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Stone mastic asphalt (SMA) has not been widely used in the pavement 
industry, and there are no detailed design specifications for this type of 
asphalt. Therefore, long-term behavior properties of this pavement type 
are not accessible widely, and no model has been established for SMA 
regarding its performance. The main purpose of this study was to incor-
porate expert experience (using the Markov-chain process) and data from 
field experiments to propose a model for SMA performance using the 
Bayesian approach. The implementation of these sources resulted in a 
well-organized method to develop a performance model for SMA pave-
ments, which did not have a long-term data. Finally, a linear performance 
model was established to calculate the SMA service life. The service life 
of SMA can be predicted explicitly according to the developed perfor-
mance model which has been validated using a new set of data.       
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1. Introduction

Stone Mastic Asphalt (SMA) was used in Germany 
in the 1960s, and its first technical instruction was 
published in 1984. Since 1990, it has been used 

prevalently throughout Europe and America and is now 
known as one of the most useful asphalt types, meeting 
technical requirements in all climates. The main purpose 
of this asphalt is to provide a deformation-resistant surface 
and overcome the rutting caused by the friction of studded 
tires on road surfaces [1]. SMA mainly consists of coarse 
aggregates, bitumen, filler, and fibers. This combination of 
components in SMA pavement has a high percentage of 
coarse aggregate, less empty space, and a high mastic of 
bitumen that complies with EN 13108. Fillers and fibers 

are usually added to provide suitable stability of bitumen 
[2]. Due to the high stone content and open-graded struc-
ture of SMA, heavy traffic loads are transmitted through 
the interlocking stone skeleton rather than through the 
mortar. Even though SMA is rut-resistant, due to high 
coarse aggregates content, SMA has inadequate perfor-
mance in fatigue resistance because of fine aggregate 
content [1]. Per the State Department of Highways, SMA 
could have a longer service life (about 33–103%) than 
conventional dense-graded mixtures [3].

There are no detailed design specifications for SMA 
mixtures. The combination of the coarse aggregate and 
mastic composition is principally established by the se-
lection of aggregate grading, the fraction of filler and a 
binder. In the Unites States, a few mixture design specifi-
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cations have been created for SMA and published by the 
US National Asphalt Pavement Association in Quality 
Improvement Publication (QIP) 122 [4]. In 1997, 86 SMA 
projects were studied to evaluate the SMA performance 
with respect to rutting, cracking, ravelling, and surface 
distresses. One of the most important findings from that 
study was that 85% of cases had high abrasion. Many 
projects (about 90%) reported rutting of less than 4 mm. 
In addition, SMA seemed to have higher resistance to 
cracking than dense mixtures; no evidence of ravelling 
was found on the SMA mixtures. Notably, fat spots 
appeared as the principal distress in SMA projects [5]. 
According to these previous studies, some of the char-
acteristics of SMA, such as high rutting resistance or 
high durability, increased surface resistance to cracking 
and reduced noise pollution [6-10]. Regarding the life cost, 
Smith et al. used performance analysis to generate life-cy-
cle models for SMA pavements. Exploiting the life-cycle 
models and historical-based best estimates of pay item 
unit costs, deterministic and probabilistic life-cycle cost 
analyses (LCCAs) were conducted during that research 
[11]. In order to reduce or eliminate expensive tests to in-
vestigate asphalt-aggregate mixtures for the design and 
control of flexible pavements, micromechanical modeling 
has been used in the field of asphalt technology. Buttlar 
and You used a Microfabric Discrete Element Modeling 
(MDEM) technique for the SMA microstructure [12]. This 
model was a simple extension of a conventional discrete 
element modeling (DEM) analysis, in which different 
material phases were studied with clusters of discrete and 
minute elements.

Qiang et al. assessed the SMA performance, such as 
Marshall modulus, mixture stability, residual stability, 
bending stiffness modulus, and dynamic stability to obtain 
the optimum content of materials in an asphalt mixture [13]. 
In another study, Al-Hadidy and Tan evaluated the behav-
ior of the SMA made with the different levels of binder 
by testing their Marshall stability, tensile strength, tensile 
strength ratio, resistance to permanent deformation, flex-
ural strength, and resilient modulus [14]. They reported the 
pavement design of SMA mixes according to the anisotro-
pic elasticity analysis through finite-element simulation. 
SMA pavement smoothness is widely considered as the 
most substantial measure of pavement performance be-
cause it is most evident to the travelling public [15]. The 
international roughness index (IRI) is commonly used as 
an indicator of SMA pavement surface conditions. The 
IRI (i.e., expressed in meter per kilometer units) is a com-
mon method to show the reaction of a vehicle to roadway 
profile and roadway roughness. The Federal Highway 
Administration (FHWA) has required all states to report 

IRI values annually since 1990, which serves as an input 
to the Highway Performance Monitoring System (HPMS). 
Based on the specifications, greater IRI values represent 
rougher roads. The FHWA indicated thresholds for road-
way smoothness based on rehabilitation decisions, among 
other pavement rehabilitation factors. There is a challenge 
that these tolerances often regress the smoothness of the 
ride as perceived by local drivers. Some states are in the 
process of determining IRI thresholds based on Present 
Serviceability Rating (PSR). The problem appears to be 
more severe in urban areas in which the dominant features 
are arterials, collectors, and local streets. Thus, the pub-
lic’s tolerance for pavement roughness is comparatively 
higher because of low vehicle speeds. The standard IRI 
value for good ride quality is 3.5 m/km. This IRI level is 
in agreement with drivers’ acceptability [16].

The Pavement IRI can be evaluated during the service 
life. The initial smoothness (after the pavement construc-
tion) is one of the most valuable quality control criterion. 
It indicates the condition of construction and the roadway 
pavement future performance. Several aspects can influ-
ence the pavement initial smoothness, such as pavement 
design and construction operations. There is a wide range 
of variations in material properties and within pavement’s 
structures. Initial smoothness is being used by state agen-
cies to make sure that roadway pavement is meeting de-
sign specifications. A bad initial smoothness rating could 
cause the new roadway pavements to have failed quality 
testing that lead to a shorter service life. In addition, con-
tractors using the initial IRI value as a control factor to 
identify and address issues quickly and cost-effectively [17]. 

Pavement performance can be stated based on distress-
es, such as cracking, rutting, and roughness. Moreover, 
subjective indicators including the PSR, which was im-
plemented by the American Association of State Highway 
Officials (AASHO) during the Road Test, can be used 
for this purpose [18]. Many studies have developed pave-
ment performance patterns to investigate the deterioration 
process thus far. These efforts were either the empirical 
or mechanistic method, or the two methods combined. 
Garcia-Diaz and Riggins established an empirical curve 
to predict the pavement deterioration [19]. Rahut devised 
a mechanistic approach to fit curves on the damage func-
tions, such as rutting, fatigue cracking, and loss of pave-
ment serviceability index (PSI) [20]. In another research, 
Paterson worked on a series of empirical performance 
models to analyze the Road Test data [21].

Although SMA has been extensively acknowledged in 
terms of laboratory performance and field performance, 
limited research studies have evaluated the performance 
of SMA in a systematic way regarding the identification 
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of distresses over time. To evaluate the pavement perfor-
mance for this purpose, long-term pavement monitoring 
and data collection are needed. Because SMA has not 
been used commonly in the past, long-term pavement 
performance data are often hard to find. Therefore, the 
Bayesian technique is offered as a method to solve this 
problem.

The Bayesian method has been extensively used in 
pavement performance modeling due to the fact that it 
presents a systematic method for the integration of new 
information with previous data to create new values for 
current results [22]. Thus, the Bayesian method offers the 
flexibility to integrate existing knowledge (experience) [23]. 
The main approach of using the Bayesian approach is to 
use data sets, such as experimental data and expert knowl-
edge, to predict the posterior probabilities. Bayes’ theorem 
outlines the transformation from prior probability (expert 
knowledge) to posterior probability (experimental data) 
[24]. 

In a theoretical research experiment, Park et al. mod-
eled theoretical pavement distress using a sigmoidal 
equation with coefficients based on prior engineering 
knowledge in a Bayesian formulation [25]. Saliminejad and 
Gharaibeh combined spatial data analysis and Bayesian 
statistics to propose a computational technique for the 
imputation of missing or inaccessible Pavement Manage-
ment System (PMS) data [26]. Hajek and Bradbury used 
the Bayesian model by combining information from field 
studies of existing projects with information elicited from 
experts. Hajek and Bradbury’s model predicted the pave-
ment deterioration in terms of a distress index, which was 
a function of age, the mixture, and traffic pattern [27].

Classical regression analysis is used on prior data (ex-
pert knowledge) to find the parameters coefficients. The 
variance between Bayesian regression and the classical re-
gression is that the classical regression does not apply the 
prior data to estimating the coefficients. However, classi-
cal regression provides a good basis for use in the Bayes-
ian regression. Bayesian regression is beneficial when a 
database is of low quality, or when unsatisfactory data are 
available. The prior data are strengthened with the exper-
imental data. More experimental data make the posterior 
more conclusive. Thus, the reliability of the posterior ap-
proximations is greater than prior expert knowledge data. 
The final objective is to govern the posterior data of the 
coefficients.

The calculations used in the Bayesian regression di-
rectly parallel those for classical regression, and the sub-
sequent linear regression equation is in the same way as 
the classical result [28]. The classical approach of estima-
tion may encounter difficulties with small sample sizes or 

situations in which there is heavy censoring [29]. However, 
the Markov-chain sampling of Bayesian approach can 
make particular inferences with no resorting to asymptotic 
calculations [30]. Hence, in this article the Bayesian ap-
proach was used to estimate the parameters. The Bayesian 
regression approach modifies the classical regression to 
a general style that consists of prior information (expert 
knowledge), which is used by the Markov-chain, and ex-
perimental data (field investigation).

In the Markov-chain method, the pavement future 
conditions are predicted from the current pavement con-
ditions [31]. A transition probability matrix (TPM) shows 
the level of probability that pavements in a present condi-
tion will move to future conditions. The weakness of the 
Markov-chain process is the reason why it is necessary 
to develop the TPM for each group (the combination of 
factors might affect the pavement performance). Pave-
ment performance background might not be considered in 
the Markov-chain process due to the fact that the future 
conditions of SMA only depend on the present conditions. 
Thus, experimental field data have also been used in this 
research to develop a performance model. The result is 
the combination of the Markov-chain process and ex-
perimental data that are recognized as a well-organized 
method for forming a performance model applying the 
Bayesian approach for a SMA pavement. In a similar 
study, Han et al. compared various pavement materials in 
terms of a performance-oriented property management 
plan [32]. This research contrasted the life expectancy and 
uncertainties of SMA, Polymer Modified Asphalt (PMA), 
Rut-resistant Asphalt (RRA), Porous Asphalt (PA), and 
conventional Hot-Mix Asphalt (HMA). They employed 
the Markov mixture model with the hierarchical Bayesian 
estimation due to short time period and lack of time-series 
performance data. By having pavement performance data 
for each section, the Bayesian posterior probability meth-
od can be used to update the established TPMs [33]. This 
kind of modeling has been used by many researchers to 
improve deterioration forecasts for infrastructure, such as 
pavements [33-38].

2. Objective and Scope

Due to the very low implementation of SMA in the past 
and the consequent lack of enough information about 
this type of asphalt, the primary purpose of this study is 
to use the hybrid method (combination of Markov-chain 
and Bayesian) to present a performance model. Therefore, 
expert understanding (the Markov-chain process) and 
experimental data (SMA field investigation data) were 
integrated to propose a performance model for SMA by 
using the Bayesian approach. In this research, a survey 
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was conducted on the Tehran-North Freeway to collect 
expert knowledge for creating a TPM. The four-lane 
Tehran-North Freeway has a length of 121 km and is in-
tended to create a rapid connection between the central 
area of Iran. Volumes and quantities of earth works total 
40,000,000 m3. Also, tunnels and bridges are in total 44 
km and 13 km, respectively. At the end of 2017, the con-
struction of the first section of the Tehran-North Freeway 
project, connecting Tehran to the city of Chalus in the 
northern Mazandaran province, has progressed significant-
ly and is now 83% complete. The preliminary estimate 
showed that designing and constructing the Tehran-North 
Freeway requires a 2.2-billion-dollar investment. Main 
input parameters for the design of this freeway were the 
Annual Average Daily Traffic (AADT) and the cumulative 
loading over the road design life (20 years), that is the ve-
hicles number passing a specific point in either directions/
day taking into account the variation in the traffic flow 
throughout the year and the total number of axles for the 
same traffic volume. The AADT for the first year of traffic 
was 4,500 with 15% truck and 6% annual growth rate.

Field investigations have been done to control SMA 
pavement surface distresses. To measure the IRI, a Road 
Surface Profilometer (RSP), made by Dynatest Compa-
ny, was utilized. This device collected data from the road 
surface, such as features of the route, curvature radius, 
longitudinal slope, geographic coordinates, roughness, 
skid resistance and ride comfort values. To increase the 
accuracy of the data collection, the road was separated 
into 10-meter intervals. According to the conducted stud-
ies, the IRI ranged from 1.52 to 1.83 mm/m. The IRI of 
SMA pavement has been described as a condition index. 
This condition index with the mean of expert responses 
has been employed to do the regression analysis and pro-
pose a performance model using the Bayesian regression 
approach. To verify the proposed model, SMA sections 
in the Tehran-Qom Freeway (also known as Persian Gulf 
Highway) were chosen to be compared with the sections 
from the North Freeway. The Persian Gulf Highway had 
the same conditions and predicted traffic patterns as that 
of the North Freeway. This highway accommodates a 
high level of intercity traffic of vehicles. Consequently, 
the data was received from the Traffic and Transportation 
Organization of Iran. The minimum length of each section 
was 400 m, and the IRI ranged from 1.43 to 3.91 mm/m. 
The provided model can be more comprehensive than oth-
er approaches considering some parameters affecting IRI 
such as climate impact and traffic spectrum, although they 
are not considered due to the lack of enough information.

The motivation of this study is to provide a perfor-
mance model to enable users to predict the future con-

ditions of pavements by using the present pavement 
condition. The benefits of this prediction are not only to 
estimate the remaining service life of SMA pavements, 
but also to have an organized PMS for rehabilitation and 
maintenance programs. Therefore, contractors can keep 
the quality of pavements in a suitable condition anytime 
in the service life by determining the number of years 
until rehabilitation is required. The results of study will 
be a serviceable and safe pavement condition in a cost-ef-
fective manner. The classical regression outcome (the data 
result) is not contrasted with the Bayesian results. If no 
further data was available, the Bayesian approach is pref-
erable (prior information will be used in estimations). The 
principal purpose was to implement the observed data in 
the TPMs calibration using the Bayesian technique. 

3. Methodology

This section explains how the methods of Bayesian and 
Markov-chain are integrated. The basic theoretical foun-
dation that links a Markov-chain process and the Bayesian 
posterior probability method has been summarized in pre-
vious studies [39]. It is assumed that the prior distribution 
function of the TPMs belongs to a family of distributions 
that is closed under consecutive sampling [33]. The simple 
form of research methodology is shown in Eq. 1:

	

� (1)

Based on the Bayesian method, there were two initial 
data sets: data obtained from experts’ knowledge surveys 
and data obtained through experimental collection. These 
two sets of data were combined using the Bayesian tech-
nique, which was followed by the posterior result. The 
experimental data were used directly, which means that no 
operation was processed to utilize it. This data included 
the age of the pavement and the IRI in relation to that age. 
However, data obtained from experts’ knowledge should 
not be used directly and needs a special operation to car-
ry out experimental analysis. This process included the 
Markov-chain method. The combination of these two ap-
proaches took place in this phase. The data that came from 
experts included the initial probability condition vector 
and the TPM. Based on these data, the next state for prior 
data was determined. The basic data were required to start 
developing the model. The preliminary data were collected 
based on expert opinions and questionnaires for developing 
the TPMs. Before distributing the questionnaire, a training 
session was held. Then, the questionnaire was distributed 
among 18 experts, and the average of the expert ratings 
was considered as the associated elements of TPM. The ex-
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perts were chosen from 11 senior pavement engineers and 
7 pavement field technicians who work in projects under 
the supervision of Ministry of Roads and Transportation. 
In the questionnaire, experts were asked about using IRI as 
an indicator of the quality of road surfaces of this type of 
pavement. The only criterion for rating IRI as an indicator 
of pavement was the age, regardless of the other factors 
due to the limitations of the statistical methods used in this 
study. In this study, 11 SMA sections in the Tehran-North 
Freeway were monitored, and their distresses were re-
corded. The IRI, showing the overall distress condition of 
SMA, was calculated for all sections. To apply the experts’ 
knowledge and the Markov-chain approach, the collected 
data were analyzed by applying the Bayesian procedure. 
The Tehran-Qom Freeway (from 3rd km to 5th km) was 
selected to verify the model of IRI prediction of SMA 
pavements, which had the analogous conditions and traffic 
patterns. This case study zone was started after the junction 
with Road 51. It should be noted that ambient conditions 
and number of lanes were similar which could help the val-
idation be suitable.

The study involved the roughness and distress analysis 
from pavement sections. Results were integrated with 
the software package for each section and inserted in the 
PMS database. All the data including pavement distress 
and roughness were accumulated yearly from 2007. Mea-
surement methods have certainly potential errors that fre-
quently increase the overall modeling error. Although it is 
not likely to generate a model with no error, the purpose 
of this study was to produce it with the least error.

Before using experts’ opinions, the IRI was classified 
in different states. These states were described to the ex-
perts. Then, experts were asked to rate SMA pavement, 
which was recently established. By the experts’ opinions, 
the probability of being in each state was specified. After 
this stage, the initial probability matrix was built. More-
over, the experts were asked what percentage was likely 
to remain in the state and what percentage is likely to go 
to the next state (worse). Finally, the TPM was built. The 
TPM matrix could be used with an initial probability con-
dition vector to predict the next year probability vector, as 
presented in Eq. 2. Similarly, the probability vector was 
calculated for 5 years:

� (2)

Based on the defined states and probability vector 
for each year, an indicator IRI was defined, specifically. 
This value was expressed by the expected value (EV), as 
shown in Eq. 3:

� (3)

where EVIRI(t) is the expected value in the numeric 
index of stage t, EIRI is the vector of IRI average in each 
state’s interval, and IRI(t) is the probability vector in stage 
t. Then, two categories of data processing were ready to 
take the conclusive results in accordance with the Bayes-
ian approach.

4. Description of Equations Parameters

The key objective of applying the Bayesian technique 
was to predict the parameters’ regression coefficient in the 
performance models. To evaluate pavement performance, 
long-term pavement monitoring and data collection are 
necessary. Since this case study had less long-term pave-
ment performance data, the Bayesian method was used to 
solve this problem. Based on the regression equation, IRI 
might be influenced by many factors, including age, traf-
fic, and ambient conditions. But in this study, only the ef-
fect of age on the IRI index was evaluated. As a result, the 
classical regression in a matrix form was used. Based on 
the linear regression, there is a linear relationship between 
dependent and independent variables in terms of coeffi-
cients, as shown in Eq. 4. The prior equation is presented 
as the classical regression form:

� (4)

where k is the independent variables number, Y is the 
distress indicator (dependent variable), X1 is the pavement 
age (regression variable), e is a random error term, and 
both b0 and b1 are the regression coefficients. The ultimate 
purpose of this procedure is to obtain regression coeffi-
cients for the posterior model. The b0 coefficient shows 
the extent of the distress indicator in the first year (Stage 0) 
and the b1 coefficient represents the slope of the distress 
indicator versus the pavement age.

To obtain the regression coefficients for both data sets, 
Eq. 5 and Eq. 6 were used. For each data set, a precision 
matrix was defined to be used at later ages. The preci-
sion matrix for both prior and experimental data were 
displayed with A and H, respectively. The first phase in 
Bayesian regression is to calculate prior information, 
which has the similar format as the classical regression, 
given by Eq. 4.

Two forms of priors can be used: N-prior and G-prior. 
The main difference between the N-prior and the G-prior 
is the way that they present the prior precision matrix. The 
N-prior needs a variance-covariance matrix to show the 
prior precision matrix; however, the G-prior independent 
variable data are a set of independent variables (expert 
knowledge), similar to the data used to derive the classical 
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regression and the prior precision matrix. The G-prior is 
generated based on the Gaussian linear models in the con-
text of Bayesian factor analysis. In this study, the G-prior 
is chosen for the sake of straightforwardness as the prior 
type. To establish the prior precision matrix, the G-prior 
independent variables data and G-prior factors were need-
ed.

Prior Data� (5)

Experimental Data� (6)
where Y is a vector of the dependent variable, X is the 

matrix of independent variables and n is the pavement 
age. Also, bpr is the regression coefficient associated with 
the related variable and epr is the random error part for the 
prior. After obtaining the prior data, the ordinary least-
squares regression was used to approximate the average 
of the coefficients, as shown in Eq. 7:

� (7)

where Xt and X-1 represent the transpose and inverse of 
matrix X, respectively. By using Eq. 6, b as the vector of 
regression coefficient means is calculated, as shown in Eq. 
8:

� (8)

The G-prior factors are positive numbers that were ex-
ploited as weights in the prior precision matrix calculation 
to modify the effects of the prior precision matrix in the 
posterior computation. The G-prior factor is termed g, 
which had the value of 1. The prior precision matrix was 
determined using Eq. 9:

� (9)

where A is the prior precision matrix, XG is the G-prior 

independent variable matrix and Xt
G is the transpose of 

XG. The regression coefficients, bpr, is calculated using Eq. 
10:

bpr=A -1 (X t Y)� (10)

where bpr is the prior regression coefficients, Xt is the 
transpose of independent variables and Y is the dependent 
variable.

The next phase is evaluating the experimental data that 
is like the classical regression. In order to compute the 
precision matrix for the experimental data, H, Eq. 11 was 
used. The regression coefficients are calculated using Eq. 
12:

H=g(X t X)� (11)

b=H -1(X t Y)� (12)

where b presents the regression coefficients, H is the 
precision matrix of experimental data, Xt is the transpose 
of independent variables, and Y is the dependent variable. 
Finally, by using the precision matrix A and H (prior and 
experimental data), the posterior precision matrix for the 
posterior mode is determined by the Eq. 13:

M=A+H� (13)

This equation is used in order to estimate the posterior 
results by combining the prior with experimental data. 
Thus, the posterior precision is given by the sum of the 
prior precision (A) and the experimental data precision 
(H), and the posterior mean is given by the sum of the 
prior data mean and the experimental data value, each 
weighted by their relative precisions. The posterior pre-
cision is the same as inverse variance weighting where 
the weights sum to one [23,40-42]. The posterior regression 
coefficients for the posterior mode were calculated using 
Eq. 14. Finally, given the regression coefficients, the final 
posterior model was developed:

bpos=M -1 (Abpr+Hb)� (14)

where bpos is the posterior regression coefficients, bpr is 
the prior regression coefficients, and b is the experimental 
data regression coefficients.

5. Data analysis

5.1. Prior Data (Markov-Chain Method)

The classifications of states and desired ranges were 
defined in accordance with experts’ knowledge. The 
TPMs for forming Markov-chain models were set up. 
The Bayesian regression method was used to indicate 
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the needed prior information. The IRI was usually 
limited to a range of zero to 10 m/km. However, the 
IRI range was defined as 1.5 to 2.5. Because the mod-
eling was designed for five years, the quality of SMA 
pavement, the experts’ opinion and the performance of 
Markov were decisive in choosing this range for IRI. 
Another issue was how to divide the states. Since the 
stage was considered one year, the classification should 
be such that the possibility of loss of IRI in all the stage 
existed to produce the TPM with optimal performance. 
The defined states in accordance with experts’ knowl-
edge are presented in Table 1.

Table 1. Defined intervals for IRI to describe the SMA 
pavements conditions

State 1 2 3 4 5 6 7 8 9 10

IRI 1.5-
1.6

1.6-
1.7

1.7-
1.8

1.8-
1.9

1.9-
2.0

2.0-
2.1

2.1-
2.2

2.2-
2.3

2.3-
2.4

2.4-
10

The survey was distributed to 18 experts, and the aver-
age of the answers was reported as an array of TPMs. 
Experts responded to another question by proposing the 
IRI index for pavement in the first year of operation and 
prior. The respondents were not asked to insert probabil-
ity values in the TPM directly because that putting the 
probability values in TPMs with no clarifications would 
result in an error due to being subjective. Thus, an il-
lustrative method was used to inform respondents about 
states. Authors provided pictures for each state according 
to the current performance. Then, experts were asked to 
express their opinions about what would be the state of 
the given pavement after each year. The probability con-
dition vector was calculated by the authors. By summing 
up the experts’ responses, the second step of the Markov 
method, the initial probability vector production was 
completed as shown in Table 2. This means that there 
are 60%, 25%, 10% and 5% chances that a new section 
immediately after installation will be in condition 1, 2, 3 
and 4, respectively.

Table 2. The initial probability vector of IRI

State 1 2 3 4 5 6 7 8 9 10

Initial Probability Vector 60 25 10 5 0 0 0 0 0 0

The most important part of this process was produc-
ing the TPM matrix. This matrix must indicate the actual 
pavement performance, which was defined based on the 
number of states. The matrix was a 10×10 square matrix. 
Each element of this matrix was gathered from experts’ 
knowledge and experience. Elements on each row of the 
matrix represent the probability of remaining in the same 
state or switching to another state. The most likely change 

in the pavement condition was switching from the state (i) 
to state (i + 1). In addition, the possibility of changing the 
status for two steps was considered; however, as can be 
seen in Table 3, switching for three steps or more was un-
likely, and no possibility was considered. Another notable 
point of the TPM is the triangular shape of the matrix due 
to neglecting repairs, maintenance, and improvement of 
the pavement condition. In comparison, matrix elements 
increased in rows line by line. This increase reflects the 
fact that the high IRI and the loss of pavement quality de-
creased the rate of distresses. Therefore, this matrix results 
in the probability of remaining in the current condition for 
pavement increase.

Table 3. Transition probability matrix based on expert 
knowledge

states 1 2 3 4 5 6 7 8 9 10

1 0.2 0.7 0.1 - - - - - - -

2 - 0.2 0.7 0.1 - - - - - -

3 - - 0.25 0.65 0.1 - - - - -

4 - - - 0.25 0.65 0.1 - - - -

5 - - - - 0.3 0.65 0.05 - - -

6 - - - - - 0.3 0.65 0.05 - -

7 - - - - - - 0.35 0.65 0 -

8 - - - - - - - 0.4 0.6 -

9 - - - - - - - - 0.5 0.5

10 - - - - - - - - - 1

With the production of TPM, the probability vectors of 
each stage were calculated easily. Thus, the initial prob-
ability vector was multiplied by the matrix TPM to gen-
erate the probability vector of stage 1. By repeating this 
process, four other probability vectors were obtained as 
shown in Table 4.

Table 4. Probability Vectors in Each Stage

stage 0 stage 1 stage 2 stage 3 stage 4 stage 5 IRI

state 1 60 12 2.4 0.48 0.09 0.019 1.55

state 2 25 47 17.8 5.24 1.38 0.344 1.65

state 3 10 26 40.6 22.85 9.42 3.336 1.75

state 4 5 10.25 24.16 34.21 23.92 12.24 1.85

state 5 0 4.25 10.54 22.93 31.4 25.91 1.95

state 6 0 0.5 3.94 10.45 21.45 29.24 2.05

state 7 0 0 0.54 3.27 9.083 18.69 2.15

state 8 0 0 0.02 0.55 2.873 8.12 2.25

state 9 0 0 0 0.02 0.341 1.89 2.35

state 10 0 0 0 0 0.008 0.17 2.45

IRI 1.61 1.69 1.78 1.87 1.95 2.02 -
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In Table 4, one row and one column are characterized 
as IRI. The IRI column represents each state that is calcu-
lated by taking the average of the upper and lower bounds. 
The IRI row was calculated by multiplication of IRI in 
each column to the probability vector of each stage. Each 
element represented the IRI for the same stage. These are 
the final results obtained from the Markov method, which 
are predicted IRI values for 5 years based on experts’ 
opinions and inputs for the Bayesian method.

5.2. Explaining Prior Data (Expert Knowledge)

Using Bayesian methods, two data sets obtained from 
experts were combined. In the beginning, the data from 
the experts was considered as the prior data, and the re-
gression parameters were calculated (Eq. 15). The G-prior 
independent variable (XG) is a set of data similar to data 
used for the regression analysis. The average (expected 
value) of IRI of SMA pavement was calculated using Eq. 1, 
as shown in Table 5.

Table 5. SMA sections IRI

Age IRI

0 1.61

1 1.699

2 1.787

3 1.871

4 1.952

5 2.029

Y=b pr0+bpr1 X1� (15)

Then, the precision matrix A for expert data was calculat-
ed using Eq. 9:

Now the regression coefficients of prior data were esti-
mated by incorporating both SMA sections’ features and 

their IRI, as presented in Eq. 10:

� (10)

To consider the variability and reduce the uncertainty 
of data, the best distribution function that fits the data was 
selected based on the Chi-squared test as depicted in Fig-
ure 1 and used to carry out the calculations.

Figure 1. Prior data probability distribution function 

The regression coefficients were obtained by using in-
formation from experts and the experimental information 
gathered was evaluated to develop a model.

5.3 Experimental Data 

According to the information provided from 11 sites in the 
Tehran-North Freeway, the experimental data are shown 
in Table 6, which indicates the pavement conditions from 
the perspective of the IRI. For each site, one test was done 
every 500 m, and the IRI was recorded. By using Table 6, 
the matrices x and y were formed. Then, the coefficient 
matrix for the section was generated.

Table 6. Experimental data

Age 0 0.9 1.5 2.1 2.65 3.05 3.5 3.8 4 4.3 4.5

IRI 1.52 1.56 1.59 1.65 1.69 1.72 1.73 1.76 1.78 1.81 1.83

The X matrix is a dataset in form of the data used for the 
regression analysis.

The X is needed to calculate the H. The precision matrix 
H was computed using Eq. 11 as follows:

The coefficient of an independent variable together 
with an intercept is given as Eq. 12:
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The experimental data, as prior data, is summarized 
by plotting the probability distribution function. Figure 2 
shows the probability distribution function for both prior 
data and experimental data in which a Weibull Distribu-
tion Function fitted to the data. The best distribution func-
tions fitted to each data set was chosen based on the chi-
square technique. This method is one of the best methods 
in matchmaking between the distribution functions and 
raw data. This technique compares the similarity between 
the frequency of data in the same data range from the raw 
data and distribution functions [43]. A distribution function 
with the highest similarity was selected as the best-fitted 
function.

Figure 2. Prior and experimental data distribution func-
tions

As can be seen in Figure 2, the experimental data had a 
smaller value than the prior data. This result indicates that 
the experimental data showed smaller degradation rates 
for IRI in SMA pavements rather than prior data. The 
probability distribution function for experimental data 
was tighter than prior data, which indicates that the results 
deviation of experimental data was less than that of prior 
data.

5.4 Posterior Data Calculations

The precision matrix for both parts of prior data and field 
data were calculated. The regression coefficient matrix 
was calculated from the two matrices, as shown in Eq. 16:

bpos=M -1 (Abpr+Hb)� (16)

Figure 2 shows that the probability distribution for the 
posterior estimate of b was tighter than both the prior and 
the experimental data. This was likely realistic, because 

the prior and experimental data endorsed each another 
with a similar estimate of the mean of b. Figure 2 cor-
roborates the advantage of using the Bayesian regression 
method in which enough prior data was presented. By 
adding long-term performance data, the posterior con-
tinued to become definitive (i.e., more confidence in its 
estimate of b) [28]. Thus, the justification for the use of 
Bayesian regression can now be addressed. The contrast 
between classical regression and Bayesian regression was 
in taking advantages of prior information for estimating 
the parameter b. If no additional data were available, us-
ing the Bayesian approach will be recommendable.

6. Conclusion

Due to lack of sufficient information and performance 
data about SMA pavement, whether statistical information 
or in the context of the experts’ knowledge and experienc-
es in the field, proposing a distress model for pavement 
performance would not be reasonable. Since the Bayesian 
method has been developed for such cases, this method 
was used by combining two models based on the field 
data and prior data to develop a new model, as shown in 
Eq. 11:

IRI=1.529+0.078×Age

With a steady increase in the rate of IRI index, the prior 
data were generated by using the TPM. It is necessary to 
assess performance models by using prior, experimental, 
and posterior data. Figure 3 displays how the prior data 
model had the largest deterioration rate, while the experi-
mental data model had the smallest deterioration rate. The 
posterior model was in the middle. As displayed in Figure 
3, the posterior line represents the IRI rate increase based 
on the new model posterior.

Figure 3. Performance models for prior, field, and posteri-
or data

To validate this model, IRI data from SMA sections 
in the Tehran-Qom Freeway were deployed to verify 
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the model in this study. Figure 4 shows the relationship 
between the actual and predicted IRI for this freeway. 
From this figure, it can be noticed that the IRI never sur-
passed 2 in the first 5 years that represents the segments of 
the road had an acceptable IRI. The coefficient of multiple 
determinations (R2) was 98.3%, which reflects sufficient 
evidence of dependency relationship between the mea-
sured IRI and predicted values. Although Figure 4 shows 
that the IRI value increases by increasing pavement age 
due to the impact of deterioration elements, it shows a rea-
sonable distribution of data points around the correlation 
line. Moreover, it can be concluded that the combination 
of the Bayesian and Markov-chain methods is appropriate 
for cases that require modeling with incomplete data.

Figure 4. Predicted and measured IRI relationship
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