as well as the test results of

traditional deep learning and machine learning models. It

can be observed that the F1 scores of the traditional methods

are generally low, so this study focuses on the performance

of the new models. After supervised fine-tuning, the new

large language models generally outperform the traditional

models in terms of F1 scores, and not only in terms of F1

scores, but also in terms of other evaluation metrics.

Figure 1 illustrates the F-1 scores obtained from fine-

tuning various sizes of the QWEN–1.5 model, ranging from

0.5 billion to 14 billion parameters. The results are reported

for different quantization options, including 4-bit, 8-bit, and

no quantization. The x-axis represents the quantization op-

tions, the y-axis represents F-1 scores, different colors rep-

resent different sizes of Qwen1.5 models, and the size of

the circle represents the size of the model. Figure 1 shows

that the 7-bit model has the best performance; a larger size

doesn’t mean better performance. It has the trend that, when

the size is smaller than 7 bits, the F1 score is higher with

the larger size; when the size is larger than 7 bits, the result

decreases.

Table 2. The Result of Different Models.

Accuracy Precision Recall F1-score

SFT-llms

Llama3–8B (Q = 4) 0.8687 0.8704 0.8785 0.8868

Qwen1.5–7B (Q = 4) 0.88 0.9184 0.8491 0.8824

Qwen2–1.5B (Q = 8) 0.8384 0.8776 0.8113 0.8431

OLMo–7B (Q = none) 0.85 0.9130 0.7925 0.8485

OLMo–7B (Q = 8) 0.84 0.8364 0.8679 0.8519

OLMo1.7–7B (Q = 4) 0.8586 0.898 0.838 0.8627

OLMo1.7–7B (Q = 8) 0.8788 0.902 0.8846 0.8679

Deep Learning

CNN 0.8 0.8 0.8 0.7987

LSTM 0.77 0.7693 0.77 0.7689

Machine Learning

LR 0.84 0.78 0.89 0.83

SVM 0.82 0.82 0.82 0.82

Figure 1. F1 Score by Quantization for Different Models.
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5. Discussion

In this study, we employed supervised fine-tuning on

several open-source large language models (LLMs) to detect

Alzheimer’s disease through linguistic analysis of transcripts.

Models such as Qwen1.5–7B and OLMo1.7–7B achieved F1

scores of over 0.88, outperforming traditional machine learn-

ing and deep learning baselines across all metrics. These

results suggest that optimised LLMs can accurately iden-

tify linguistic impairments associated with AD. The same

capacity may also be applicable to other neurocognitive con-

ditions that present with language-related symptoms, for

example, mild cognitive impairment. Unlike earlier stud-

ies, which focused on fundamental model adaptation [30], our

research involved the precise customisation of each model.

This entailed adjusting learning rates, training epochs, batch

sizes, gradient accumulation steps, and LoRA dropout rates

to strike a balance between computational efficiency and

diagnostic accuracy. These tuning strategies were designed

to enable the models to better capture language-level indica-

tors of AD, which often include subtle syntactic errors and

repetition patterns. These require an understanding of the

full context, a strength of LLMs.

To compare different models, this project employs the

same parameters when training models, such as epoch = 2.

However, larger models need more epochs to reach their best

result, while smaller models may need fewer epochs. This re-

search chooses several models that have better performance

to find the favorite epoch, like Qwen1.5–7B (quantization

four and quantization 8), OLMo1.7–7B (quantization four

and quantization 8), and OLMo–7B (quantization eight and

quantization none). Researchers used a validation size of 0.1

when training to determine validation loss [28].

Tables 3–5 show the validation loss of several models

with different epochs. The model is overfitting when the val-

idation loss is increasing [31]. In the figures, the overfitting

point is highlighted. After the overfitting point, the validation

loss increases, so that epoch is the most suitable epoch param-

eter. OLMo1.7–7B (quantization four and quantization 8)

uses epochs 4 and 5, OLMo–7B (quantization none and quan-

tization 8) better employs epochs 3, and model Qwen1.5–7B

(quantization four and quantization 8) is suitable for epochs

3 and 4.

Table 3. The Validation loss OLMo1.7–7B.

OLMo1.7–7B (Q = 4) OLMo1.7–7B (Q = 8)

Epoch Validation Loss Epoch Validation loss

1 0.2782 1 0.2627

2 0.155 2 0.2367

3 0.1197 3 0.1079

4 0.1083 4 0.0982

5 0.1333 5 0.0848

6 1.2244 6 0.1501

Table 4. The Validation Loss of OLMo–7B.

OLMo–7B (Q = none) OLMo–7B (Q = 8)

Epoch Validation Loss Epoch Validation loss

1 0.3525 1 0.2971

2 0.2693 2 0.1497

3 0.085 3 0.0822

4 0.1069 4 0.097

Table 5. The Validation Loss of Qwen1.5–7B.

Qwen1.5–7B (Q = 4) Qwen1.5–7B (Q = 8)

Epoch Validation Loss Epoch Validation Loss

1 0.2745 1 0.2765

2 0.2745 2 0.3644

3 0.1134 3 0.1369

4 0.15 4 0.1307

5 0.136 5 0.1309

6 0.1155 6 0.2627
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Table 3 presents the validation loss across different

epochs for the model OLMo1.7–7B under two quantization

levels (Q = 4 and Q = 8). The highlighted rows indicate the

epochs with the lowest validation loss for each quantization

level.

Table 4 shows the validation loss across different

epochs for the model OLMo–7B under two quantization lev-

els (Q = none and Q = 8). The highlighted rows indicate the

epochs with the lowest validation loss for each quantization

level.

Table 5 shows the validation loss across different

epochs for the model Qwen1.5–7B under two quantization

levels (Q = 4 and Q = 8). The highlighted rows indicate the

epochs with the lowest validation loss for each quantization

level.

Despite the encouraging results, we are acutely aware

of the inherent limitations in our scientific approach. Firstly,

the Pitt corpus is widely used. However, its relatively small

sample size may limit the generalisability of the results. Sec-

ondly, although adapter-based fine-tuning is quick, full fine-

tuning or the use of multimodal inputs may achieve a higher

level of correct diagnosis. Thirdly, our assessment focused

solely on linguistic features, which may not fully reflect the

cognitive decline associated with AD.

6. Conclusions

In this study, we demonstrate that a large-scale language

model optimised using hyperparameters can effectively de-

tect AD from speech transcripts, outperforming traditional

ML and DL methods. Using adapter-based fine-tuning tech-

niques such as LoRAand QLoRA, we achieved high diagnos-

tic accuracy while reducing the computational cost. Future

studies should explore multimodal inputs and larger, more

diverse datasets to further improve early detection. Although

our results are promising, there are a number of scientific

limitations to consider. Firstly, while the Pitt corpus is widely

used, its relatively small sample size may limit the gener-

alisability of the results. Secondly, although adapter-based

fine-tuning is computationally efficient, full fine-tuning or

the use of multimodal inputs may yield a higher level of di-

agnostic accuracy. Thirdly, our assessment focused only on

linguistic features, which may not fully reflect the cognitive

decline associated with AD.

Nonetheless, there are some limitations to this study.

First, although the Pitt corpus provides a rich dataset, its

sample size is very limited. The number and diversity of

samples affect the fine-tuning strategy as well as the perfor-

mance of the trained model in real-world testing, especially

in the diagnosis of Alzheimer’s disease. Second, there is

a limited number of LLMs used in this project; also, the

number of times experiments have been conducted was not

sufficient. In the future, more models and their effects in

combination with other models can be explored, and more

ways to regulate the parameters can be tried.
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