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Abstract

Detailed energy-use information of office buildings' occupants is necessary to implement 
proper simulation/intervention techniques. However, acquiring accurate occupant-specific 
energy consumption in office buildings at low cost is currently a challenging task since 
existing intrusive load monitoring (ILM) technologies require a large capital investment 
to provide high-resolution electricity usage data for individual occupants. On the other 
hand, non-intrusive load monitoring (NILM) approaches have been proven as more cost 
effective and flexible approaches to provide energy-use information of individual ap-
pliances. Therefore, extending the concept of NILM to individual occupants would be 
beneficial. This paper proposes two occupancy-related energy-consuming features, delay 
interval and magnitude of power changes and evaluates their significances for extracting 
occupant-specific power changes in a non-intrusive manner. The proposed features were 
examined through implementing a logistic regression model as a predictor on aggregate 
energy load data collected from an office building. Hypotheses tests also confirmed that 
both features are statistically significant to non-intrusively derive individual occupants' 
energy-use information. As the main contribution of this study, these features could be uti-
lized in developing sophisticated NILM-based approaches to monitor individual occupant 
energy-consuming behavior. 
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1. Introduction 

Growing interest in reducing energy consumption 
in office buildings attract attentions from re-
search and industry toward intervening occupants 

to keep energy-saving behaviors since this method has re-
cently been considered as the most cost-effective approach 
for enhancing office buildings' energy conservation;[1-7] 

up to 24 percent energy savings can be achieved through 
intervening occupants' behaviors in an office building.[8,9] 
For achieving this goal, personalized feedback approaches 
have been mainly considered as the most effective inter-
vention technique to adapt energy-efficient behaviors.[10,11] 
Effectively implementing of such approaches critically 
depends to the availability of occupant-specific energy-use 
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information. Such information is also extremely important 
in advancement of occupancy-related simulation tech-
niques.[12]

To acquire the energy-use information of an occupant 
of interest, conventional methods typically utilize intru-
sive load monitoring (ILM) approaches which require 
plug load sensors installed for the appliances controlled 
over by the occupant. These sensors then provide the en-
ergy-consuming information of the appliances and accord-
ingly estimate the occupant's energy consumption. ILM 
methods generally provide data with high level of reso-
lution and accuracy, however they are not economically 
feasible due to high capital investments and configuration 
efforts especially for a large scale deployment.[13] By in-
stalling a sensor per occupant's workstation, Gulbinas and 
Taylor[14] collected the data of individual occupants at a 
multi-story office building occupied by 115 employees; 
the data was used to examine the impact of organizational 
network energy-use feedbacks on intervening behaviors. 
Such studies highlight the high cost and installation com-
plexity associated with implementing of ILM methods in 
an office setting. Therefore, utilizing alternative cost-ef-
fective methods for data acquisitions is necessary. 

Increased interest in economically detailed energy 
sensing led to the emergence of non-intrusive load mon-
itoring (NILM) which has been widely employed for 
more than two decades as an appropriate viable solution 
to perform energy monitoring of major appliances (e.g., 
HVAC systems) in residential and office settings.[13,15-17] 
NILM is a technique which relies on the aggregate electri-
cal energy-use information provided by a building's meter 
to disaggregate energy information at the appliance level 
and identify which appliance and when uses how much 
electricity.[16] Accordingly, compared to the ILM, NILM is 
perceived as less expensive and more feasible approach to 
monitor appliance-specific energy consumption in office 
buildings.[15,17,18]

Although current research has made a great advance-
ment in economically tracking the energy use of individ-
ual appliances through NILM techniques, there is still a 
need for tools to economically monitor individual occu-
pants' energy consumption in office buildings.[2,9,19] As a 
springboard for developing a solution to address this need, 
extending the NILM concept from individual appliances 
to individual occupants could be investigated. Current-
ly, the growing advancement in building' energy and 
occupancy sensors which deliver data with high gran-
ularities, provides the possibility of distinguishing the 
energy information of a single occupant from a group 
of people.[2,9,12,14] Given this, a NILM-based approach 
might help in extracting this information.[20-23] Recently, 

there has been an especial emphasis in extending NILM 
concept to the occupancy sensing area. Through utilizing 
aggregate data provided by electricity meters in residential 
buildings, Chen et al.[24] and Kleiminger et al.[25,26] demon-
strated that a meter can be used as an occupancy sensor 
in houses; such occupancy information of houses has 
typically been exploited for promoting smart grids. With-
in the office settings, Ardakanian et al.[27] revealed how 
non-intrusive techniques could be utilized for real-time 
occupancy estimation; this information can make a great 
help in building system automation and demand-driven 
HVAC operation. Overall, such abilities in sensing occu-
pancy information based on the NILM concept particular-
ly indicate the possibility of extending this concept into 
occupancy energy consumption area. 

In order to extend a NILM-based technique for mon-
itoring occupant energy consumption, at the first step, 
the general structure of NILM approaches should be 
studied. In general, a NILM approach includes two 
main steps:[13,15,16] (1) selecting and characterizing appli-
ance-specific features; (2) developing an algorithm to de-
tect the features of different appliances in aggregate load 
data in order to identify how much electricity consumed 
by each appliance and when. In particular, each appliance 
has specific electrical/non-electrical features which should 
be precisely identified;[13,15,16,28-30] the success of a NILM 
approach critically depends on the features identification. 
The electrical features are generally defined as a set of 
parameters which can be measured from aggregate load 
data.[31] Real power[17,32-35] reactive power,[36-40] harmon-
ic signals[41,42]  power factor,[43] shape features of volt-
age-current trajectory,[44,45] voltage noise,[46,47] and transient 
power[48–52] are the electrical features mainly utilized by 
conventional NILM approaches. Non-electrical features of 
appliances such as usage duration and time of the day also 
contributes to more accurate load disaggregation perfor-
mance.[53,54] For example, a printer in an office space is not 
used from 6:00PM to 7:00AM and this non-electrical fea-
ture could tell that any information derived by an NILM 
algorithm regarding printer usage during this time could 
be incorrect.

With the significance of features in mind and seeking 
to develop a NILM-based solution for monitoring occu-
pant-specific energy consumption, identifying electrical/
non-electrical features related to energy-consuming be-
haviors of occupants is necessary. Therefore, this paper 
identifies and examines occupancy-related energy-con-
suming features which could be utilized in developing 
NILM-based disaggregation approaches for estimating 
occupant-specific electrical energy consumption in office 
buildings, which is still an extremely challenging issue in 
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these buildings [9]. The paper is structured as follows: Sec-
tion 2 introduces the features. The research methodology, 
experiment and hypotheses are presented in Section 3. 
Section 4 provides the results and discussion. In section 5, 
the limitations of this study are presented. Finally, conclu-
sions are provided in Section 6.

2. Occupancy-Related Energy-Use Features 
In general, to understand energy-use behaviors of oc-

cupants, literature has typically studied their energy-use 
intensity, energy-use efficiency, and energy-use entropy 
patterns [8,12,20,55]. In particular, the energy-use intensity 
patterns account for the amount of energy that occupants 
consume during working hours. Due to this fact that a 
NILM approach estimates how much energy is consumed 
by an appliance, the energy-use intensity patterns could 
be utilized as the occupancy-related energy-use features 
in developing a NILM-based approach for monitoring 
occupant energy consumption. To this end, finding such 
the patterns of individual occupants is favorable.In[19,56], 
by collecting data through an ILM method, it was statisti-
cally confirmed that major energy-use actions (turn on/off 
appliances) of individual occupants are predominantly oc-
curred right after entering to a building (entry event) and 
right before leaving a building (departure event). There-
fore, it is of interest to extract energy-consuming informa-
tion of individual occupants at these events. Through[19,56], 
it was also revealed that each occupant has a recurring 
pattern for the power changes at the entry and departure 
events since she typically use a same set of personal appli-
ances repeatedly across different days. With these findings 
in mind and seeking to find occupants' energy-consum-
ing features, the recurring patterns of occupants' power 
changes (as an energy-use intensity patterns) at entry and 
departure events could be utilized as a feature in load dis-
aggregation processes.

Additionally, it was also found[19,56] that there is a delay 
interval between an occupants' entry/departure event to 
a building and the start/end of her energy-consuming be-
haviors (the creation of power changes at entry/departure 
events). Then, it was statistically proofed that each occu-
pant has a recurring consistent pattern for the delay in-
tervals at entry and departure events. This interval allows 
finding an occupant's time of starting/ending energy con-
suming behavior based on the time of her entry/departure 
event. Therefore, in a disaggregation procedure, the delay 
interval could act as a feature to detect the time when an 
occupant creates a power change at an event. 

In summary, it can be concluded that there are two 
features related to occupant energy-consuming behavior 
at entry/departure events in office buildings: (1) delay 

interval (ΔT), and (2) magnitude of power change (ΔP). 
The information of these features can be collected through 
existing sensing infrastructures (occupancy attendance 
systems and electricity meters) of office buildings. Figure 
1 shows an example of these features for an entry event. 
Since each occupant has a recurring pattern for each of ΔT 
and ΔP [19,56], incorporating the information of these fea-
tures might allow extracting the power changes caused by 
occupants at the occupancy events (i.e., entry/departure 
events).  

Figure 1. Occupancy-related energy-use features: delay 
interval (ΔT) and power change (ΔP)

In order to investigate this, an experiment was conduct-
ed to collect required data in office building and then to 
analyze the data through conventional supervised predic-
tion methods used in NILM literature. In addition, hypoth-
eses tests were also statistically checked the significant 
of features. The following sections provide the detailed 
description of the methodology and results.

3. Methodology

3.1 Experiment Design and Data Acquisition
An experiment was designed and conducted in an office 
building over two months. The entire building has 2200 
square feet and it was fully occupied by eighteen staffs. 
Due to the different usage for each room of the building, 
various office building appliances such as personal com-
puters, laptops, printers, scanners, video projectors, desk 
lamps, microwaves, refrigerators, and coffee makers, were 
used during the experiment. Five groups of staff were 
chosen as target occupants for this study.

In order to acquire the aggregate load data, a smart 
meter which collected data with 1-second interval res-
olution, was installed on a circuit which covered all 
outlets and end-users within the office space. Ground-
truth load data with 1-second interval resolution was 
also collected through plug load meters installed at the 
occupants' workstations. To detect the entry and depar-
ture events, a Wi-Fi sniffer was installed at the building 
to passively track the transmitted Wi-Fi packets of the 
occupants' smartphones.
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3.2 Method Selection
Aggregate energy-use data correlated with occupancy 
events during the experiment was identified and collected 
for each occupant. Figure 2 shows data points correlat-
ed with entry events (i.e., data points captured after the 
entry events) of one occupants in 20-min time-windows. 
Each data point is plotted by two features: ΔT measured 
in seconds, and ΔP measured in watts. The vertical axes 
in figure 2 were limited to the range of -200 to 200 watts 
for better visual demonstration of power changes caused 
by occupants. Positive ΔP at the entry events suggest the 
occupant increased their loads when entered.

Figure 2. Power changes correlated with entry events of 
an occupant; other data points are the power changes are 

not caused by the occupant
Figure 2 particularly demonstrates that aggregate data 

points (i.e., power changes) correlated with an occu-
pant's events could be divided into two groups: (1) power 
changes caused by the occupant (group 1), and (2) power 
changes not caused by the occupant (group 2). Figure 2 
particularly shows that the data points caused by each oc-
cupant are within a specific range of ΔT and a few values 
of ΔP among aggregate data provided by meters. There-
fore, the specific ranges/values might allow to utilize these 
features' information for extracting data points caused by 
occupants.

To check this, logistic regression model (logit model) 
was selected as a predictor to investigate the significance 
of ΔT and ΔP in predicting the correct group of the data 
points. Logit model is the most common and widely used 
statistical regression method utilized in the terms of pre-
diction when there is a set of m independent predictor 
variables X={X1, X2, …, Xm}, and one binary response 
variable, Y [57,58]. Y determines two groups into one of 
which, a data point can be assigned. In general, a logit 
model is expressed by: 

Logit (π)=β0+β1 X1+β2 X2+...+ βm Xm� (1)
Where β={β0, β1, …, βm} is a set of regression parame-

ters, and π  (0<π<1) is the estimated of Y and determines 

the value of probability which is used to predict the group 
of a data point. 

In addition, the logit model through estimated values 
for the set of regression parameters (β), particularly pro-
vides an opportunity to statistically test the importance of 
features (X) used in the prediction process. Therefore, in 
this research, the feasibility of ΔT and ΔP in the correct 
prediction of the groups of data points also tested through 
the following hypotheses:

- Hypothesis 1. Predicting the correct group of data 
points by using ΔT as a predictor is feasible.

- H0: ΔT is not statistically significant in the prediction 
process. 

- HA: ΔT is statistically significant in the prediction 
process.

- Hypothesis 2.  Predicting the correct group of data 
points by using ΔP as a predictor is feasible.

- H0: ΔP is not statistically significant in the prediction 
process. 

- HA: ΔP is statistically significant in the prediction 
process.

3.3 Data Selection
Correct performance of the selected classifiers and predic-
tor depends to the size of time windows which capture the 
data points correlated with occupancy events. The points 
within these time windows are the input data for the 
classifiers/predictor. Figure 2 as an example shows data 
points captured through a 20-min time window. Selecting 
a big size for time windows (e.g., 2-hour time windows) 
provides a lot of data points which are not caused by a 
specific occupant and could disturb the performance of 
a technique which derive the occupant's data points.  On 
the other hand, small size time windows (e.g., 3-min time 
windows) cloud lead to losing some data points caused by 
occupants.

To address this issue, a size for time windows was 
selected in this study as follow. For entry events of an 
occupant, the maximum time of ΔT was estimated by the 
ground-truth data acquired for his/her entry events and 
considered as the size of the time window for his/her en-
try events. Then, this time window captured data points 
correlated with his/her entry events and put into a dataset 
which will be analyzed by the classifiers and predictor. 
Similarly, the size of time window for his/her departure 
events was also estimated and data points correlated with 
his/her departure events (data points caused before his/
her departure events) were captured and put into another 
dataset. Figure 3 shows a time window which selected the 
data points for departure event of an occupant. The neg-
ative ΔP suggests that this occupant reduced energy load 
when left the building.
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Figure 3. A time-window captures data points correlated 
with departure events of an occupant; other data points are 

not caused by the occupant

4. Results and Discussion
In order to run the predictor, and hypothesis testing on the 
datasets, R-programming, an open-source statistical lan-
guage, was selected. The following results were achieved 
through the predictor implementations. 

4.1 Predictor Performance
In this study, there were two possible groups for a data 
point: group 1 and group 2. ΔT and ΔP also act as inde-
pendent predictors. Therefore, the logit model used in pre-
dicting the correct group of the data points was expressed 
by Logit (π)=β0+β1 ∆T+β2 ∆P.

The performance of a logit model in predicting pro-
cesses significantly depends on the cutoff point which is a 
threshold defined for . In this study, for each occupant, all 
possible values of the cutoff point (all values between 0 
and 1) were examined to understand how the logit regres-
sion model performs for different cutoff values. Accord-
ingly, receiver operating characteristic (ROC) curves were 

utilized to illustrate the performance of the logit model for 
all cut off values; a ROC curve visually demonstrates the 
performance of a binary classifier or predictor when the 
threshold is varied.[59,60] For each value of the cutoff point, 
a confusion matrix returned number of true positives (TP), 
true negatives (TN), false positives (FP), and false nega-
tives (FN). Then, the curve is allowed to show the tradeoff 
between true positive rates (TPR) against false positive 
rate (FPR) for all values of the point. TPR and FPR are 
defined as follows: 

� (2)

� (3)

These metrics are ranged between 0 and 1. While the 
higher value of TPR indicates the more accuracy, the 
lower values of FPR indicate the better results. Figure 4 
demonstrate the ROC curve generated for the occupants' 
events. TP, FP, TN, and FN contributed with the same 
weight to TPR and FPR and the equal error cost was con-
sidered during the process.

The ROC curves in figure 4 typically demonstrate the 
higher TPR compared to FPR for all occupancy events. 
In particular, the curves for few events (e.g., entry events 
of occupant 2) touched the 45-degree line in a few points 
which indicates some values of cutoff points for these 
events leaded to worthless predictions (FPR is equal to 
TPR). The stochastic nature of ΔT and the possibility of 
coincidence in ΔP with similar magnitude could be the 
main source of errors in the prediction procedure. Fur-

Figure 4. Roc curves: (a, b, c, d, e) entry events, (f, g, h, i, j) departure events
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thermore, more the area under curve (AUC) for departure 
events of occupant 3 compared to the events of all occu-
pants, indicating more accurate prediction for data points 
of this occupant at departure events.  Overall, the ROC 
curves in figure 4 demonstrated that using ΔT and ΔP for 
appropriately predicting power changes caused by occu-
pants with higher TPR to FPR rates is feasible.

4.2 Hypotheses Test Results 
For entry and departure events of each occupant, the max-
imum likelihood estimation was used to estimate the set 
of parameters for . Then, the estimated values were tested 
through Wald and Likelihood-Ratio (LR) tests for the 
constructed hypotheses; Wald and LR tests are the tests 
mainly utilized to statistically investigate the importance 
of parameters in a regression analysis [61]. Table 1 lists the 
results of the tests. 

The results of LR and Wald test draw a same conclu-
sion for events of individual occupants. The statistically 
significant p-values give evidences for rejecting null hy-
potheses for all events and indicate that ΔT and ΔP are 
statistically significant to derive power changes caused by 
occupants among aggregate data points.

4.3 Further Discussion on the Results 
The ROC curves achieved through the logit model, and 
the statistically significant p-values obtained for the hy-
pothesis tests revealed that using ΔT and ΔP for extracting 
power changes caused by occupants from data provided 
in building operations is feasible. The information of ΔT 
and ΔP is collected from existing occupancy and energy 
sensing infrastructures in office buildings, without in-
stalling new hardware. As discussed, the possibility of 
coincidence in data points with similar ΔT and ΔP could 

be interpreted as the main source of error which did not 
allowed the classifiers and predictor to achieve the maxi-
mum performance (highest accuracies).

Furthermore, Figure 2 and 3 demonstrate data points 
caused by occupants are limited to the few value of ΔP 
which means these data points caused by personal ap-
pliances typically used during the experiment. Through 
the help of the acquired ground truth data, it was finally 
found that these data points were caused by the personal 
computers used at the workstations. In fact, since the per-
sonal computers were typically used every day during the 
experiment, their caused data points (power changes) had 
most frequently in datasets which allowed making dense 
clusters; such clusters were utilized by classifiers/predic-
tor.

Currently, NILM techniques typically provide the ener-
gy-use information of the major appliances (use the most 
energy) in a building [13,15,16]; this information is valuable 
in enhancing overall energy efficiency in built environ-
ments. Similarly, ΔT and ΔP helped extracting energy-use 
information of the personal computers which were the 
major appliances with maximum frequency of usage at the 
occupants' workstations during the experiment. Accord-
ingly, the energy-use data of personal computers could 
provide valuable information for understanding occupants' 
energy-use behaviors.

5. Limitations 
While current energy and occupancy sensing infrastruc-
tures in offices building have not been demonstrated to 
be suitable to provide real-time occupants' energy-use 
behavior information, the results of this study indicated 
that such infrastructures have capacity to provide occu-
pant-specific energy-use information at entry and depar-

Table 1. Wald and LR tests results

Occupant Hypothesis

Entry Events Departure Events

Wald Test LR test Wald Test LR test

Z-value P-Value -2log(Ʌ) P-Value Z-value P-Value -2log(Ʌ) P-Value

1
1 2.637 0.00837 7.531 0.00606 2.722 0.00648 7.648 0.00568

2 2.028 0.04258 9.527 0.00202 -3.419 0.00062 11.504 0.00069

2
1 2.504 0.01229 11.350 0.00075 -2.279 0.02266 12.151 0.00049

2 -3.867 0.00011 16.942 3.85e-05 4.724 2.31e-06 24.688 6.74e-07

3
1 2.391 0.01679 14.831 0.00011 -3.416 0.00063 12.213 0.00047

2 -5.029 4.94e-07 37.395 9.64e-10 4.753 2.01e-06 36.208 1.77e-09

4
1 1.960 0.04999 13.342 0.00025 -5.119 3.07e-07 37.654 8.447e-10

2 4.707 2.51e-06 53.612 2.44e-13 6.279 3.40e-10 60.741 6.51e-15

5
1 2.471 0.01347 9.978 0.00158 2.911 0.00360 8.124 0.00436

2 -3.750 0.00017 46.557 8.90e-12 3.559 0.00037 26.585 2.52e-07
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ture events. The main objective of this paper was to assess 
whether the two proposed features are able to derive occu-
pant-specific power changes based on the NILM concept. 
This objective was confirmed through the results from 
the logit model. However, this research is subject to some 
limitations.

As discussed, the results significantly depend on the 
size of time-windows which select data points. In this 
research, the size was selected based on the maximum ΔT 
in each dataset. In fact, due to the lack of enough data, 
no analysis such as a sensitivity analysis could result in 
strong conclusions. Accordingly, further research into 
different sizes of time windows through various datasets 
would be beneficial to recommend the optimal size for a 
time window which lead to higher accuracies.

Furthermore, in this study, all data points correlated 
with an occupancy event were studies together in a time 
window. However, considering one time-window for each 
day based on its ΔT and studying data points in individual 
daily time windows might suggest an optimal size for the 
time window. Such individual daily time windows might 
also help looking more in depth into occupants' ener-
gy-use information.

6. Conclusion
This research was the first step in developing a non-intru-
sive occupant load monitoring approach in office build-
ings. The results from implementing the predictor and 
hypothesis tests on aggregate load data from a building 
confirmed the feasibility of ΔT and ΔP in non-intrusively 
extracting power changes caused by occupants at entry/
departure events. Compared to the previous research ex-
tended the NILM concept for occupancy sensing, this re-
search extended this concept for monitoring occupant-spe-
cific energy consumption. Furthermore, within the office 
settings, building management systems have utilized in-
creasingly extensive sensor networks, but these networks 
fail to leverage aggregate load data as a measurement of 
occupant-specific energy consumption. However, this 
study particularly shows that without installation any ad-
ditional hardware in an office building, the information 
provided by current infrastructures (i.e., Wi-Fi networks 
and metering devices) could be utilized for monitoring in-
dividual occupants' energy-use information. Overall, this 
study presents promising options for future research into 
occupant energy sensing in office buildings at minimal 
costs.
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