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Vortex-induced vibration (VIV) of multiple circular cylinders elastically 
connected together in a side-by-side arrangement subject to steady flow 
is investigated numerically at a low Reynolds number of 150 and a mass 
ratio of 2. Simulations are conducted for two-, five- and ten-cylinder sys-
tems over a wide range of reduced velocities. The aim of the study is to 
identify the high-amplitude response range of the reduced velocity for the 
multiple degree of freedom vibration system and identify the difference 
between the responses of the single- and multiple-degree-of-freedom 
vibrations. Unlike the single cylinder case, distinct lock-in between the 
response frequency and any of the structural natural frequencies in a wide 
range of reduced velocity is not observed in the multiple-cylinder cases. 
Instead, the response frequency increases continuously with increasing 
reduced velocity. High response amplitudes are found when the response 
frequency is between the first and the highest modal frequencies. In a 
multiple-cylinder system, the single-mode response, where the vibration 
is dominated by one mode, can be only found in low reduced velocity 
range. In the single-mode branch, the dominance of a single mode shape 
in the response can be clearly identified except at the boundary reduced 
velocity between two modes. The maximum response amplitude occurs 
in the multiple-mode response and interaction between the vortices in the 
wake of the cylinders is strong when the response amplitudes are high.
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1. Introduction  

Vortex-induced vibrations (VIV) of cylindrical 
structures are of engineering significance because 
excessive vibrations may lead to malfunction 

and even structural failure. When an elastically mounted 
cylinder is placed in a free stream, synchronization (or the 
lock-in) occurs in a range of reduced velocity [1-4]. When 
lock-in occurs, the vortex shedding frequency is the same 
as the vibration frequency of the cylinder, instead of fol-

lowing the Strouhal law [5]. When an elastically mounted 
cylinder vibrates in the cross-flow direction in a fluid flow 
at low mass ratios, the range of the reduced velocity is di-
vided into three branches: initial, upper and lower branch-
es [6,7]. Jauvtis and Williamson [8] found a super upper 
branch for two-degree-of-freedom (2DOF) VIV of a cir-
cular cylinder in both the in-line and cross-flow directions 
at low mass ratios. The vibration of a circular cylinder in 
steady flow close to a plane boundary was also investigat-
ed due to its engineering importance [9-12]. It was found that 
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the plane boundary has significant effects on the vibration 
of the cylinder. 

Numerical studies of VIV have been mostly conducted 
through two-dimensional simulations by solving either the 
2D Navier-Stokes (NS) equations or the 2D Reynolds-Av-
eraged Navier-Stokes equations (RANS). The numerical 
models based on the NS equations have provided satisfac-
tory numerical solutions for VIV of a circular cylinder at 
low Reynolds numbers in the laminar flow regime [13-17].  
The numerical models based on the RANS equations were 
found to provide satisfactory solutions of VIV of cylinders 
at higher Reynolds numbers in the subcritical flow regime 

[18,19]. 
The research of flow past multiple cylinders has been 

mainly focused on flow past two cylinders in different 
arrangements. The biased flow regime when the gap be-
tween the cylinders is small was found in many studies of 
flow past two cylinders in a side-by-side arrangement [20,21].  
Numerical studies of flow past two cylinders in side-by-
side arrangement have also been conducted and the nu-
merical results of the biased flow were found to agree well 
with the experimental data [22,23]. Recently, some studies 
of VIV of two or four cylinders have also been conducted 
both experimentally and numerically. Huera-Huarte and 
Gharib [24] conducted laboratory experiments of VIV of 
two side-by-side flexible cylinders at low mass ratios. It 
was found that the motions of the two cylinders are not 
synchronized if the centre-to-centre distance between the 
two cylinders is greater than 3.5 diameters. Wang et al. [25] 
focused their study of VIV of two side-by-side cylinders 
on the influence of the turbulence and found that the free-
stream turbulence enhances the vortex-induced force and 
thus restores the large amplitude vibration associated with 
the lock-in resonance. Assi et al. [26] conducted experi-
ments of VIV of an elastically mounted cylinder in the 
wake of a fixed identical cylinder and found that when the 
gap between the two cylinders is between 3 to 5.6 diam-
eters, the vibration is in a galloping-like pattern. Kim et 
al. [27] studied VIV of two elastically mounted cylinders in 
a tandem arrangement and found five response regimes, 
depending on the distance between the two cylinders. 
Numerical studies of VIV of two cylinders have also been 
conducted recently [28-34], where the two cylinders were ei-
ther in side-by-side, tandem or staggered arrangement. 

Multiple cylinders are sometimes used in the fluid 
engineering, such as the multiple mooring cable in the 
offshore engineering or multiple heat exchanger tubes. 
If multiple-cylinders are elastically connected together, 
the system is a multiple-degree-of-freedom system with 
multiple natural frequencies. So far, little attention has 
been paid on VIV of elastically connected multiple cyl-

inder systems. Lock-in regime of the reduced velocity of 
elastically connected cylinders in fluid flow is expected to 
be wider than that of a single cylinder. Which natural fre-
quencies the cylinders vibration locks onto is expected to 
depend on the reduced velocity. 

In this study, VIV of elastically connected multiple 
circular cylinders in a side-by-side arrangement in steady 
flow is simulated numerically at a low Reynolds number 
of 150 and a low mass ratio of 2. The focus of the study 
is to investigate the response and lock-in behaviors of 
multi-degree-of-freedom (MDOF) systems. Since the flow 
is expected to be two-dimensional at Re=150, two-di-
mensional Navier-Stokes equations are solved using the 
Petrov-Galerkin finite element method for simulating the 
flow and the equation of the motion of the cylinders is 
solved using the fourth-order Runge–Kutta method for 
predicting the response of the cylinders. 

2. Numerical Method

Flow induced vibration of elastically connected circular 
cylinders as shown in Figure 1 is simulated numerically. 
The cylinders are allowed to vibrate in the cross-flow di-
rection only. It is assumed that diameter and mass of the 
cylinders are all identical. The initial distance between 
two adjacent cylinder centres is fixed at a constant of 
L=3D with D being the diameter of the cylinders. The dif-
ferential equation of motion governing the vibration of the 
cylinders can be written as

yFKYYCYM =++  , (1)

where M, C and K are the symmetric mass, damping 
and stiffness matrices, respectively. The displacement 
vector Y contains the displacements of the cylinders in the 
cross-flow direction and is given by T

NYYY }.,,{ 21 =Y
, Fy is the corresponding vector of the forces on the cyl-
inders, and N is the number of cylinders considered. The 
natural frequencies and the mode vectors of the system 
can be obtained by calculating the eigenvalues and the 
eigenvectors of the stiffness matrix. The solution of Eq. (1) 
can be expressed in the form

)()( tt *ΦYY = , (2)

where },,,{ 21 NΦΦΦΦ =  is the modal matrix 
of the system, kΦ  stands for the kth-mode vector, and 

)(t*Y  is a column vector of generalized (modal) coor-
dinates that are to be determined. The modal matrix Φ  
satisfies IMΦΦ =T where I  is the unit matrix. The 
amplitude of )(t*Y  is comprised of the response compo-
nent of each mode. Substituting Eq. (2) into Eq. (1) yields
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*
y

***** FYKYCY =++  , (3)

where CΦΦC T* = , KΦΦK T* =  and y
T* FΦF =y

. The matrix *K  is a diagonal matrix and zero damping is 
considered in this study. The above modal transformation 
method enables the vibration problem to be solved with-
out solving the matrix equations. This modal transforma-
tion method also enables to understand the contributions 
of different modes in the vibration straightforwardly. Eq. 
(3) is solved by using the fourth-order Runge–Kutta meth-
od in this study. 
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Figure 1.  Sketch of elastically connected side-by-side 
cylinders in fluid flow (a) two cylinder (b) multiple cylin-

ders

The governing equations for simulating the laminar 
flow are the unsteady two-dimensional incompressible 

Navier-Stokes equations. In this study, the Arbitrary La-
grangian Eulerian (ALE) scheme is applied to deal with 
the moving boundaries of the cylinders. Lagrangian meth-
od, Eulerian method and ALE method are three methods 
for tracking the moving boundaries of the fluid domain in 
numerical simulations. The computational mesh in do not 
move in the Eulerian method and move at velocities same 
as the velocity of the fluid particles in the Lagrangian 
method. The main drawback of the Lagrangian method 
is that it will face severe problems when deal with strong 
distortions of the computational mesh and the main dis-
advantage of the Euler method is that it is difficult to 
accurately capture the interfaces between the fluid and 
structure [32]. In the ALE method, the computational do-
main is moved according to an artificial domain velocity, 
which ensures that the interfaces can be clearly defined 
and the computational domain is not distorted strongly [32]. 
In the ALE scheme, the nodes of the computational mesh 
are allowed to move at velocities different from the fluid 
velocities. The incompressible Navier-Stokes equations in 
the ALE scheme can be expressed as
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∂
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, (4)
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where x1 = x and x2 = y are the Cartesian coordinates in 
the in-line and transverse directions of the flow, respec-
tively, ui is the fluid velocity component in the xi-direction, 
p is the pressure, iû is the velocity of the mesh movement, 
ρ is the fluid density and ν is the kinematic viscosity. For 
uniform flow past cylinders, the inlet boundary conditions 
are set as u1 = U and u2 = 0. At the outlet boundary, the 
pressure is set to be zero and the gradient of the velocity 
components in the streamwise direction is zero [33]. At the 
cylinder surfaces, non-slip boundary condition is imposed, 
i.e. the fluid velocity is the same as the vibration velocity 
of the cylinders. After each computational time step, the 
boundary of the computational domain changes because 
of the displacements of the cylinders. The positions of 
finite element nodes are moved accordingly by solving the 
modified Laplace equation [12]

( ) 0=∇⋅∇ ySγ  (6)

where, yS  represents the displacement of the nodal 
points in the y-direction, γ is a parameter that controls the 
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mesh deformation. In order to avoid excessive deforma-
tion of the near-wall elements, the parameter γ in a finite 
element is set to be A/1=γ , with A being the area of the 
element. The displacement of the mesh nodes is the same 
as the displacement of the cylinder on the cylinder surface 
and zero on other boundaries. By giving the displacements 
at all the boundaries, Eq. (6) is solved by the Galerkin 
FEM. 

3. Numerical Results

The study is focused on the influence of the interference 
among multiple circular cylinders in a side-by-side ar-
rangement on the response amplitudes and frequencies. 
Figure 1 shows a sketch of the arrangement of the cyl-
inder system. The cylinders are numbered by cylinder 1 
to cylinder N, respectively, where N is the total number 
of the cylinders. The springs that connect the cylinders 
have the same elastic coefficient of K. The cylinders are 
identical to each other and they have the same mass ratio 
of 2. The structural damping factor of the whole system 
is assumed to be 0 in all the simulations. The initial cen-
ter-to-center distance between any two adjacent cylinders 
is 3D. In the review paper of flow past two cylinders in a 
side-by-side arrangement, Sumner [34] concluded that two 
parallel vortex streets occur in the wake of the two cylin-
ders due to the weak wake interference if the gap between 
the two cylinders is greater than 1D. Because this study is 
focused on the effects of the multiple-degree-of-freedom 
on the response regime of the reduced velocity, the initial 
gap between two adjacent cylinders is chosen to be suffi-
ciently large. The Reynolds number based on the cylinder 
diameter is fixed to be 150. Simulations are carried for 
two-cylinder, five-cylinder and ten-cylinder systems. The 
reduced velocity is defined based on the first mode natural 
frequency as )/( 1nr DfUV = , where fn1 is the first-mode 
structural natural frequency of the cylinders and U is the 
free-stream velocity. The responses of different systems 
are addressed separately in the following discussion. 

Zhao et al. [35] found that the wake flow in the wake of 
elastically mounted cylinder remains two-dimensional un-
til the Reynolds number is 250 when the reduced velocity 
is 6, where the response amplitude reaches its maximum. 
To demonstrate that the flow is two dimensional for a 
Reynolds number of 150, some three-dimensional simula-
tions of VIV of the five-cylinder system are performed for 
a reduced velocity of 7, which is in the middle of the lock-
in range. The numerical method used for the three-dimen-
sional simulation is the same as the one in Zhao et al. [35]. 
The computational mesh on the cross-sectional plane is 
the same as used in this study. The length of the cylinders 
is 6.4 diameters and totally 64 layers of elements are dis-

tributed along the axial direction of the cylinders. The to-
tal element number is about 2.2 million. 16 CPUs are used 
for the parallel calculations. Three-dimensional numerical 
simulations are performed for a non-dimensional time of 
tfn1=19 and Figure 3 (a) and (c) shows the time histories 
of cylinders 1 and 5. The symmetric vibration develops to 
asymmetric vibration after tfn1=6 for both Reynolds num-
bers. 

The three-dimensional vortex shedding flow structure 
can be presented by the iso-surface of the second negative 
eigenvalue of the tensor 22 ΩΨ + , where Ψ  and Ω  
are the symmetric and the anti-symmetric parts of the ve-
locity-gradient tensor, respectively [36]. The nondimension-
al second eigenvalue is defined as 2

22 )//( DUλλ ′= , 
 where 2λ′  is dimensional eigenvalue. The iso-surfaces 
of 12 −=λ  for Re=250 and 300 at tfn1=18.5 are shown 
in Figure 3 (b) and (d), respectively. It can be clearly 
seen that the flow is still two-dimensional when Re=250 
and becomes three-dimensional when Re=300. It is in-
teresting to see that the three-dimensional flow is mainly 
in the wake of the middle cylinder, where the wake flow 
is dominated by streamwise vortices. The three-dimen-
sionality of the flow can be quantified by enstrophies 

[37]. The primary enstrophy zε , the secondary xyε and 

the total enstrophy ε  are defined as Ω= ∫Ω d2
zz ωε , 

Ω+= ∫Ω d)( 22
yxxy ωωε , Ω++= ∫Ω d)( 222

zyx ωωωε
, respectively, where Ω stands for the whole fluid vol-
ume. The flow is three-dimensional if the secondary 
enstorphy is strong and two-dimensional if the second-
ary enstrophy is zero. For the five-cylinder system, the 
nondimensional total enstrophies for Re=250 and 300 are 

52 1098.2)//( ×=DUε and 51014.4 × , respectively, 
and the nondimensional secondary enstrophies for Re=250 
and 300 are 

12 1013.3)//( −×=DUxyε and 41060.1 × , 
respectively. The negligibly small secondary enstrophy for 
Re=250 demonstrates that the flow is still two-dimension-
al. For Re=300, the secondary enstrophy still takes very 
small percentage in the total enstrophy, mainly because 
the three-dimensionality is strong only in the wake of the 
middle cylinder as shown in Figure 3 (d). If the flow is 
two-dimensional at Re=250, it is expected that the flow 
should be also two-dimensional when Re<250. 

3.1 Two-cylinder System

Simulations are carried out for the reduced velocities 
ranging from 1 to 30 with an interval of 1 for the two-cyl-
inder system. The ratio of the first- to second-mode nat-
ural frequencies is fn2/fn1=1.732. A rectangular computa-
tional domain with a length in the flow direction of 60D is 
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used. The width of the computational domain (W) increas-
es with increasing number of cylinders as W=20ND. The 
computational domain is divided into 17398 quadrilateral 
linear finite elements for the two-cylinder system. 

Figure 2 (a) shows the computational mesh around 
the two cylinders. Refined elements are used near the 
cylinder surface in order to capture the strong variations 
of the flow field. Each cylinder surface is divided into 96 
finite elements and the minimum mesh size in the radius 
direction on the cylinder surface is 0.005D. The numerical 
results of VIV of the two-cylind er system are compared 
with those of 1DOF of vibration of a single circular cylin-
der system in the cross-flow direction.   

        

(a) two cylinder

(b) multiple cylinders

Figure 2.  Computational mesh around the cylinders

Zhao [17] and Zhao et al. [38] compared the numerical 
results of VIV based on the same numerical model as 
used in this study with the published results in [13, 16, 29, 39] 
and obtained very good agreements. Zhao [17] validated 
the numerical model in the simulation of the VIV of two 

tandem cylinders in fluid flow at Re=150. The validation 
of the numerical model on VIV simulation will not be 
repeated here. A mesh dependency study is carried out 
in order to ensure that the results are mesh-independent. 
Because the Reynolds number is kept to be a constant, 
the effects of the mesh density on the results are likely to 
be affected by the response amplitude. Additional simu-
lations for the two-cylinder system at reduced velocities 
of 2, 4, 6, 8 and 10, where the response amplitudes are 
large, are carried out at a mesh denser than that shown in 
Figure 2. 

The mesh shown in Figure 2 is referred to be the nor-
mal mesh. In the denser mesh, the circumference of each 
cylinder is divided into 128 elements and the minimum 
mesh size in the radial direction next to the cylinder sur-
face is 0.002D. The total finite element node number of 
the denser mesh is 30,619. Table 1 shows the comparison 
between the results from the normal and denser meshes. 
For Vr=4 and 6, where the amplitude of the two cylinders 
are not the same (as shown in Figure 5), the maximum 
amplitude of the two cylinders is listed in Table 1. Both 
the amplitudes and the frequencies from the normal 
mesh agree well with those from the denser mesh. The 
difference in Table 1 is the percentage of the difference 
between the denser and normal mesh results. The maxi-
mum differences for the resultant vibration amplitude and 
the frequency are 1.7867% and 0.8114% respectively. 
The densities of the meshes for simulating the five- and 
ten-cylinder systems are the same as the normal mesh in 
the two-cylinder system. 

 

                                                             

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Y

tfn1

Cylinder 1 Cylinder 5

(a) Re=250, time histories of  the displacements

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Y

tfn1

Cylinder 1 Cylinder 5

(c) R=300, time histories of the displacements

(b) Re=250, Isosurface of λ2 = –1 (d) Re=250, Isosurface of λ2 = –1                 (b) Re=250, Iso-surface for λ2=  – 1                                                             (d) Re=300, Iso-surface for λ2=  – 1 

 Figure 3. Three-dimensional results of VIV of the 
five-cylinder system at Vr=7
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Figure 4. shows the time histories of the displacements 
of the two cylinders at some typical reduced velocities for 

the two-cylinder system

The vibrations of the two cylinders are in anti-phase 
with each other when the reduced velocity 2r ≤V and 
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11r ≥V . At Vr=3 and 4, the vibrations of cylinders 1 and 
2 are in phase with each other.  At the reduced velocity 
of Vr=5 the vibrations of both cylinders contains two 
response modes and the vibrations of the two cylinders 
become in anti-phase with each other and the anti-phase 
sustains for all the reduced velocities greater than 5. It is 
interesting to see that the vibration amplitude of cylinder 
1 is smaller than that of cylinder 2 at Vr=6. Regular beat-
ing responses of both cylinders are observed at Vr=6, es-
pecially in the response of cylinder 1. The beating period 
is approximately 10 times the cylinders’ vibration period.  
It is believed that this is due to the asymmetry of vortex 
shedding at Vr=6, which will be discussed later on. The 
vibration responses of both cylinders at Vr=7 are almost 
perfectly regular and periodic. The same responses are 
observed for all Vr ≥ 7 in the range of the reduced velocity 
covered in the present study. 

Table 1. Comparison between the amplitudes and fre-
quencies from the two meshes

Vr

Amplitude (Ay/D) Frequency (f/fn1)

Denser 
mesh

Normal 
mesh

Difference  
(%)

Denser 
mesh

Normal 
mesh

Difference 
(%)

2 0.00980 0.00986 0.5618 0.4017 0.4050 0.8114

4 0.6341 0.6350 0.1543 0.9091 0.9043 0.5272

6 0.6239 0.6286 0.7493 1.4427 1.4327 0.6973

8 0.5325 0.5344 0.3462 1.6645 1.6654 0.0510

10 0.4458 0.4380 1.7867 1.8539 1.8492 0.2558

Figure 5 shows the variations of the amplitude, fre-
quency and mean positions of the cylinders with the 
reduced velocity for the two-cylinder system. The 
high-amplitude reduced velocity range of the two-cylin-
der system is clearly wider than that of a single cylinder. 
The response amplitudes of the two- and single-cylinder 
systems follow a similar trend. The response amplitudes 
of the cylinders start to increase with increasing Vr at Vr=3 
and reaches to the maximum values at about Vr=4. The re-
sponse amplitudes of the two cylinders are different from 
each other at Vr=4 and 6. This is due to the asymmetry of 
the vortex shedding from the cylinders, which will be dis-
cussed in detail later on. The response amplitudes of the 
two cylinders become identical again as Vr ≥ 7 and start to 
decrease rapidly as Vr increases from 7 to approximately 
13. The response amplitudes decrease asymptotically at 
small rates from Vr = 13 towards a steady value of approx-
imately 0.1 at Vr = 30. At Vr=4, the response frequency is 
close to the first-mode natural frequency and it increases 
to the second-mode natural frequency gradually as the re-
duced velocity is increased to 10. 
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Figure 5.  Variations of the amplitude, frequency and 
mean position of the cylinders with the reduced velocity 

for the two-cylinder system

Unlike a single cylinder where the lock-in between the 
vortex shedding frequency and the natural frequency in 
the regime of 84 r ≤≤V  can be clearly identified based 
on the sudden changes in the response amplitude and 
frequency, the vibration frequencies of the two cylinders 
do not lock onto a fixed frequency in a reduced velocity 
range. For the two-cylinder system, the response frequen-
cy is between fn1 and fnN when the reduced velocity is in 
the range of 103 r ≤≤V . However, the response ampli-
tude is still large when the response frequency is greater 
than the second mode natural frequency until the reduced 
velocity is 12. The amplitude of the two-cylinder system 
is reduced to a value less than 0.2 at Vr=13. The mean 
position of a cylinder in a multiple-cylinder system is de-
fined as Y . It can be seen in Figure 5 (c) that DY /  of 
both cylinders is very close to zero as 5r ≤V . The mean 
position of cylinder 2 increases suddenly to about 0.05 at 
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7r =V . DY /  of the cylinder 2 decreases slightly with 
the increase of Vr between 127 r ≤≤V  before it starts 
to increase with Vr. The mean position of cylinder 1 is ap-
proximately the mirror image of that of cylinder 2 about 
line of 0/ =DY .

The response amplitudes of the cylinders are decom-
posed into different modes according to Eqs. (2) and (3) 
and the contribution of each mode is analyzed. Figure 
6 shows the variation of the amplitude of the modal co-
ordinates with the reduced velocity for the two-cylinder 
system. The amplitude of the n-th modal coordinate *

nY  
is defined as *

ynA . It can be seen that the vibration is 
dominated by the first-mode when the reduced velocity 
is less than or equal to about 4 and by the second-mode 
when the reduced velocity exceeds or equal to about 6. 
Contributions from the two modes are comparable with 
each other between reduced velocity of 4 and 6 as shown 
in Figure 3 (d) and (e). For the two-cylinder system, the 
first- and second-mode shapes are {0.5642, 0.5642}T 
and {0.5642, -0.5642} T, respectively. When the reduced 
velocity is greater than 7 the vibration contains only the 
second-mode, indicating that the vibration of cylinder 1 is 
always in anti-phase with that of cylinder 2. 
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A y
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Figure 6. Variations of the amplitude of the generalized 
modal coordinates with the reduced velocity

Figure 7 shows the contours of nondimensional vortici-
ty when cylinder 1 is at its lowest position for the two-cyl-
inder system. The nondimensional vorticity ω is defined 
as )//()//( 2112 DUxuxu ∂∂−∂∂=ω . At Vr=3 and 
4, although the vibration displacements of the two cyl-
inders are found to be in phase with each other as shown 
in Figure 4, the vortex shedding processes from the two 
cylinders are not exactly the same as each other as shown 
in Figure 7 (a) and (b). For example, the vortex shedding 
from cylinder 1 at Vr=3 appears to lag the vortex shedding 
from cylinder 2. In Figure 7 (a), the positive vortex from 
cylinder 1 is shed from the cylinder after the positive vor-
tex was shed from cylinder 2. In the wake, each negative 
vortex from cylinder 1 is shed earlier than that from cyl-
inder 2 within one vortex shedding period. The phase dif-
ference between the vortex shedding flows from the two 
cylinders and the in-phase displacements lead to the phase 
difference between the vibration displacement and the lift 

coefficient as shown in Figure 7 (b) and (c). At Vr=5 and 
6, the vortex shedding from cylinder 1 differs from that 
from cylinder 2 significantly. The main characteristics of 
the vortex shedding flow at Vr=5 and 6 is that the wake 
from one cylinder is clearly wider than the one from the 
other. For example, the two-row vortex wake from cyl-
inder 2 at Vr=6 is very similar to that at Vr=7, while that 
from cylinder 1 is clearly narrower than that of cylinder 2’s 
wake. The vortex shedding flow at Vr=5 transits from the 
in-phase vibration mode to the anti-phase vibration mode. 
At Vr=7, the vortex shedding becomes symmetric with 
respect to y=0 line and the vibration displacements from 
the two cylinders are in anti-phase with each other. The 
symmetric flow patterns as shown in Figure 7 (e) and (f) 
are observed with the reduced velocity being greater than 
7. 

(a) Vr=3

(b)Vr=4

(c)Vr= 5
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(d) Vr=6

(e)Vr=7

(f) Vr=11

Figure 7.  Contours of the nondimensional vorticity when 
Cylinder 1 is at its lowest position for the two-cylinder 

system
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Figure 8. Time histories of the vibration displacement for 
the five-cylinder system

3.2 Five-cylinder System

The VIV of five elastically connected cylinders in a side-
by-side arrangement is simulated in the reduced velocities 
range from 1 to 40 with an interval of 1. The computational 
mesh around the cylinders is shown in Figure 2 (b). Figure 
8 shows the time histories of the responses of the five cyl-
inders at some representative reduced velocities. The time 
histories of the responses of cylinders 1 and 5 are plotted 
together because they are geometrically symmetric about 
the central cylinder 3. The time histories of the responses 
of cylinders 2 and 4 are plotted together for the same rea-
son. Similar to the two-cylinder system, the displacements 
of cylinders 1 and 2 are in phase with those of cylinders 5 
and 3 respectively at Vr=3 and 4. The vibrations of all five 
cylinders become irregular at Vr=5. The vibration appears 
irregular due to the combination of more than one response 
modes in the response. The time histories of the responses 
of cylinders 1 and 2 are still generally in phase with those 
of cylinders 5 and 4 correspondingly at Vr=5. The vibration 
appears more irregular than that of the two-cylinder system 
because more frequency components are in the response. 
The frequencies of the irregular vibrations are analyzed us-
ing the Fast Fourier Transform (FFT). 

Figure 9 shows the variations of the response ampli-
tude, response frequency and the mean position of the 
cylinders with the reduced velocity for the five-cylinder 
system. For the cases with multiple-frequencies, Fast 
Fourier Transform is used to analyze the vibration and the 
frequency corresponding to the highest response ampli-
tude in the FFT spectrum is the vibration frequency. The 
high-ampltude reduced velocity range for the five-cylinder 
system are much wider than that of a single cylinder and 
that of the two-cylinder system. The vibration amplitudes 
increase suddenly as the reduced velocity is increased to 4 
and keep increasing until the reduced velocity is between 
10 and 15, where the response amplitudes peak. The re-
sponse amplitude and frequency of cylinders 1 and 2 are 
the same as those of cylinders 5 and 4 respectively except 
in the regime between 10 and 15. The first- to fifth-mode 
natural frequencies are marked in Figure 9 (b). 
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Figure 9. Variations of the response amplitude, response 
frequency and the mean position of  the cylinder with the 

reduced velocity for the five-cylinder system

The response frequency exceeds fn5 as the reduced 
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velocity is greater than 18. After the response frequency 
exceeds fn5, the response amplitudes of all five cylinders 
decrease gradually with increasing Vr. In the reduced ve-
locity range of 183 r ≤≤V  the response frequency is 
between the first- and fifth-mode frequencies. The upper 
boundary reduced velocity based on the highest natu-
ral frequency is Vr5=4.80. It is interesting to see that the 
response frequencies of the two side cylinders 1 and 5 
are the same but they are slightly different from those of 
other middle cylinders 4 and 2. This is likely because of 
the difference between the approaching flow conditions 
to cylinders 1 and 2 (or cylinders 5 and 4), for example, 
caused by flow blockage and cylinder interference. The 
mean positions of the five cylinders remain to be around 
zero for 7r ≤V  where response frequencies are clos-
er to the first-mode natural frequency than other mode 
natural frequencies. The mean positions of cylinders 4 
and 5 increases gradually to about 0.1 from Vr = 7 to Vr 
= 15 where the response frequencies of cylinders 4 and 
5 increase from close to second-mode natural frequency 
to the fourth-mode natural frequency. There appear to be 
sudden increases of the mean positions of cylinders 4 and 
5 from Vr = 15 to Vr = 16 which correspond to the changes 
of response frequencies from approximately 4th-mode nat-
ural frequency to 5th-mode natural frequency. The mean 
positions of cylinders 4 and 5 remain at steady values in 
the range of 2516 r ≤≤V  where response frequencies 
are greater than the 5th-mode natural frequency and the 
response amplitude reduces with increasing reduced ve-
locity. The mean positions of cylinders 4 and 5 start to 
increase with Vr as Vr>25. The mean positions of cylinder 
1 and cylinder 2 are approximately the mirror images of 
the mean positions of cylinders 5 and 4 about the line of 

0/ =DY .
Figure 10 shows the variations of the amplitude of 

the modal coordinates with the reduced velocity for the 
five-cylinder system. Mode 1 dominates the vibration 
response when the reduced velocity is less than 4 and 
mode 2 dominate the vibration when Vr=6 and 7. The vi-
bration response is evenly dominated by Modes 1 and 2 at 

5r =V , which is the boundary reduced velocity between 
modes 1 and 2. As the reduced velocity exceeds 7, the 
contributions from modes 3 to 5 become significant while 
the modes 1 and 2 components of vibration response are 
still obvious. In the range of 158 r ≤≤V , where the 
response energy is almost evenly distributed among the 
five modes, the amplitudes are obviously higher than 
those in other reduced velocities. The variation of the re-
sponse frequency with the reduced velocity in the range of 

158 r ≤≤V  is also weak. The response is dominated by 
mode 5 as the reduced velocity exceeds 16. The response 

frequency is close to the mode 5 frequency at Vr=16 and 
exceeds mode 5 frequency at Vr=17 as shown in Figure 9 
(b). For the five-cylinder system the range 73 r ≤≤V  is 
referred to be the single-mode branch because the single 
mode can be clearly identified except at the boundary be-
tween two modes. The range of 188 r ≤≤V  is referred 
to be the multiple-mode branch. The reduced velocities of 
16, 17 and 18 are in the multiple-mode branch because the 
contributions from modes 1 to 4 are obvious, but are less 
significant than that from mode 5. 
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Figure 10. Variations of the amplitude of the modal co-
ordinates with the reduced velocity for the five-cylinder 

system

Figure 11 shows vorticity contours of the near wakes 
of the cylinders when cylinder 1 is at its lowest position 
in the cross-flow direction. It can be seen that the inter-
action among the vortices are strong at Vr=4 to 16, where 
the response amplitudes of the cylinders are large. The 
interactions among the vortices shed from adjacent cylin-
ders take place right behind the cylinders in Figure 11 (b) 
to (e). The strong interactions among the vortices lead to 
very irregular vibration displacement. Merging of the two 
or three vortices of the same signs is very common in the 
wake. It appears that the vortices that are shed from the 
bottom of cylinder 1 and the top of cylinder 5 are less af-
fected by the interaction especially in Figure 11 (c).

(a) Vr=2
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(b) Vr=4

(c) Vr=7

(d) Vr=12

(e) Vr=16

(f) Vr=25

Figure 11. Contours of the vorticity when Cylinder 1 is at 
its lowest position for the five-cylinder system

There is phase difference among the vortex shedding 
processes of the five cylinders. For example, in Figure 
11 (a), the vortex shedding from cylinders 1 and 2 is 
slightly ahead that from cylinders 4 and 5. The patterns 
of vortex shedding from different cylinders may be dif-
ferent, especially when the vibration amplitude is large. 
In Figure 11 (b), the vortex street from cylinder 2 is very 
similar to the 2P mode with two rows of vortices in the 
wake. Although two vortices are shed from cylinder 1, 
the wake behind cylinder 1 is much narrower than that 
from cylinder 2. The vortex shedding from cylinders 3 
to 5 is in 2S mode. In Figure 11 (c), the vortex shedding 
is in the 2P mode in the wake of the two side cylinders 

DOI: https://doi.org/10.30564/hsme.v2i1.1504



12

Hydro Science & Marine Engineering | Volume 02 | Issue 01 | April 2020

Distributed under creative commons license 4.0

1 and 5. The bottom row of the vortices from cylinder 
1 and the top row of the vortices from cylinder 5 do not 
participate in the interactions with other vortices, while 
the vortices in the wake of the three middle cylinders in-
teract actively. 

3.3 Ten-cylinder System

Figure 12 shows the variation of the response amplitude, 
the response frequency and the mean positions with the 
reduced velocity for cylinders 1 to 5 in the ten-cylinder 
system. Figure 13 shows the variation of the amplitude 
of the modal coordinate with the reduced velocity for the 
ten-cylinder system. The cylinders are numbered from 
1 to 10, with cylinder 1 at the bottom and cylinder 10 
at the top. The statistic values of the response displace-
ment for only five cylinders are shown in Figure 12 due 
to the symmetry of the configuration. Similar to those 
in the two- and five-cylinder systems, the cylinders do 
not vibrate until the reduced velocity exceeds 3. The 
amplitudes of all five cylinders increase quickly with 
the increasing reduced velocity as the reduced velocity 
is increased from 3 to 5. The differences among the am-
plitudes of the cylinders are significant. The response 
frequency of cylinder 1 exceeds fn10 at Vr=37 and those 
of cylinders 2 to 5 exceed fn10 at Vr=31. In the reduced 
velocity range of 313 ≤≤ rV , the frequencies of the 
majority cylinders (cylinders 2 to 9) are between fn1 and 
fn10. Generally, the higher the reduced velocity, the higher 
mode of the response. Based on Figure 13, 153 r ≤≤V  
is the single mode branch, where single mode response 
can be clearly identified except at the boundaries be-
tween the two neighboring modes. 3116 r ≤≤V  is 
the multiple-mode branch where multiple modes co-
exist. The response in the range of  2316 r ≤≤V  
contains almost all the modes and that in the range of 

3124 r ≤≤V  is dominated by even modes 2, 4, 6, 8 
and 10. The increasing rate of the response frequency 
with the reduced velocity in the multiple-mode branch 

3124 r ≤≤V  is smaller than that in other ranges of 
reduced velocity. The response amplitude in the range 
of 2316 r ≤≤V  is higher than those in other ranges. In 
the regime of 2316 r ≤≤V , the maximum amplitudes 
of cylinders 1 to 5 range from 0.6 to 1.
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Figure 12. Variation of the response amplitude, the re-
sponse frequency and the mean displacement with the 

reduced velocity for the five cylinders in the ten-cylinder 
system

In the single-mode branch of 153 r ≤≤V , the re-
sponse of the cylinder system is mainly dominated by 
one mode or two modes at the boundary reduced velocity 
between two modes. In Figure 13, the response is pre-
dominated by modes 1, 2, 3, 4 and 5 at Vr=3, 7, 9, 11, 13, 
respectively. The reduced velocities of 5, 8, 10 and 12 
are the boundaries between two adjacent modes. The am-
plitude of cylinder 1 becomes the smallest among others 
once the reduced velocity exceeds 20. After the reduced 
velocity exceeds 23, the response amplitudes of all the 
five cylinders decrease with the increasing Vr until Vr=45, 
after which the response amplitudes are small and changes 
little. It is interesting to see that, starting from Vr=20, the 
response frequency of cylinder 1 starts being lower than 
those of other four cylinders till the largest reduced veloc-
ity simulated. The variation of the mean positions of the 
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cylinders with the reduced velocity for the ten-cylinder 
system is similar to those for the two- and five-cylinder 
systems. The non-dimensional mean displacements of 
cylinders 1 to 5 reaches its maximum at about Vr = 26 and 
then starts decreasing with the increasing Vr until Vr is 
about 38. 

As the reduced velocity is greater than 15, the response 
frequency is greater than the fifth-mode frequency fn5, how-
ever, the components of the modes 1 to 5 are still obvious 
as shown in Figure 13 (a) and there is no obvious differ-
ence between them and those of modes 6 to 10. Modes 6 
to 10 appear to contribute to the response evenly based on 
Figure 13 (b) and their contributions on the amplitude are 
generally about 50% greater than those from Modes 1 to 5. 
The reason why different modes contribute to the response 
displacement evenly at large reduced velocities is the close-
ness among the modal frequencies. It can be seen in Figure 
12 (b) that the modal frequencies for Modes 6 to 10 are 
very close to each other and the vibration can shift from one 
mode to another due to a very small disturbance. The strong 
interaction among the wakes from the cylinders provides 
the disturbance easily, especially when the amplitudes of 
the vibration are high. When the reduced velocity is great-
er than 25, the contribution from odd number modes are 
negligibly smaller than those from the even number modes, 
indicating that the vibration displacement is anti-symmetric 
with respect to the line of symmetry y=0. The response is 
dominated by the highest mode (Mode 10) as the reduced 
velocity exceeds 32. 
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Figure 13. Variations of the amplitude of the general-
ized modal coordinates with the reduced velocity for the 

ten-cylinder system

3.4 Comparison between the Systems

The range of the reduced velocity for lock-in is of interest 

in many engineering applications. To compare the lock-
in range of all the response modes. The reduced velocity 
defined based on the natural frequency of the n-th mode 
(fnn) can be calculated by U/(fnnD) and is defined as the 
n-th modal reduced velocity. The variations of the am-
plitude of the modal coordinate with the modal reduced 
velocity for the two-, five- and ten-cylinder systems are 
shown in Figure 14. It can be seen that, if the reduced 
velocity is normalized based on fnn, the lock-in range of 
different modal amplitudes are very close to each oth-
er. For all the response modes, the lock-in starts from 

2)/( nn ≈DfU  and ends at a reduced velocity in a small 
range of 8)/(6 nn ≤≤ DfU .  Based on this conclusion, 
it is possible to estimate the dimensional lock-in velocity 
for every response mode. For a single cylinder, the lock-
in range reduced velocity is 8)/(2 n ≤≤ DfU . It can 
be seen that the upperboundaries of the lock-in range of 
the modal reduced velocity for some modes are slightly 
smaller than that of a single cylinder. 

Although different modes have different lock-in range 
of the modal reduced velocity. Because the dimensional 
velocity ranges for lock-in of different modes overlap 
with each other, the high-amplitude vibration of the 
cylinder occurs in a wide range of velocity for multiple 
cylinder systems, and the dimensional high-amplitude 
response range of the velocity increases with increasing 
cylinder number. If we use 8)/(2 nn ≤≤ DfU  as the 
lock-in range of the modal reduced velocity, the lower and 
upper boundaries of the global dimensional lock-in veloc-
ity range (the total high-amplitude response range of the 
velocity) can be approximately estimated to be the lower 
boundry of the first mode and the higher boundary of the 
highest mode, respectively. 

4. Conclusions

Vortex-induced vibration (VIV) of multiple elastically 
connected side-by-side circular cylinders in steady flow 
at a low Reynolds number of 150 is investigated numer-
ically. The cylinders are allowed to vibrate only in the 
cross-flow direction. The Navier-Stokes equations and the 
equation of motion are solved numerically for simulating 
the flow and vibration of the cylinders, respectively. 

Unlike the single cylinder case, distinct lock-in a range 
of the reduced velocity where the response frequency 
remains almost constant is not observed. Instead, the re-
sponse frequency increases continuously with the increase 
in the reduced velocity in the multiple-cylinder system. 
High amplitude vibration is found when the response 
frequency is between the lowest and the highest natural 
frequencies. After the response frequency exceeds the 
highest natural frequency, the response amplitude reduces 
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with increasing reduced velocity, but remains high for a 
small range of reduced velocities. 

The modal coordinates of the response are analyzed 
in order to understand the contribution of each mode 
in the response. It is found that the response is general-
ly in high mode at high reduced velocities for the five- 
and ten-cylinder systems. The dominance of a single 
mode in the vibration can only be found for low modal 
frequencies.  The single-mode response can be found 
in the range of 73 r ≤≤V  for the five cylinder system 
and 153 r ≤≤V  for the ten cylinder system. At higher 
reduced velocities the contributions of all the response 
modal shapes are found to be comparable with each other. 
This is because the closeness among the high modal fre-
quencies makes the vibration switching from one mode to 
another easily under even very small disturbances, while 
the strong interaction among the wake flows provides the 
source of disturbances. Based on the results for the five- 
and ten-cylinder systems, it is found that the single mode 
for about half of the natural frequencies can be identified, 
while the lowest frequency has the clearest single mode. 

In the two-cylinder system, the response amplitudes 
of the two cylinders are the same except in the range of 

64 r ≤≤V , where the response amplitudes reach to their 
maximum values. For the five- and ten-cylinder systems, 
the response amplitudes of the cylinders are not the same 
and the difference among the amplitudes of the cylinders 
is high when the response amplitude is high. Strong inter-
actions among the vortex shedding flows from different 
cylinders occur at high response amplitudes, resulting in 
a chaotic vortex shedding pattern. There are large phase 
differences among the vortex shedding processes from 
different cylinders in a multiple-cylinder system. 
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