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1. Introduction

he depression failure of concrete surface around
the air-water boundary of bridge pier is a com-
mon damage phenomenon appears in old bridg-

es. These concrete surface failures are caused by various

factors such as construction defect, cycled fatigue loads
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This paper quantitatively evaluated the fatigue life of concrete around the
air-water boundary layer of bridge piers located in inland rivers, consid-
ering the long-term climate. The paper suggests a method to predict the
low-cycle fatigue life by demonstrating a thermal-fluid-structural analysis
of bridge pier concrete according to long-term climate such as tempera-
ture, velocity and pressure of air and water in the process of freezing and
thawing in winter. In addition, it proposes a reinforcing method to increase
the life of damaged piers and proves the feasibility of the proposed method
with numerical comparison experiment.
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thawing due to the temperature difference of the morn-
ing and evening in cold winter . Many experimental
and theoretical researches were achieved on the fatigue
strength of hydraulic concretes under the ordinary or low
temperature conditions "), Some experiments proved
that the influence of long-term freezing and thawing due
to the temperature difference of morning and evening
in cold winter on the fatigue life of old bridge concrete
cannot be ignored. In other words, even though the ther-
mal stresses generated during the freezing and thawing
process are not larger than the limits of static concrete
strength, but it is clear that they are in the range of stress
to cause low-cyclic fatigue failure of old concrete ™.
There are few researches on the qualitative analysis
about the influence of freezing and thawing on the fa-
tigue life of concrete pier, however, those on quantitative
analysis has never been performed '*”. Based on these
previous works, this paper analyzes the stress of old
bridge concrete using the thermal-fluid-structural analy-
sis, estimates the fatigue life quantitatively, and proposes
a proper reinforcing method to increase the life of pier.

2. Materials and Methods

The case study is “Ch” Railway Bridge constructed in
1975. The diameter of piers is 4 m, the height of the tall-
est pier is 22.3 m. The piers No. 12 and 13 of the bridge
were reinforced with non-reinforcement concrete, where
no reinforcement steel bar was used, because of con-
struction defects in 1976. After that, there occurred twice
of concrete depression failures and twice of reinforced
construction were performed with non-reinforcement
concrete in 1988 and 2001. However, in 2014, the old
reinforced layer of concrete has been damaged into the
original depth again. (Figures 1 and 2 """

Based on the atmospheric and hydro materials in re-
cent 10 years, the air temperature curve, wind velocity
curve and water temperature curve are interpolated into
various functions by MATALAB "', (Figures 3-5) All
points in graphs are average values per day.

Table 1 shows the thermal properties and structural
properties of pier concrete and reinforcement steel.

The analysis time is one year (from 1* of January to
31" of December) and the analysis objects are dynamical
temperature field, fluid feild and stress field. In order to
investigate the change of thermal stress due to the tem-
perature difference between morning and evening, the
time step is set to half of a day, which is the time interval
between 2:00 am, when the temperature decreases to the
lowest and 2:00 pm, when the temperature increases to
the highest.
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The river depth and flow velocity are assumed to be
constant in a year, excluding the rainy season.

The average velocity of water flow is 2 m/s on the
outer layer of the river flow (on the two-phase boundary
of water and air (Figure 6)), and is 0 on the bottom of the
river flow (on the boundary of water and ground). The
liquid flow is assumed to be the Newton viscous flow, in
other words, the velocity distribution is assumed to be
linear from the ground to the outer layer.

In order to simulate the river flow, the Open Channel
Flow is applied by VOF (Volume of Fluid) of ANSYS
Fluent and the RNG k-¢ turbulent flow model is used
for modeling the fluid flow in the Pressure Based Solver
tool.

The velocity field and the pressure field around the
pier are analyzed by ANSYS. (Figures 7 and 8).

Based on the wind velocity (Figure 4) and the water
flow velocity (Figure 7), the convection coefficients are
calculated by the followed equations:

ka = kan + kafva (1)

kw = kwn + kwfvw (2)

where ka and kw are convection coefficients, kan

and k_ are natural convection coefficients, kaf and

kwf are forced convection coefficients and v, and v

are flow speeds of air (wind) and water (river).

The results of temperature field of thermal analy-
sis and pressure field of fluid analysis at every step of
time increment are changed into the thermal-structural
boundary conditions of the structural analysis and the
Drucker-Prager plastic model is used for analyzing elas-
to-plastic behavior of concrete in the transient structural
analysis solver.

On the basis of above materials and methods, the
sequential transient thermal-fluid-structural analysis is
performed by ANSYS "% and fatigue life is predicted by
MATLAB.

3. Ethics Statement

The study was approved by the National Program on
Key Science Research of the DPR of Korea. The work
described has not been submitted elsewhere for publica-
tion, in whole or in part, and all the authors listed have
approved the manuscript that is enclosed. I testify to the
accuracy on behalf of all the authors.
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4. Results

4.1 Fatigue Life Prediction of Sound Pier Con-
crete

Analysis results of temperature field and stress field
of sound pier

Figure 9 is the finite element model of the sound
bridge pier and Figure 10 is the temperature field and
stress field at the moment of the lowest temperature in
winter (at 2:00 am on January 15).

Figure 11 is the change curve of the 1% principal stress
along the radial direction inside the bridge pier at the
height of the air-water boundary layer and Figure 12 is
the change curve of the 1* principal stress along the ver-
tical direction on the outside surface of pier.

Figure 11 shows that the stress increases rapidly from
the center to the outside surface of the pier and Figure
12 shows that the stress on the concrete surface of the
air-water boundary layer changes sharply from com-
press to tensile. From this, it can be seen that the 1% prin-
cipal stress becomes maximum on the concrete surface
of the water-air boundary layer.

Figure 13 is the change curve of stress on the concrete
surface on the air-water boundary layer in a year, which
shows the season when the stress changes most aggres-
sively is winter, that is, from November 15 to February
15, respectively.

Figure 14 shows the change of the 1* principal stress
from November 15 to February 15 in detail.

4.2 Fatigue Life Prediction of Sound Pier Con-
crete

In general, the fatigue strength of the concrete in-
creases as the temperature decreases. To predict the
fatigue life, the paper uses Eq. (3), a fatigue life calcula-
tion formula of hydraulic concrete considering the effect

of temperature

1-5
IgN =C()———m—
g ()I—Smin/S 3)

max

, where N is the number of load cycles and C(t) is the
coefficient related to the environment such as tempera-
ture, which is generally in the range of 10 to 20. It takes
14.6 at 20 ° C and 20 at -24 ° C in case of C45 concrete.
Smax and Smin are the ratios of the maximum and
minimum stresses to the concrete strength in static state.
Considering that C(t) is a monotonic function accord-
ing to temperature and that the range of the temperature
change is not large, the function of C(t) can be inter-
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polated into a linear function of C(¢f)=at+b  where

a~-0.0614, b~8.5274 . So, Eq. (3) can be rewritten
as follow.

1—
B N = (—0.0614¢ +8.5274) ——Smax__ W
1- Smin /Smax

By using Eq. (4) and the graph of stress change ac-
cording to the time (Figure 11), the change curve of
fatigue life according to the stress amplitude per day in a
year can be obtained. (Figure 15)

Figure 16 shows that the limit number of load cycles
in the sound bridge pier is at least 10*” times (more than
70 years) under the condition that the depth and flow
path of river do not change.

4.3 Fatigue Life Prediction of Reinforced Pier
Concrete

The comparison between the previous reinforcing meth-
od with non-reinforcement concrete and this paper’s
reinforcing method with reinforcement concrete is per-
formed. The previous reinforcing method is to reinforce
the pier with non-reinforcement concrete of 80 cm thick-
ness on the outer surface of the original damaged pier.
The paper’s reinforcing method is to reinforce the pier
with reinforcement concrete of 30 cm thickness on the
outer surface of the original damaged pier. The diameter
of reinforcement steel bars is 12 mm and they placed un-
der the depth of 5 cm from the outer surface of reinforc-
ing layer. There are arranged 48 reinforcement steel bars
in the hoop direction and 10 reinforcement steel bars per
3 m in the axial direction of the pier.

On the two reinforcing methods, the values of 1
principal stress and their changes on the outside surface
of reinforced layer are similar. (Figure 16) (They are 1.5
times larger than the stress of sound pier.)

However, the fatigue lives do not equal (Figure 17).
Figure 17 shows that the limit number of load cycles in
the bridge pier reinforced with non-reinforcement con-
crete is 10° times (more than 15 years) and one in the
bridge pier reinforced with reinforcement concrete is
10** times (more than 50 years) under the condition that
the depth and flow path of river do not change.

5. Discussion

The above results show that the reinforcing method with
reinforcement concrete can increase the fatigue life. It
is about 3.5 times more than on the reinforcing method
with non-reinforcement concrete. (Figure 17)

Moreover, the reinforcing method with reinforcement
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concrete can reduce the effect of scouring phenomenon
at the bottom of the pier, which greatly influence on the
stability and buckling of the pier. The reinforcing meth-
od with reinforcement concrete can increase the safety
factor against the scour phenomenon because the thick-
ness of the reinforcement concrete layer is much thinner
than one of the non-reinforcement concrete layer.

6. Conclusion

This paper quantitatively predicted the damage and
fatigue life of concrete around the air-water boundary
surface of bridge piers located in inland rivers, consider-
ing the thermal stress fatigue effect due to the long-term
climate.

(1) The most aggressive position to the thermal fa-
tigue of bridge pier concrete due to freezing and thawing
in cold winter is the zone around the air-water boundary
layer of the pier.

(2) The occurrence of fatigue cracking should be
predicted in about 70 years under the condition that the
depth and the flow path of river do not change.

(3) On the reinforcing method with non-reinforcement
concrete, the fatigue cracking should be predicted in
about 15 years under the condition that the depth and the
flow path of river do not change.

(4) On the reinforcing method with reinforcement
concrete, the fatigue life increases to 3.5 times (about 50
years), the safety factor against the scour phenomenon
increases to 1.2 times, and the amount of required con-
crete for reinforcing decreases to 33 %, compared to the
non-reinforcement concrete within the same strength.
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Appendixes

Table

Tablel. Thermal and structural properties of concrete and

steel
. Material
Properties
Pier concrete Reinforcement
steel
Specific heat (J/kg/ C ) 1004.8 455
Thermal prop- Heat conductivity (W/ 2675 30
erties m/C )
Expansion coefficient 1 11
(10%/C) ’
Density (kg/m’) 2470 7850
Structur.a I prop- Young’s ratio (GPa) 20 200
erties
Poisson’s ratio 0.167 0.3
Figures

8 Picr No. 13|

Depression Failure

Figure 1. Damaged bridge pier

Figure 2. Geometric model of damaged pier
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Figure 3. Daily average air temperature changes in a year
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Figure 4. Daily average wind speed change in a year
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Figure 5. Daily average water temperature changes in a
year
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Figure 6. Volume fraction distribution on the air-water
two-phase flow
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vielocity Maanitude (mixture),

Figure 7. Water flow velocity field around the pier (on the
depth of 1 m)
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Figure 8. Water pressure field around the pier
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Figure 9. Finite element model
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Figure 10. Temperature field and stress field of the pier
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Figure 11. 1* principal stress change in radial direction
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Figure 12. 1¥ principal stress change along the height
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Figure 13. 1" principal stress change curve on the air-wa-
ter boundary surface in a year
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Figure 14. 1¥ principal stress change curve on the air-wa-
ter boundary surface in winter
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Figure 15. Fatigue life change of pier concrete according
to day
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Figurel6. Thermal stress field of reinforced bridge piers
(a: non-reinforcement concrete, b: reinforcement concrete)
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Figure 17. Fatigue life change of reinforced bridge piers
(--: non-reinforcement concrete, -: reinforcement con-

crete)
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