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Abstract

Self-compacting concrete (SCC) mix designs demonstrate complexities in their mechanical 
properties due to natural compounds of the material and the diversity and abundance of factors 
that affect the properties. In this paper, a set of SCC mix designs is made using silica quick-
sand (as a filler) instead of rock powder with other required materials. The tests of fresh con-
crete such as the slump flow, J-ring, V-funnel, L-box tests and the hardened concrete tests are 
investigated and considered. The test results are shown that, a high quality has been achieved 
for SCC mixture contains the quicksand and silica fume contents with low lubricant admixture 
dosage. The research is embodied the use of a branch of Artificial Neural Networks (ANN) as 
a quick and reliable method of such concrete experimental testing. The results confirm that the 
ANN technique can perform as a satisfactory algorithm to provide speedy prediction of opti-
mum silica quicksand content must be added prior to SCC mix design. Carry out experiments 
are usually costly and time consuming, therefore, the proposed algorithm can be used as an 
approximate method.
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1. Introduction

Self-Compacting Concrete or SCC was carried out 
by Okamura for the first time in late 1980 in Japan 
for earthquake-prone buildings that were located 

in areas with a high density of reinforcement.[1,2] Recently, 
this type of concrete is widely applied in many countries 
in order to vary the shape of the structure has been used. 

Self-Compacting Concrete or SCC is treated as a mix 
of lubricant admixtures such as rock powder, silica fume 
(SF), fly ash (Fly-Ash) and superplasticizer (SP) contents 
and a very low water to cement ratio. Granulometry and 
heat treatment have been optimized to obtain excellent 
mechanical and durability properties. Starting point of 

the SCC mix design is the packing theory. These types 
of concrete are very smooth and without undergoing any 
significant separation that can be spread readily into place 
and fill the framework without any consolidation, thus 
SCC mixes, which requires less-skilled workers, in con-
struction's development can be found.[3]

The strength and durability of SCC as the main criteria 
for success are the properties of fresh concrete mixes, but 
it is much wider than conventional concrete is compacted 
by vibration. In general the relation between compact-
ing and mechanical properties of concrete is known, and 
usually a granulometric curve of the solid components 
such as gravel, sand, filler (rock powder, fly ash and silica 
fume) and cement is selected. These mixes are extensive-
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ly tested, both in fresh and hardened states, and meet all 
practical and technical requirements such as a low cement 
and admixtures.[4]

However, SCC mixture should maintain continuity and 
no separation between aggregate grains occur. The Japa-
nese method suggest that the coarse aggregate content in 
the SCC mix corresponds to generally fixed at 50 percent 
of the total solids volume, the fine aggregate content is 
fixed at 40 percent of the mortar volume and the water /
powder ratio is assumed to be 0.9-1.0 by volume depend-
ing on the properties of the powder and the SP contents. 
In many countries, the Japanese method has been adopted 
and used as a first step for training on the development of 
the SCC mix design.[5]

A new mix design method developed for creating SCC, 
henceforth was referred to as Chinese method.[5] First, in 
this recent method the amount of all aggregates require-
ment is determined, and the paste is then filled into the 
void space of the grading aggregates to guarantee that the 
concrete thus obtained has flowability, compactability, 
without segregation and other desired SCC properties. 
Recently, several researchers follow that the particle size 
distribution (PSD) of all aggregates in the concrete mix 
should follow the grading line of the modified Andreasen 
and Andersen (A&A) model. This line grading compris-
es the fine aggregate and goes down to a particle size of 
typically 150μm. In order to model the SCC mix design, 
all solid components should be considered, so also the 
cement and the filler.[5] This modified model verifies the 
positive relation between the rheological properties and 
the compacting of the SCC mix: accomplishing full com-
pacting, the enough water is available to perform as lubri-
cant for the solid components, and the better flowability. 
Both the Japanese and Chinese methods do not consider 
the PSD values of the aggregates.[6]

The amount of aggregates, powders, water/filler ratio 
and water/cement ratio, as well as type and dosage of su-
perplasticizer to be used are the major factors influencing 
the properties of SCC mixture.[7,8]

The principal consideration of the SCC mix design 
method is that the void space of the aggregate is filled 
with paste requirement (cement, water and rock powder). 
Further, the grading of the fine and coarse aggregates is an 
important characteristic because it determines the paste to 
obtain suitable workability. Further, the paste is the factor 
calculating the price, since the increase of the cost of paste 
is use of higher powder content and it can also be reduced 
by use of various mineral materials such as rock powder, 
fly ash, metakaolin etc., as partial replacement of cement. 
However, it is generally noted that, the mineral materials 
also improve the mechanical properties and durability 

of the SCC [9,10]. It is therefore desirable to accomplish, 
the more aggregate, the less paste and consequently, less 
flowability. Subsequently, the cement content is evaluated. 
This quantity is assessed by the required mechanical prop-
erties and durability of the hardened concrete stage.[11]

A serious lack of the mineral material resources (such 
as rock powder and fly ash) increases the cost of SCC 
production. Therefore, in some countries natural substitute 
materials such as quicksand can be used. Mineral mate-
rials which are also known as mineral admixtures have 
been used as replacement cements for a long time ago. 
There are two types of materials crystalline and non-crys-
talline. Micro silica (or called silica fume) is very fine of 
non-crystalline type. But it should be noted that the use of 
the micro silica has led to an increase in the cost of filler, 
and the price of SCC.

Over the last two decades, the development of an ac-
ceptable artificial neural network (ANN) model is nec-
essary for the prediction of reliable results for a problem 
such as mechanical properties of concrete.[12] 

In the literature, many researchers either selected the 
different data mining methods to input the variables for 
their ANN models in studying the compressive strength 
of concrete [13-17]. Therefore, the correct selection of the 
input and output of ANN algorithms can be likely to be 
impressive. Thus do the steps of data preparation and 
training/testing are very sensitive and important. To 
achieve an optimal result, several iteration steps are usu-
ally required. Usually the Backpropagation (BP) layout of 
neural network model is used. In fact, BP is kind of  the 
training algorithm in which pattern provided direction of 
the data flow, either forward or backward. BP requires at 
least three layers in order to predict correctly, and training 
is conducted in a supervised processes. Training of a BP 
neural network occurs in two steps.[18]

The purpose of this study was to examine tiny silica 
quicksand (at Kerman desert) as filler for a broad range of 
SCC concrete mixes. This was achieved by mix the quick-
sand ratio for 5, 10, 15 and 20% by weight, as a substitute 
for concrete rock powder. The quicksand is considered as 
filler and its price is about 1/4 the price of the rock pow-
der. The natural silica quicksand is usually a gray colored 
powder somewhat similar to some micro silica and they 
are generally classified as filler content.

The empirical studies show that, the quicksand treats 
as rock powder and fly ash and it was initially suitable as 
cement replacement material and sometimes it can view 
as an alternative to micro silica. As known that, micro sil-
ica content may be used as costly pozzolanic admixtures. 
Following the previous references methods, the concrete 
paste lines are considered for significant water/powders 
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(cement, fly ash and rock powder). A general relation is 
achieved between the compacting and specific surface 
area of each solid, and the water required for bleeding, 
flowing and deformability of paste phase. The effects of 
quicksand content in addition to rock powder, silica fume 
(SF) and superplasticizer (SP) dosage on fresh and hard-
ened concrete properties of SCC are considered. This mix 
is introduced all practical and technical requirements such 
as a low cement and powder content, therefore the exper-
imental results are illustrated that the mix design has the 
high compressive strength and low cost.

As mentioned, due to the variation in the SCC con-
crete constituents has different behavior. As a result,  it 
is necessarily the view of the mechanical properties such 
as compressive strength and workability is  reviewed. In 
this research the objective goal was not the evaluation of 
concrete durability. Therefore, the two artificial neural 
network (ANN) models that were selected for the pres-
ent study are predictions of SCC mechanical properties. 
These two models are developed to predict the following 
attributes of the SCC mix design: 1) mechanical property, 
2) rheological property. 

In order to present study, the results of forty-five ex-
perimental samples are utilized to develop these two ANN 
models, incorporating some of the effective parameters on 
their mechanical properties.

2. Experimental Stage
The experiment stage is consisted of six studies on for-
ty-five full scale mixes. Each study is built 
upon techniques and observations as the 
SCC mix designs are limited to standard 
mix designs at a constant, moderate level 
of workability. Furthermore, the studies 
are statistically designed to estimate all of 
the possible properties variation that might 
occur in SCC preparation, as explained in 
the next sections. The materials used are 
chosen to allow the optimal use of stan-
dard requirements, which proved to be vi-
tal in extracting information from the data 
in the previous studies.

2.1. Materials
Cement:The cement used was type II of 
Portland cement with a specific gravity 
3.15ton/m3, produced by Kerman cement 
factory. The XRD test results show that 
chemical characteristics of the cement 
satisfy the ASTM C150 Standard Specifi-
cation.

Fine aggregate:The fine aggregate 

(sand) used in the samples was the natural siliceous clean 
and free of impurities crushed stone sand with a specific 
gravity 2.7ton/m3. It was obtained from Kerman aggregate 
mine in eastern south of Iran. Its maximum nominal size 
(4.75mm) is suitable to be used in SCC and absorption 
of the sand found 0.7%. Granulometric curve of the used 
fine aggregate is shown in Fig. 1. Sieved sand over sieve 
of size 0.6mm was discarded as impurities. This indicates 
that the fine aggregate is unstable and contains void. Ade-
quate grading and packing is therefore required to obtain 
workable fresh concrete.

Coarse aggregate: Two types of coarse aggregates used 
to make mix design were obtained from Kerman crushed 
aggregate mines. Maximum size of the coarse aggregate 
used in concrete was 19mm.

Specific gravity and water absorption of the coarse 
aggregates (gravels) under examination are determined 
using ASTM standard C127. The values of specific grav-
ity and water absorption of aggregates are found 2.7ton/
m3and 0.7%, respectively. Sieve testing results of the used 
coarse aggregates are shown in Fig. 1. 

Silica fume (SF): It is a product of micro silica consist-
ing mainly of amorphous silica (SiO2) and non-combusti-
ble particles. It was produced by Ferro Alloys Corporation 
Ltd. The main constituent material in SF is silica (SiO2), 
the content of which is normally over 90%. Table 1 shows 
chemical components obtained by the XRD test of a com-
mercially available silica fume. The silica fume used was 

Figure 1. Sieve analysis of fine and two types of coarse aggregates

Table 1. The chemical components of the silica fume

Chemical
Composition SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O N2O P2O5 Cl

Average (%) 93.6 1.32 0.87 0.49 0.97 0.87 0.50 1.01 0.16 0.04
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satisfied with the main requirements of ASTM C1240.
Superplasticizer: In order to improve the workability 

of fresh phase without an additional amount of water, the 
high-range water-reducing admixtures, often referred to 
as superplasticizer was added to the mixture. In this study 
a naphthalene sulphonate group based superplasticizer, 
supplied by Chemical Supply Manufactory was used. The 
main properties of the used superplasticizer were con-
formed to ASTM C494-Type F.

Figure 2. Particle Size Distribution(PSD) of fillers and sand
Quicksand: Because of its unique nature, some of the 

silica quicksand has the potential to significantly reduce 
SCC costs. There is not currently an exact standard re-
quirements regard to proportioning of the quicksand in the 
SCC mixes.

In this study, the clean silica quicksand materials as 
filler were prepared from deserts around Kerman prov-
ince. The physical properties (granulometric tests and SE) 
have been used as examples of fine aggregate (sand). As 
the A&A model accounts for fillers (<250μm) better, it is 
better suited for designing SCC and when the cumulative 
PSD satisfies equation as follows [6],

q

maxD
D)D(P 








=

� (1)

The parameter P is a fraction that is based on the size 
of sieve D, Dmax is the maximum particle size of the ag-
gregate components and q has a value between 0 and 1. 
Based on Andreasen and Andersen (A&A) research, the 
optimum packing will be obtained when value of q ≈ 0.37.

The sieve analysis results of the used fillers and the fine 
aggregate are compared in Fig. 2. The results are implied 
that all of the quicksand materials (Type I to IV) are with-
in the specified limit and these values are suitable as filler 
for construction work (see Fig. 2). 

2.2. Mix design
In present study, the effects of the quicksand (as filler) 
instead of the rock powder content are investigated for a 

broad range of SCC concrete mixes. This was achieved 
by mixing the quicksand ratio for 5, 10, 15 and 20% by 
weight, as a substitute for concrete rock powder.
At first step, the most important consideration is that the 
voids between incompact aggregates are filled with paste, 
and that the packing of the aggregates is minimized. 
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Figure 3. Void fraction of aggregates mixes, before and 
after compaction process

Therefore, the locally fine aggregate (sand) and a 
gapped grading has been used for the coarse aggregates (2 
types) made by combining what has been retained on the 
sieve #4. Hence, the density of the aggregate components 
depends on the sand/coarse ratio, and not only to the value 
of sand or gravel alone.

The void fraction of the densely packed aggregate is 
determined as follow [5],

a

d
ad

ρ
ρϕ −= 1 � (2)

where d
aρ  and aρ are density of the compacted aggregate 

(referred to apparent density) and its specific density (or 
particle), respectively. 

Fig. 3 shows the void fraction values with sand/coarse 
(mass) ratios of both in loose and compacted situation. As 
shown in this figure, the fine aggregate (sand 0-4.75mm) 
achieves a minimum value of the void fraction when its 
content is 56% in combination with coarse aggregate.

The second step is the addition of the powders (cement 
and filler) contents. The concrete samples are carried out 
based on replacement of powder by the quicksand as filler 
material. The required cement content is directly related to 
the desired compressive strength. In the most previous re-
searches, a linear relation between the mechanical proper-
ties of the hardened concrete and the cement content is as-
sumed. Furthermore, the quantity of water for the cement 
and the powders follows from the flowability requirement. 
Then the mix designs were carried out according to num-
ber of trail mixes to produce SCC without segregation and 
bleeding. In the trail mixes, it can be noted that the quan-
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tity of water for the cement and the filler can be achieved 
in fresh mix according to the flowability requirement. For 
this study, SCC mixes were prepared with a different filler 
ratio.

These mix designs are introduced in detail here, where-
by the quicksand and other supplementary cementitious 
materials are now also included as filler content. 

As shown in Table 2 the more details on the prepara-
tion procedure of the SCC mixes have been contained the 
following specifications, Mix QS expresses a concrete 
with just quicksand content, Mix RP and Mix SF represent 
mixes create just containing rock powder and Silica Fume, 
respectively, Mix RP + SF and Mix QS + SF concretes re-
lated to mix design by rock powder plus silica Fume and 
mix using quicksand in combination with silica Fume, re-
spectively, and Mix RP + QS introduce mix include rock 
powder and quicksand as filler material content. 

Table 2. Dosage of developed SCC mixes

Material (kg/m3) Mix 
QS

Mix 
RP

Mix
 RP + 
QS

Mix 
RP + 
SF

Mix
 QS + 

SF
Mix
SF

Cement 450 450 450 450 450 450
Rock powder -- 250 125 120 -- --

Fine aggregate (sand) 850 800 850 850 850 850
Coarse aggregate I 450 450 450 450 450 450
Coarse aggregate II 400 400 400 400 400 400

Quicksand 250 -- 125 -- 125 --
Water 170 140 170 130 145 145

Silica Fume (SF) -- -- -- 50 125 250
Superplasticizer (SP) 20 20 20 20 15 10
Water/cement ratio 0.38 0.31 0.38 0.29 0.32 0.32

Water/(QS+SF) ratio 0.68 0.56 0.68 0.77 0.58 0.58
Finally, the plastic and hardened properties of the SCC 

were monitored and measured. 

2.3. Fresh Concrete Experiments
Several tests for the fresh properties (paste phase) of SCC 
have been proposed [19]. Tests was included density, air 
content, slump flow and passing ability that are measured 
by L box, V-funnel time and J-ring. Further, characterizing 
method for the mortar properties were proposed and the 
indices for deformability and viscosity were defined as mΓ

and mR  [4].
2
0

2
021 )( ddddm −=Γ � (3)

d1, d2 : Measured flow diameter through slump flow
d0 : Flow cone diameter
Rm = 10/t� (4)

(sec)t : Measured time (sec) for mortar to flow through 
the V-funnel

In Eqs. (3) and (4) a larger mΓ  shows higher deforma-
bility and a smaller mR  indicates higher viscosity. 

The test results of the fresh concrete are given in Table 
3 according to the different standard reference methods. 
Table 3. Results of fresh SCC tests according to standards

Result Mix 
QS

Mix 
RP

Mix
 RP + 
QS

Mix 
RP + 
SF

Mix
 QS 
+ SF

Mix
SF

Slump (mm) 665 631 684 671 709 720
Slump flow time T50(sec) 4.9 4.7 4.5 4.6 4 2.8

L-Box ( 12 hh )% 81 76 80 79 89 90
V-funnel time (mm) 12 13 12 9 10 8
J-ring diameter (cm) 64.5 61 66.1 66.3 69.9 71.2
J-ring ( 12 hh − ) (mm) 11 13 11 7 7 5

Superplasticizer (kg/m3) 20 20 20 20 15 10
Superplasticizer/powder (%) 8 8 8 11.8 6 4

Air content (%) 1 1 1 1 1 1
Density (kg/m3) 2590 2510 2590 2470 2560 2555

The properties of the freshly-prepared SCC mixes are 
tested including density as the specified limit by European 
standard.

Table 4. Results of hardened SCC tests

Result (kg/cm2) Mix 
QS

Mix 
RP

Mix
 RP 

+ QS

Mix 
RP + 
SF

Mix
 QS 
+ SF

Mix
SF

28 days compressive 
strength 300 480 380 585 820 660

modulus of elasticity (×105) 2.60 3.29 2.92 3.63 4.20 3.85

2.4. Hardened SCC Experiments
Hardened concrete tests on SCC included compressive 
strength and modulus of elasticity.

The six different mixes have been cast in standard 
cubes of 150×150×150 mm3 for the compressive strength 
testing at 28 days, (standard BS EN 12350-1). At ages of 7, 
14 and 28 days, four cubes per mix QS+SF with a quick-
sand ratio as much as 5% to 20% (of the weight) are test-
ed, and the mean values of the tests results are represented 
in Fig. 4.
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The data regarding the compressive strength for all the 
mixes is presented in Table 4 and indicates that average 28 
days strengths of 820 kg/cm2 obtained for 5% quicksand 
content (Mix QS + SF).

Based on results of hardened concrete tests, using the 
quicksand (as filler) instead of the rock powder, decreases 
the amount of SP. Additionally, there is a consistent be-
havior for both 7 and 28 days compressive strengths have 
been observed. When the amount of the quicksand content 
exceeds 5%, the compressive strength is decreased with 
the same SP dosage. Further, a condition of good disper-
sion of mortar with more content of the quicksand (greater 
than 5%) due to high SP dosage could increase the amount 
of weak zones, interfacial transaction zone. thereby de-
crease the compressive strength of mortar. More impor-
tantly, the experimental results pointed out that there ex-
ists a critical unit quicksand volume for mortar with W/C 
= 0.32 of the Mix QS + SF included content of SP dosage. 
The compressive strength of mortar would be affected 
when the content of quicksand exceeded this critical vol-
ume. It was due to the differences of effective thickness 
of paste around aggregates. The maximum compressive 
strength has been achieved for this critical volume (see 
Fig. 4).

3. Investigating the Alkali-Silica Reaction 
(ASR)
In this section, standard test method for evaluating the 
potential Alkali-Silica Reactivity of combinations of the 
pozzolan and the aggregates is investigated. Materials re-
quired for the Accelerated Mortar-Bar Method (AMBM) 
are selected based on the norm ASTM C 1260recommen-
dation. In all tests, to determine the effect of pozzolanic 
activity on the ASR, the rate of deformation of specimens 
from concrete components (with constant value) contain-
ing different percentages of the pozzolan to the cement 
was observed over a period of approximately 14 days and 
compared to the control specimen reviewed.

Table 5. Mortar-Bar mixing with different pozzolan re-
placement ratios

Specimen
No.

Oven-dry 
aggregate

(kg)
Cement 

(kg)
Water 
(kg) (w/c)

Special 
Weight 
(kg/m3)

Poz-
zolan 
(%)

Air-En-
trained 

(%)

P-1 878 350 200 0.47 2274.3 0 2.49

P-2 878 350 200 0.47 2251.9 5 0.48

P-3 878 350 200 0.47 2237.6 10 1.11

P-4 878 350 200 0.47 2224.1 20 1.71

P-5 878 350 200 0.47 2215.7 35 1.89

P-6 878 350 200 0.47 2054.8 50 1.70
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Figure 5. Specimens expansion containing Pozzolan for a 
period of 14 days

It should be noted that, in the AMBM test, expansion 
of specimens is considered to be more than 0.1% for 14 
days as ASR criteria.Fig. 5 show the expansion rate of 
specimens against the alkali solution. Figure demonstrated 
that mortar with 20% pozzolan replacement (instead of 
cement) are activated with an alkali solution and expand 
less than 0.1% after almost 14 days.

4. ANN modeling stage 
Experimental studies of engineering issues are time-con-
suming and expensive. Particularly in concrete mixing 
designs, the selection of suitable components may be due 
to an error. So using simulation methods to predict results 
can be very useful. One of the most commonly used sim-
ulation methods in engineering issues is artificial neural 
network (ANN). In this section, application of artificial 
neural network (ANN) to develop two models for predict-
ing SCC mix design properties is presented. These two 
models are developed to predict the following attributes: 
1) mechanical property (ANN1), 2) rheological property 
(ANN2). In this study, two proposed ANN models are 
initially converted into an input layer, multi-hidden layers, 
and an output layer. The final layers for these two mod-
els are as shown in Fig. 6. As seen in the figure, in the 
multi-hidden layer case, the output of each hidden layer 
is used as an input for the next hidden layer. In fact, in 
ANN1 model, the inputs are the values ​​of concrete com-
ponents and the output is an estimate of the compressive 
strength of different ages. In ANN2 model, inputs are the 
same values ​​as components, and the output represents the 
parameters that illustrate the workability of fresh concrete 
phase. 

In this research, in both ANN1 and ANN2 models, the 
tansig transfer function in the hidden and output layer was 
used. Furthermore, the feed-forward Back propagation 
(BP) learning algorithm is used to find a local minimum 
of the error functions of the training data set.
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Results from two models were evaluated based on three 
error functions: the square of the correlation coefficient 
( 2R ), root mean squared error (RMSE), and mean absolute 
error (MAE). If the calculated error of the test set was less 
than the previous optimal network, the current network 
would be saved; these steps would continue until no up-
grading in the current network occurred. An average error 
for all training cases would then be calculated for compar-
ison purposes. However, a lower calculated error would 
indicate that the network performance is better.

4.1. ANN steps
After modeling, its computational operations are carried 
out in two basic steps:1) The preparation of the training 

data; and 2) training/testing. 
① The preparation of the training data
As shown in Fig. 6, the parameters for input (X1 to X10) 
and output (O1 to O5 in ANN1 model and O1 to O2 in 
ANN2) was introduced to the network. In order for the 
architecture design of the network, 70% of experimental 
data for training, 15% for validation and 15% for testing 
was chosen. Selecting the data was random using the 
software. In the architecture of neural networks, the num-
ber of neurons in the input layer is similar to the number 
of the input parameters, i.e. number 10. The number of 
neurons in the hidden layer neurons initially was consid-
ered 10 and then the optimum number of the neurons was 
determined. Also, the number of the output layer neurons 
depends on the number of the output parameters of each 
model. According to the Fig. 6, the output data of ANN1 
and ANN2 models was 6 and 2, respectively.

The training process was set for 100 epochs (or in order 
to modify the values of the weight are 100 times the all 
data entered) and the best case was obtained nearly in 20 
times. This process is repeated until the error reaches the 
priority level. Recent step is very time-consuming and re-
duces the efficiency of the ANN method. A common way 

to select the appropriate number of neurons in each hidden 
layer is to perform a parametric analysis of the network 
and check the accuracy of the results. In each iteration 
step using Eq. (5) between the input data will be summed 
together with their weight values and with the bias, 

)1()()( −∆+−=∆ tWerrortW αη � (5)

where η , α  are training rate and momentum factor, re-
spectively.

The parametersη , α  both are in the range 0 to 1. The 
weight and bias values will be initially selected as random 
numbers and then adjusted according to the obtained re-
sults of the training process. This method causes the mod-

el to become agile and decreases 
during the execution of the oper-
ation. 
② The training/testing

The validity of the proposed 
ANN models is then tested by 
applying training/testing on the 
results of the experimental data. 
So that, 30% of the experimen-
tal data results were initially set 
aside for simulation purposes 
at this step. It should be noted 
that, these data are not used for 
training step, and if they can ac-
curately predict the results, then 

it can be said that the network is 
reliable and usable.

5. Results and Discussion
To determine the optimum number of neurons in the hid-
den layer, with neural network architecture is mentioned 
only by the number of different neurons from 1 to 30 was 
created by neurons and minimum RMSE, MAE and 2R
of each of the two obtained the network that the results 
shown in Table 6. Results shown that, the maximum er-
rors for 45 test results are about less than 20%, on the oth-
er hand, it can be seen that 98% of the output results has 
errors less than 15%.

Table 6. Performance results for the two ANN models

Model Network
Architecture

Maximum 
error (%)

2R RMSE MAE

ANN1 Backpropagation 14.5 0.925 3.972 3.521

ANN2 Backpropagation 15.3 0.928 3.859 3.126

According to Table 6, the minimum error and the max-
imum correlation coefficient in 11 neurons was happened. 
The value of the squared error has decreased for 1 to 11 
neurons and then increased. Also, the value of the correla-
tion coefficient has increased slowly with increasing the 

Inputs
X1: Cement
X2: Rock powder
X3: Fine aggregate (sand)
X4: Coarse aggregate I
X5: Coarse aggregate II
X6: Quicksand
X7: Silica Fume (SF)
X8: Superplasticizer (SP)
X9: Water/cement ratio
X10: Water/powder ratio

Outputs
ANN1 model:
O1: 3 days compressive strength
O2: 7 days compressive strength
O3: 14 days compressive strength 
O4: 28 days compressive strength
O5: 42 days compressive strength

ANN2 model:
O1: mΓ deformability index
O2: mR  viscosity index

Figure 6. The basic structure of the created two ANN models
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number of the neurons. Meanwhile, with the increase in 
the number of neurons to more than 11, the value of the 
squared error has increased sharply and the value of the 
correlation coefficient with large slope is reduced. This 
means that, increasing the number of neurons is not al-
ways improves network performance, but also the number 
of neurons is dependent on the number of all input data of 
a neural network. In this research the number of all input 
data is 45 and the number of the appropriate neurons in 
the hidden layer is 11. Therefore, the number of neurons 
in the hidden layer must be approximately 1/4 to 1/5 of 
the number of all input data.

Figure 7. Actual v/s predicted results of the 28-day com-
pressive strength(kg/cm2) using ANN1

Fig. 7 shows a plot of actual compressive strength against 
corresponding ANN1 model predication for testing data. 
A linear correlation can be observed and the square of the 
correlation coefficient is found to be 0.925. Thus it can be 
concluded that the model successfully predicted the com-
pressive strength of concrete in good manner.

Figure 8. Predicted results of the comprehensive strength 
(kg/cm2) using ANN1

Fig. 8 shown that, the results suggest that ANN, can 
effectively be used to predict the compressive strengths 
of the SCC included different percent of the filler content. 

There is a wide variation of two parameters i.e. the con-
crete age (days) and the percent of quicksand content (filler 
%) which can be used.

The second model (ANN2) involved choosing the ideal 
model for the rheological property of the SCC, again by 
minimizing the weighed errors produced for model and by 
also evaluating the ability of the network to produce results 
for deformability and viscosity indices. The results for the 
optimum model for ANN2 are shown in Fig.9. The results 
are suggested the prediction of the rheological property 
based on characterizing method for the mortar properties 
were proposed using the mΓ  and mR  indices. Hence the 
square of the correlation coefficient was found to be 0.928.

Figure 9. Actual v/s predicted results of the deformability 
and viscosity indices using ANN2

As shown in Fig. 10, separate training and testing was 
conducted for rheological property model (ANN2 model) 
which predicted the deformability and viscosity for differ-
ent percentage of the filler content.

It is anticipated that the results for both networks could 
only improve with the addition of further experimental 
data for training and testing the networks.

Figure 10. Predicted results of the deformability and vis-
cosity using ANN2
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6. Conclusions 
The process of choosing a suitable silica quicksand con-
tent material to make SCC is considered with the aim of 
determining the relative amounts of concrete produced 
economically as possible and with the maximum of re-
quired properties, particularly compressive strength, com-
pactability and flowability. Based on these considerations, 
increasing the amount of quicksand (as filler) instead of 
rock powder samples of SP is reduced.

Characteristics of fresh SCC tests show that, high com-
pactability and restrained flowability is usually depends 
on the shape, size and quantity of the aggregate, and the 
friction between the solid particles, which would be re-
duced by adding the amount of quicksand to the mortar. 
It was due to the quicksand act as a roller between the 
aggregates. Further, the segregation phenomena is usually 
related to the cohesiveness of the paste of the fresh con-
crete, which can be improved by some combination of in-
creasing the volume of paste, reducing the free water con-
tent and the coarse aggregate, which would be achieved 
by adding the quicksand content to the SCC mixture.

Further, adding silica quicksand as much as 5% (of 
the weight of the cement) in the concrete, the concrete 
strength will be seen, as 28-day compressive strength 
increased by 40% compared to the control sample (using 
both rock powder and silica fume materials). Slump flow, 
V-funnel, L-flow, J-ring tests were carried out to examine 
the performance of fresh concrete, and the results indicate 
that using the quicksand in the mixture could produce suc-
cessfully SCC of high flowability, without segregating and 
saves cost. Mortar with 20% pozzolan (instead of cement) 
are activated with an alkali solution and expand less than 
0.1% after almost 14 days.

Two ANN models for both mechanical and rheology 
properties of SCC containing silica quicksand (as filler) 
have been developed. The optimal network is a three-lay-
er network with 11 neurons in the hidden layer. The use of 
the Levenberg-Marquardt training function and the tansig 
transfer function in the hidden and output layers and the 
number of neurons between 1/5 to 1/8 of the input data 
will have the suitable results for predicting the properties 
of the self-compacting concrete. Results of each model 
were trained with input and output experimental data. Sta-
tistical values such as the square of the correlation coeffi-
cient, RMSE and MAE that are calculated for comparing 
experimental data with two ANN models. Consequently, 
compressive strength and flowability properties of SCC 
can be predicted in the two models without attempting 
any experiment al program.
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