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1. Introduction

Detailed energy-use information of office buildings' occupants is necessary to implement
proper simulation/intervention techniques. However, acquiring accurate occupant-specific
energy consumption in office buildings at low cost is currently a challenging task since
existing intrusive load monitoring (ILM) technologies require a large capital investment
to provide high-resolution electricity usage data for individual occupants. On the other
hand, non-intrusive load monitoring (NILM) approaches have been proven as more cost
effective and flexible approaches to provide energy-use information of individual ap-
pliances. Therefore, extending the concept of NILM to individual occupants would be
beneficial. This paper proposes two occupancy-related energy-consuming features, delay
interval and magnitude of power changes and evaluates their significances for extracting
occupant-specific power changes in a non-intrusive manner. The proposed features were
examined through implementing a logistic regression model as a predictor on aggregate
energy load data collected from an office building. Hypotheses tests also confirmed that
both features are statistically significant to non-intrusively derive individual occupants'
energy-use information. As the main contribution of this study, these features could be uti-
lized in developing sophisticated NILM-based approaches to monitor individual occupant

energy-consuming behavior.

up to 24 percent energy savings can be achieved through
intervening occupants' behaviors in an office building.™”

rowing interest in reducing energy consumption
in office buildings attract attentions from re-
search and industry toward intervening occupants
to keep energy-saving behaviors since this method has re-
cently been considered as the most cost-effective approach
for enhancing office buildings' energy conservation;"”
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For achieving this goal, personalized feedback approaches
have been mainly considered as the most effective inter-
vention technique to adapt energy-efficient behaviors."""")
Effectively implementing of such approaches critically
depends to the availability of occupant-specific energy-use
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information. Such information is also extremely important
in advancement of occupancy-related simulation tech-
niques."”

To acquire the energy-use information of an occupant
of interest, conventional methods typically utilize intru-
sive load monitoring (ILM) approaches which require
plug load sensors installed for the appliances controlled
over by the occupant. These sensors then provide the en-
ergy-consuming information of the appliances and accord-
ingly estimate the occupant's energy consumption. ILM
methods generally provide data with high level of reso-
lution and accuracy, however they are not economically
feasible due to high capital investments and configuration
efforts especially for a large scale deployment.!"”! By in-
stalling a sensor per occupant's workstation, Gulbinas and
Taylor'" collected the data of individual occupants at a
multi-story office building occupied by 115 employees;
the data was used to examine the impact of organizational
network energy-use feedbacks on intervening behaviors.
Such studies highlight the high cost and installation com-
plexity associated with implementing of ILM methods in
an office setting. Therefore, utilizing alternative cost-ef-
fective methods for data acquisitions is necessary.

Increased interest in economically detailed energy
sensing led to the emergence of non-intrusive load mon-
itoring (NILM) which has been widely employed for
more than two decades as an appropriate viable solution
to perform energy monitoring of major appliances (e.g.,
HVAC systems) in residential and office settings.!">">"”
NILM is a technique which relies on the aggregate electri-
cal energy-use information provided by a building's meter
to disaggregate energy information at the appliance level
and identify which appliance and when uses how much
electricity.""” Accordingly, compared to the ILM, NILM is
perceived as less expensive and more feasible approach to
monitor appliance-specific energy consumption in office
buildings.!">"""

Although current research has made a great advance-
ment in economically tracking the energy use of individ-
ual appliances through NILM techniques, there is still a
need for tools to economically monitor individual occu-
pants' energy consumption in office buildings.””'” As a
springboard for developing a solution to address this need,
extending the NILM concept from individual appliances
to individual occupants could be investigated. Current-
ly, the growing advancement in building' energy and
occupancy sensors which deliver data with high gran-
ularities, provides the possibility of distinguishing the
energy information of a single occupant from a group
of people.””'*'" Given this, a NILM-based approach
might help in extracting this information.”**”! Recently,
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there has been an especial emphasis in extending NILM
concept to the occupancy sensing area. Through utilizing
aggregate data provided by electricity meters in residential
buildings, Chen et al.”?” and Kleiminger et al.”>** demon-
strated that a meter can be used as an occupancy sensor
in houses; such occupancy information of houses has
typically been exploited for promoting smart grids. With-
in the office settings, Ardakanian et al.”” revealed how
non-intrusive techniques could be utilized for real-time
occupancy estimation; this information can make a great
help in building system automation and demand-driven
HVAC operation. Overall, such abilities in sensing occu-
pancy information based on the NILM concept particular-
ly indicate the possibility of extending this concept into
occupancy energy consumption area.

In order to extend a NILM-based technique for mon-
itoring occupant energy consumption, at the first step,
the general structure of NILM approaches should be
studied. In general, a NILM approach includes two
main steps:"">'% (1) selecting and characterizing appli-
ance-specific features; (2) developing an algorithm to de-
tect the features of different appliances in aggregate load
data in order to identify how much electricity consumed
by each appliance and when. In particular, each appliance
has specific electrical/non-electrical features which should
be precisely identified;"'>'****% the success of a NILM
approach critically depends on the features identification.
The electrical features are generally defined as a set of
parameters which can be measured from aggregate load
data.”" Real power'***¥ reactive power,”**" harmon-
ic signals""**" power factor,'”” shape features of volt-
age-current trajectory,***’ voltage noise,"***’
power™ ) are the electrical features mainly utilized by
conventional NILM approaches. Non-electrical features of
appliances such as usage duration and time of the day also
contributes to more accurate load disaggregation perfor-
mance.” " For example, a printer in an office space is not
used from 6:00PM to 7:00AM and this non-electrical fea-
ture could tell that any information derived by an NILM
algorithm regarding printer usage during this time could
be incorrect.

With the significance of features in mind and seeking
to develop a NILM-based solution for monitoring occu-
pant-specific energy consumption, identifying electrical/
non-electrical features related to energy-consuming be-
haviors of occupants is necessary. Therefore, this paper
identifies and examines occupancy-related energy-con-
suming features which could be utilized in developing
NILM-based disaggregation approaches for estimating
occupant-specific electrical energy consumption in office
buildings, which is still an extremely challenging issue in

and transient
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these buildings . The paper is structured as follows: Sec-
tion 2 introduces the features. The research methodology,
experiment and hypotheses are presented in Section 3.
Section 4 provides the results and discussion. In section 5,
the limitations of this study are presented. Finally, conclu-
sions are provided in Section 6.

2. Occupancy-Related Energy-Use Features

In general, to understand energy-use behaviors of oc-
cupants, literature has typically studied their energy-use
intensity, energy-use efficiency, and energy-use entropy
patterns '>***!_In particular, the energy-use intensity
patterns account for the amount of energy that occupants
consume during working hours. Due to this fact that a
NILM approach estimates how much energy is consumed
by an appliance, the energy-use intensity patterns could
be utilized as the occupancy-related energy-use features
in developing a NILM-based approach for monitoring
occupant energy consumption. To this end, finding such
the patterns of individual occupants is favorable.In""*",
by collecting data through an ILM method, it was statisti-
cally confirmed that major energy-use actions (turn on/off
appliances) of individual occupants are predominantly oc-
curred right after entering to a building (entry event) and
right before leaving a building (departure event). There-
fore, it is of interest to extract energy-consuming informa-
tion of individual occupants at these events. Through!**"),
it was also revealed that each occupant has a recurring
pattern for the power changes at the entry and departure
events since she typically use a same set of personal appli-
ances repeatedly across different days. With these findings
in mind and seeking to find occupants' energy-consum-
ing features, the recurring patterns of occupants' power
changes (as an energy-use intensity patterns) at entry and
departure events could be utilized as a feature in load dis-
aggregation processes.

Additionally, it was also foun ! that there is a delay
interval between an occupants' entry/departure event to
a building and the start/end of her energy-consuming be-
haviors (the creation of power changes at entry/departure
events). Then, it was statistically proofed that each occu-
pant has a recurring consistent pattern for the delay in-
tervals at entry and departure events. This interval allows
finding an occupant's time of starting/ending energy con-
suming behavior based on the time of her entry/departure
event. Therefore, in a disaggregation procedure, the delay
interval could act as a feature to detect the time when an
occupant creates a power change at an event.

In summary, it can be concluded that there are two
features related to occupant energy-consuming behavior
at entry/departure events in office buildings: (1) delay

duese
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interval (A7), and (2) magnitude of power change (AP).
The information of these features can be collected through
existing sensing infrastructures (occupancy attendance
systems and electricity meters) of office buildings. Figure
1 shows an example of these features for an entry event.
Since each occupant has a recurring pattern for each of AT
and AP "% incorporating the information of these fea-
tures might allow extracting the power changes caused by
occupants at the occupancy events (i.e., entry/departure
events).

2200

2150

Power (Watts)

2100

7:30a.m. 7:32a.m.

| Time
Entry Event

Figure 1. Occupancy-related energy-use features: delay
interval (AT) and power change (AP)

In order to investigate this, an experiment was conduct-
ed to collect required data in office building and then to
analyze the data through conventional supervised predic-
tion methods used in NILM literature. In addition, hypoth-
eses tests were also statistically checked the significant
of features. The following sections provide the detailed
description of the methodology and results.

3. Methodology

3.1 Experiment Design and Data Acquisition

An experiment was designed and conducted in an office
building over two months. The entire building has 2200
square feet and it was fully occupied by eighteen staffs.
Due to the different usage for each room of the building,
various office building appliances such as personal com-
puters, laptops, printers, scanners, video projectors, desk
lamps, microwaves, refrigerators, and coffee makers, were
used during the experiment. Five groups of staff were
chosen as target occupants for this study.

In order to acquire the aggregate load data, a smart
meter which collected data with 1-second interval res-
olution, was installed on a circuit which covered all
outlets and end-users within the office space. Ground-
truth load data with 1-second interval resolution was
also collected through plug load meters installed at the
occupants' workstations. To detect the entry and depar-
ture events, a Wi-Fi sniffer was installed at the building
to passively track the transmitted Wi-Fi packets of the
occupants' smartphones.
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3.2 Method Selection

Aggregate energy-use data correlated with occupancy
events during the experiment was identified and collected
for each occupant. Figure 2 shows data points correlat-
ed with entry events (i.e., data points captured after the
entry events) of one occupants in 20-min time-windows.
Each data point is plotted by two features: AT measured
in seconds, and AP measured in watts. The vertical axes
in figure 2 were limited to the range of -200 to 200 watts
for better visual demonstration of power changes caused
by occupants. Positive AP at the entry events suggest the
occupant increased their loads when entered.
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Figure 2. Power changes correlated with entry events of

an occupant; other data points are the power changes are
not caused by the occupant
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Figure 2 particularly demonstrates that aggregate data
points (i.e., power changes) correlated with an occu-
pant's events could be divided into two groups: (1) power
changes caused by the occupant (group 1), and (2) power
changes not caused by the occupant (group 2). Figure 2
particularly shows that the data points caused by each oc-
cupant are within a specific range of AT and a few values
of AP among aggregate data provided by meters. There-
fore, the specific ranges/values might allow to utilize these
features' information for extracting data points caused by
occupants.

To check this, logistic regression model (logit model)
was selected as a predictor to investigate the significance
of AT and AP in predicting the correct group of the data
points. Logit model is the most common and widely used
statistical regression method utilized in the terms of pre-
diction when there is a set of m independent predictor
variables X={X,, X,, ..., X,,}, and one binary response
variable, Y ¥7**) Y determines two groups into one of
which, a data point can be assigned. In general, a logit
model is expressed by:

Logit (1)=Botp, X, +fs Xo+...t B, X, (1)

Where p={f, fi ---, B..} 1s a set of regression parame-
ters, and © (0<n<1) is the estimated of Y and determines
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the value of probability which is used to predict the group
of a data point.

In addition, the logit model through estimated values
for the set of regression parameters (f), particularly pro-
vides an opportunity to statistically test the importance of
features (X) used in the prediction process. Therefore, in
this research, the feasibility of AT and AP in the correct
prediction of the groups of data points also tested through
the following hypotheses:

- Hypothesis 1. Predicting the correct group of data
points by using AT as a predictor is feasible.

- HO: AT is not statistically significant in the prediction
process.

- HA: AT is statistically significant in the prediction
process.

- Hypothesis 2. Predicting the correct group of data
points by using AP as a predictor is feasible.

- HO: AP is not statistically significant in the prediction
process.

- HA: AP is statistically significant in the prediction
process.

3.3 Data Selection

Correct performance of the selected classifiers and predic-
tor depends to the size of time windows which capture the
data points correlated with occupancy events. The points
within these time windows are the input data for the
classifiers/predictor. Figure 2 as an example shows data
points captured through a 20-min time window. Selecting
a big size for time windows (e.g., 2-hour time windows)
provides a lot of data points which are not caused by a
specific occupant and could disturb the performance of
a technique which derive the occupant's data points. On
the other hand, small size time windows (e.g., 3-min time
windows) cloud lead to losing some data points caused by
occupants.

To address this issue, a size for time windows was
selected in this study as follow. For entry events of an
occupant, the maximum time of A7 was estimated by the
ground-truth data acquired for his/her entry events and
considered as the size of the time window for his/her en-
try events. Then, this time window captured data points
correlated with his/her entry events and put into a dataset
which will be analyzed by the classifiers and predictor.
Similarly, the size of time window for his/her departure
events was also estimated and data points correlated with
his/her departure events (data points caused before his/
her departure events) were captured and put into another
dataset. Figure 3 shows a time window which selected the
data points for departure event of an occupant. The neg-
ative AP suggests that this occupant reduced energy load
when left the building.
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Figure 3. A time-window captures data points correlated
with departure events of an occupant; other data points are
not caused by the occupant

4. Results and Discussion

In order to run the predictor, and hypothesis testing on the
datasets, R-programming, an open-source statistical lan-
guage, was selected. The following results were achieved
through the predictor implementations.

4.1 Predictor Performance

In this study, there were two possible groups for a data
point: group 1 and group 2. AT and AP also act as inde-
pendent predictors. Therefore, the logit model used in pre-
dicting the correct group of the data points was expressed
by Logit (r)=f,t8, AT+f3, AP.

The performance of a logit model in predicting pro-
cesses significantly depends on the cutoff point which is a
threshold defined for . In this study, for each occupant, all
possible values of the cutoff point (all values between 0
and 1) were examined to understand how the logit regres-
sion model performs for different cutoff values. Accord-
ingly, receiver operating characteristic (ROC) curves were

utilized to illustrate the performance of the logit model for
all cut off values; a ROC curve visually demonstrates the
performance of a binary classifier or predictor when the
threshold is varied."”*” For each value of the cutoff point,
a confusion matrix returned number of true positives (TP),
true negatives (TN), false positives (FP), and false nega-
tives (FN). Then, the curve is allowed to show the tradeoff
between true positive rates (TPR) against false positive
rate (FPR) for all values of the point. TPR and FPR are
defined as follows:

TP

TPR = 1+ 7N 2)
TP

TPR = 75 )

These metrics are ranged between 0 and 1. While the
higher value of TPR indicates the more accuracy, the
lower values of FPR indicate the better results. Figure 4
demonstrate the ROC curve generated for the occupants'
events. TP, FP, TN, and FN contributed with the same
weight to TPR and FPR and the equal error cost was con-
sidered during the process.

The ROC curves in figure 4 typically demonstrate the
higher TPR compared to FPR for all occupancy events.
In particular, the curves for few events (e.g., entry events
of occupant 2) touched the 45-degree line in a few points
which indicates some values of cutoff points for these
events leaded to worthless predictions (FPR is equal to
TPR). The stochastic nature of AT and the possibility of
coincidence in AP with similar magnitude could be the
main source of errors in the prediction procedure. Fur-

Occupant 1 Occupant 2 Occupant 3 Occupant 4 Occupant 5
(b) ) (d) . (e)
14 o 14 14
o o 2 a9 a9
= ~ = ~
g 7\‘ T T T g T T T T g T T
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(f) _ () . (h) (i) (i)
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Figure 4. Roc curves: (a, b, ¢, d, e) entry events, (f, g, h, 1, j) departure events
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thermore, more the area under curve (AUC) for departure
events of occupant 3 compared to the events of all occu-
pants, indicating more accurate prediction for data points
of this occupant at departure events. Overall, the ROC
curves in figure 4 demonstrated that using AT and AP for
appropriately predicting power changes caused by occu-
pants with higher TPR to FPR rates is feasible.

4.2 Hypotheses Test Results

For entry and departure events of each occupant, the max-
imum likelihood estimation was used to estimate the set
of parameters for . Then, the estimated values were tested
through Wald and Likelihood-Ratio (LR) tests for the
constructed hypotheses; Wald and LR tests are the tests
mainly utilized to statistically investigate the importance
of parameters in a regression analysis ", Table 1 lists the
results of the tests.

The results of LR and Wald test draw a same conclu-
sion for events of individual occupants. The statistically
significant p-values give evidences for rejecting null hy-
potheses for all events and indicate that AT and AP are
statistically significant to derive power changes caused by
occupants among aggregate data points.

4.3 Further Discussion on the Results

The ROC curves achieved through the logit model, and
the statistically significant p-values obtained for the hy-
pothesis tests revealed that using A7 and AP for extracting
power changes caused by occupants from data provided
in building operations is feasible. The information of AT
and AP is collected from existing occupancy and energy
sensing infrastructures in office buildings, without in-
stalling new hardware. As discussed, the possibility of
coincidence in data points with similar AT and AP could

be interpreted as the main source of error which did not
allowed the classifiers and predictor to achieve the maxi-
mum performance (highest accuracies).

Furthermore, Figure 2 and 3 demonstrate data points
caused by occupants are limited to the few value of AP
which means these data points caused by personal ap-
pliances typically used during the experiment. Through
the help of the acquired ground truth data, it was finally
found that these data points were caused by the personal
computers used at the workstations. In fact, since the per-
sonal computers were typically used every day during the
experiment, their caused data points (power changes) had
most frequently in datasets which allowed making dense
clusters; such clusters were utilized by classifiers/predic-
tor.

Currently, NILM techniques typically provide the ener-
gy-use information of the major appliances (use the most
energy) in a building "*'>'; this information is valuable
in enhancing overall energy efficiency in built environ-
ments. Similarly, AT and AP helped extracting energy-use
information of the personal computers which were the
major appliances with maximum frequency of usage at the
occupants' workstations during the experiment. Accord-
ingly, the energy-use data of personal computers could
provide valuable information for understanding occupants'
energy-use behaviors.

5. Limitations

While current energy and occupancy sensing infrastruc-
tures in offices building have not been demonstrated to
be suitable to provide real-time occupants' energy-use
behavior information, the results of this study indicated
that such infrastructures have capacity to provide occu-
pant-specific energy-use information at entry and depar-

Table 1. Wald and LR tests results

Entry Events Departure Events
Occupant | Hypothesis Wald Test LR test Wald Test LR test
Z-value P-Value -2log(A) P-Value Z-value P-Value -2log(A) P-Value
1 2.637 0.00837 7.531 0.00606 2.722 0.00648 7.648 0.00568
: 2 2.028 0.04258 9.527 0.00202 -3.419 0.00062 11.504 0.00069
1 2.504 0.01229 11.350 0.00075 -2.279 0.02266 12.151 0.00049
? 2 -3.867 0.00011 16.942 3.85e-05 4.724 2.31e-06 24.688 6.74e-07
1 2.391 0.01679 14.831 0.00011 -3.416 0.00063 12.213 0.00047
’ 2 -5.029 4.94e-07 37.395 9.64¢-10 4.753 2.01e-06 36.208 1.77e-09
1 1.960 0.04999 13.342 0.00025 -5.119 3.07e-07 37.654 8.447¢-10
* 2 4.707 2.51e-06 53.612 2.44e-13 6.279 3.40e-10 60.741 6.51e-15
1 2.471 0.01347 9.978 0.00158 2911 0.00360 8.124 0.00436
> 2 -3.750 0.00017 46.557 8.90e-12 3.559 0.00037 26.585 2.52e-07
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ture events. The main objective of this paper was to assess
whether the two proposed features are able to derive occu-
pant-specific power changes based on the NILM concept.
This objective was confirmed through the results from
the logit model. However, this research is subject to some
limitations.

As discussed, the results significantly depend on the
size of time-windows which select data points. In this
research, the size was selected based on the maximum AT
in each dataset. In fact, due to the lack of enough data,
no analysis such as a sensitivity analysis could result in
strong conclusions. Accordingly, further research into
different sizes of time windows through various datasets
would be beneficial to recommend the optimal size for a
time window which lead to higher accuracies.

Furthermore, in this study, all data points correlated
with an occupancy event were studies together in a time
window. However, considering one time-window for each
day based on its AT and studying data points in individual
daily time windows might suggest an optimal size for the
time window. Such individual daily time windows might
also help looking more in depth into occupants' ener-
gy-use information.

6. Conclusion

This research was the first step in developing a non-intru-
sive occupant load monitoring approach in office build-
ings. The results from implementing the predictor and
hypothesis tests on aggregate load data from a building
confirmed the feasibility of AT and AP in non-intrusively
extracting power changes caused by occupants at entry/
departure events. Compared to the previous research ex-
tended the NILM concept for occupancy sensing, this re-
search extended this concept for monitoring occupant-spe-
cific energy consumption. Furthermore, within the office
settings, building management systems have utilized in-
creasingly extensive sensor networks, but these networks
fail to leverage aggregate load data as a measurement of
occupant-specific energy consumption. However, this
study particularly shows that without installation any ad-
ditional hardware in an office building, the information
provided by current infrastructures (i.e., Wi-Fi networks
and metering devices) could be utilized for monitoring in-
dividual occupants' energy-use information. Overall, this
study presents promising options for future research into
occupant energy sensing in office buildings at minimal
costs.
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