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Abstract

Heuristic optimization is an appealing method for solving some engineering problems, in 
which gradient information may not be available, or yet, when the problem presents many 
minima points. Thus, the goal of this paper is to present a new heuristic algorithm based 
on the Anthropic Principle, the Anthropic Principle Algorithm (APA). This algorithm is 
based on the following idea: the universe developed itself in the exact way to allow the 
existence of all current things, including life. This idea is very similar to the convergence 
in an optimization process. Arguing about the merit of the Anthropic Principle is not 
among the goals of this paper. This principle is treated only as an inspiration for heuris-
tic optimization algorithms. In the end of the paper, some applications of the APA are 
presented. Classical problems such as Rosenbrock function minimization, system identi-
fication examples and minimization of some benchmark functions are also presented. In 
order to validate the APA's functionality, a comparison between the APA and the classic 
heuristic algorithms, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) is 
made.  In this comparison, the APA presented better results in the majority of tested cases, 
proving that it has a great potential for application in optimization problems..
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1. Introduction

In the last decades, optimization problems have moti-
vated great improvements in mathematics and engi-
neering. Methods like Newton, steepest descendent 

and Levenberg-Marquardt have made possible the solu-
tion of a series of design optimization problems [1]. How-

ever, these methods require strong conditions to have their 
convergence proved, such as availability of gradients, 
convexity, and so on[2,3]. It is important to point out that 
in several industrial applications the designer has to deal 
with some peculiarities such as non-linearity, non-convex-
ity, existence of several local minima, presence of discrete 
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and continuous design variables, among others[4].
One class of optimization methods, which are po-

tentially able to handle these characteristics, are the 
metaheuristic algorithms. Known advantages of these 
algorithms include the following: (i) they do not require 
gradient information and can be applied to problems in 
which the gradient is difficult to obtain or simply is not 
defined; (ii) they do not become stuck in local minima if 
correctly tuned; (iii) they can be applied to non-smooth 
or discontinuous functions; (iv) they furnish a set of sub-
optimal solutions instead of a single solution, giving the 
designer a set of options from which to choose; and (v) 
they can be easily employed to solve mixed variable (dis-
crete and continuous) optimization problems[5]. Among 
the most popular metaheuristic algorithms are the Genetic 
Algorithm (GA)[5], the Ant Colony Optimization (ACO)[6], 
and the Particle Swarm Optimization (PSO) [7], all of them 
inspired by biological principles.

Other principles have been employed for the develop-
ment of metaheuristic optimization algorithms, such as the 
Imperialist Competitive Algorithm[8], based on the impe-
rialist policy of extending the power and rule of a govern-
ment beyond its own boundaries, Group Search Optimizer 
inspired by animal searching behavior[9], and the Bioge-
ography-Based Optimization, that uses the geographical 
distribution of biological organisms as inspiration for al-
gorithms in the optimization area[10].

Following the line of nature inspired algorithms, 
this paper proposes a new metaheuristic optimization 
algorithm based on the Anthropic Principle, originated 
in Physics. According to the Anthropic Principle, un-
countable factors had to converge, in the history of the 
universe, to make the human existence possible [11]. Thus, 
the universe evolution can be seen as an optimization 
process whose objective function aims to minimize the 
effects that go against the human existence.

Details as the low eccentricity of the Earth's orbit, the 
relationship between the Sun's mass and distance from the 
Earth to the sun are examples in the set of suitable condi-
tions for human existence[11]. If just one element in this set 
were different, life as it is known could probably not be 
developed. In other words, the constants of the universe 
seem to be evolved in such a manner to assume ideal val-
ues to make life possible[11]. This concept is very similar 
to "fine-tune" performed in a metaheuristic optimization 
algorithm.

This paper is organized as follows: in section 2, the 
Anthropic Principle is conceptually detailed. In section 3, 
the necessary concepts to the Anthropic Principle Algo-
rithm (APA) are exposed and its operators are described. 
In section 4, the pseudo-code related to the proposed al-

gorithm is presented. Section 5 presents some examples 
of applications of the proposed algorithm, and finally, the 
concluding remarks are in section 6.

2. Anthropic Principle
The anthropic principle was formally defined by astro-
physicist Brandon Carter in 1974[12]. Following, John D. 
Barrow and Frank J. Tipler improved the ideas of this 
principle and compiled their formulations in the book, 
Cosmological Principle[13].

In order to achieve suitable conditions for human exis-
tence, there is a series of necessary factors. Details such 
as a different ratio between the electron and proton mass-
es could derail the existence of more complex structures 
of matter[11]. If the electromagnetic force were changed 
for a small quantity, the organic molecules could not be 
able to group themselves [11]. If, for example, the distance 
between sun and earth had been changed, mankind would 
not have developed. If the gravitational force were min-
imally changed, planets orbits would not be formed, and 
consequently, there would be no life [14].

In fact, the reasoning of the anthropic principle starts 
with the premise that given the existence of mankind, 
only the universe stories compatible with that fact can be 
considered as physical models of this universe. This prin-
ciple is known as the Weak Anthropic Principle (WAP). 
By this idea, it is understood that the characteristics of our 
universe and its physical laws allowed the existence of 
mankind. Due to the great number of coincidences neces-
sary to create life in a universe, some physicists developed 
a theory in which the universe developed itself with the 
objective of allowing the existence of life. This concept 
is known as Strong Anthropic Principle (SAP) and it is 
very controversial in Physics[15]. According to the SAP, the 
universe evolved in such a way as to make possible the 
existence of mankind[11]. In other words, the physical and 
cosmological quantities evolved to promote the creation 
of life.

The anthropic principle in its strong version is rather 
controversial. There are many arguments contrary to it, as 
the fact that values of the fundamental constants incom-
patible with the development of intelligent life will never 
be observed[16]. In this paper, the Anthropic Principle is 
only considered as an inspiration for the development 
of a new metaheuristic optimization algorithm. The idea 
behind the anthropic principle seems to be promising for 
a meta-heuristic algorithm. In this context, we propose 
the Anthropic Principle Algorithm (APA), which makes 
use of the ideas presented above and apply them in an 
optimization framework. In the next section, the concepts 
required for this new algorithm are presented.
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3. Anthropic Principle Algorithm: APA
The APA has an universe U as its basic element. Its struc-
ture can be defined as:

𝑈𝑈 =  {𝐶𝐶, 𝐿𝐿}, � (1)

in which C represents the characteristics and L the 
physical laws of that universe U.

These concepts can be better defined in the following 
form:

(i) Characteristics: set of attributes that characterize a 
universe, for example, some of the characteristics which 
were cited in the previous section such as distance be-
tween the Earth and the Sun, ratio between the electron 
and proton masses, and so on. In an optimization algo-
rithm scheme, the characteristics of the universe represent 
the n design variables of the optimization problem. These 
characteristics are grouped into the vector C:

𝐶𝐶 = {𝑐𝑐1 , 𝑐𝑐2 , … , 𝑐𝑐𝑛𝑛  }. � (2)

(ii) Physical laws: set L of equations that update the 
characteristics of a universe:

𝐿𝐿 = {𝑙𝑙1 , 𝑙𝑙2 , … , 𝑙𝑙𝑛𝑛  }. � (3)

The relation between C and L can be expressed in 
many forms, among them, there is:

𝑐𝑐𝑖𝑖
(𝑘𝑘+1) = 𝑙𝑙𝑖𝑖   �𝑐𝑐𝑖𝑖

(𝑘𝑘)�, � (4)

in which k stands for the kth iteration of the algorithm. 
Equation (4) proposes that the ith characteristic of the uni-
verse be updated by the ith physical law, using only the 
current characteristic value.

The "manner" in which the characteristics of a universe 
U are updated is called the History of U.

The History of an universe is represented by H and it 
expresses the evolution of this universe between its initial 
state U(0) and its  current state U(k):

H : U(0)  →  U(k),� (5)
in other words, the History "tells" the story of the char-

acteristics of the best universe, through its laws and oper-
ators:

{C(0), L }  →  {C(k), L }.
An individual I can be generated in a universe, U, if 

the characteristics of this universe are favorable for the 
creation of this specific kind of life. The notation used for 
representing the generation of an individual in a universe 
is:

U ⇒ I.

An individual generated by a universe U is called prod-
uct individual: U ⇒ IP . Here, we introduce the concept of 
the reference individual IR. That is, an idealized individual 
generated by an ideal universe UR, whose characteristics 
CR are the most favorable for some specific kind of life, 
thus, UR ⇒  IR. Therefore, we may consider that there ex-
ists a specific kind of life in the universe U, if its product 
individual IP is similar to the reference individual IR. We 
propose to measure this similarity with the aid of the func-
tion F(.). That is, the universe U generates this specific 
kind of life if its image in the function F(IR, IP ) breaks up 
a threshold αv. In other words, if F(IR, IP ) < αv, there is this 
specific kind of life in the universe U and, consequently, 
the universe can be now designated as an "alive universe", 
which is called UV . 

In the APA, the reference individual, IR is represent-
ed by the set of requisites expected to be reached by the 
problem's optimal solution. For instance, if the optimiza-
tion problem is the minimization of the function, f (x1, x2, 
· · ·, xn), in which f : Rn → R, the IR is represented by  the 
minimum image of the f (x1, x2, . . . , xn). If the problem is 
the minimization of a multi-objective function, the set of 
desired values for the variables, involved in the optimiza-
tion process, represents the restrictions that characterize 
the reference individual. In a system identification prob-
lem, each pair of samples (input and output signals) is 
considered as a restriction for the existence of the life, and 
the set of these restrictions represents the reference indi-
vidual.

Now, the development above can be associated to the 
optimization algorithm presented in this paper. In the 
APA, the design variables are represented by the charac-
teristics of a universe, e.g. the values of the global solu-
tion of the optimization problem are the characteristics CR 
of the reference Universe UR. The function f (.) may be set 
as the difference between the objective function of a given 
product individual and:
1) the global solution provided by IR in the case of a target 
optimization problem, or,
2) the best solution found up to the current iteration of the 
algorithm in the minimization of a given function.

The APA was developed as a multi-agent optimization 
algorithm, consequently, there is a set of candidate uni-
verses for life creation. In this context, the set M of uni-
verses {U1, U2, ... ,Um} is called Multiverse and it can be 
expressed as:

M={U1, U2, ... ,Um}� (6)
In the initialization of the algorithm, the characteristics  

C={c1, c2, ... ,cn} of each universe are randomly generat-
ed, and the physical laws of each universe are randomly 
generated, and physical laws of each universe can have 
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different kind of rules of update. For example, consider as 
possible laws the difference equations in the form:

𝑙𝑙𝑖𝑖 :      𝑐𝑐𝑖𝑖
(𝑘𝑘+1) = 𝑎𝑎1𝑐𝑐𝑖𝑖

(𝑘𝑘) + 𝑎𝑎2𝑐𝑐𝑖𝑖
(𝑘𝑘−1) + ⋯+ 𝑎𝑎𝑛𝑛𝑐𝑐𝑖𝑖

(𝑘𝑘−𝑛𝑛−1), � (7)

in which the coefficients a1, a2, an, an are randomly 
initialized. The initial conditions for equation (7) can be 
computed with the previous values of the characteristic, ci. 
If these variables are unavailable, their values are assumed 
to be zeros.

Another example of a possible kind of physical law is 
presented in equation (8),

𝑙𝑙𝑖𝑖 :    �
𝛥𝛥𝑐𝑐𝑖𝑖

(𝑘𝑘+1) = 𝑎𝑎1𝑐𝑐𝑖𝑖
(𝑘𝑘)𝛥𝛥𝑐𝑐𝑖𝑖

(𝑘𝑘) + 𝑎𝑎2𝛥𝛥𝐹𝐹(𝑘𝑘)(. )

𝑐𝑐𝑖𝑖
(𝑘𝑘+1) =  𝑐𝑐𝑖𝑖

(𝑘𝑘) + 𝛥𝛥𝑐𝑐𝑖𝑖
(𝑘𝑘+1)    � (8)

in which the coefficients a1, a2 ∈ R□+ are also random-
ly initialized and ∆F (k) = F (k) − F (k−1). In this kind of laws, 
the update of the characteristics is indirect, using steps ∆ci, 
and there is a feedback, implemented by the last image of 
evaluation function, F(.), aiming at choosing adequately 
the size of the step.

The coefficients a1 and a2 are initially all positives, but 
its signals are changed, as it is shown in table 1, at each 
iteration. This is valid if the characteristic, ci, is positive. 
Otherwise the signals of a1 and a2, presented in this table, 
are inverted.
Table 1. Signals of the coefficients a1 and a2 related to the 

physical law (8)

     ∆c(k)             ∆F(k) a1                  a2 ∆c(k+1)

- - - - -
- + - + +
+ - + - +
+ + - - +

The objective of this permutation of signals is to keep 
∆F (k) negative. The signals of the coefficients a1 and a2 are 
chosen depending on the signals of the two first columns 
of table 1, aiming to obtain the correct signal for ∆c(k+1), 
shown in the third column of the same table.

It is important to mention that only two kinds of phys-
ical laws were presented here, but many others are possi-
ble.

In order to continue the presentation of the proposed 
algorithm, we define in the sequel three different classes 
of universes. The universe Ui of M which presents the 
best characteristics C, e.g. the lowest objective function 
value, is denoted as propagating universe U*. It receives 
this name because it propagates its characteristics to some 
least developed universes, as it will be shown in section 
3.2.

Two other classes of universes can also be defined: the 

promising U◊ and the stagnated U† universes. The former 
are the ones which have favorable physical laws for the 
universe evolution. In other words, universes with phys-
ical laws that improve, in one iteration, the image of the 
evaluation function, F (k+1)(.) < F(k)(.), in a minimization 
problem. In the opposite way, the universes with physical 
laws that go against the universe evolution in p iterations, 
i.e., F(k+p)(.) > F(k)(.), are called stagnated U† universes.

It is important to mention that, in APA, the reference 
IR, is fixed and the environment, U, is "adapted" to him, 
while in classic Genetic Algorithm (GA) the environment 
is fixed and the individuals are evolved.

In order to construct the APA, the main operators pro-
posed for this algorithm are presented next.

3.1 Characteristic's Update
The characteristic update operator has the objective of 
systematically change the characteristics C of a universe U, 
through its physical laws L. It is done, in such a manner, 
that each characteristic, ci, is updated by its corresponding 
physical law, li, as it is illustrated in figure 1.

Figure 1. Update of the Universe's characteristics, C = c1, 
c1, ···, cn, through the physical laws, L = l1, l

2, ··· , ln

The update operator can be implemented in different 
ways, depending on how the structure of the laws is used. 
In order to exemplify this, two kinds of update are pre-
sented here:
1) The direct update: in which the law, li, acts directly 
over the characteristic, ci, as it is shown in equation (7). In 
this kind of physical law, each characteristic has its own 
dynamic, and the algorithm have to select the laws that 
has the tendency to lead the evaluation function to a lower 
value;
2) The update by ∆c: in which the law, li, creates some 
quantity ∆ci, which is summed to the characteristic ci, as it 
is shown in equation (8). In this kind of physical law, the 
step ∆c(k+1) is calculated taking into account its last value 
∆c(k) and the last value of the evaluation function F(.). 
Thus, the law creates a control mechanism, a feedback, 
aiming to avoid or at least decrease the fast divergence of 
a given universe from the solution.

It should be pointed out that since the physical laws 
of each universe are not the same, the characteristics will 
be updated in different manners, sweeping the searching 
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space in different ways.
It is worth mentioning that APA has no fixed kind of 

physical laws. Differently of Ant Colony Optimization 
[6] and Particle Swarm Optimization [7], and many others 
heuristic algorithms, in APA the kind of actualization rule 
of the parameters can be chosen by the user, or by the 
algorithm itself, depending on the kind of problem being 
treated.

3.2 Characteristic's Propagation Operator
The propagating universe may transfer its characteristics 
integrally to less suit- able universes. The characteristic 
propagation operator is represented by the symbol and ex-
press the propagation of all characteristics, C =[c1, c2, …, 
cn], from the propagating universe, U□, to the universe U:

{C*, L*} >>  {C, L },
or simply:
U* >> U.
The action of this operator can be seen in the figure 2.

Figure 2. Characteristic Propagation Operator from  
propagating universe, U*, to the universe U

It is worth to mention that this operator only acts on 
universe characteristics, C, not changing the physical 
laws, L, of any universe. In this context, this operator can 
also be applied from an alive universe UV to a promising 
universe U◊:

UV >> U◊.
This procedure aims to spread all the best characteris-

tics, CV of the alive universes, UV, to the promising uni-
verses, U◊, that have favorable physical laws, L◊. Thus, 
potential characteristics are lead to potential laws and its 
values can be evolved.

3.3 Big Bang Operator
From Physics, one may understand that our universe was 
generated by a "Big Bang"[11]. In the proposed algorithm, 
this idea can be useful. In the APA, the physical laws 
can be difference equations, system of equations, among 
others. As the initialization of these equations is a ran-
dom process, then some physical laws, li, could lead the 
characteristics, ci, of the universe U to instability. In this 
scenario, the Big Bang Operator, B(.) can discard these 
universes and create new ones, and the process go on.

Another possible application of the "Big Bang" Oper-
ator is randomly generating new universes and replaces 
the stagnated ones. In other words, the operator discards 
non-promising regions of the design domain and restarts 
the search randomly in a new location of the searching 
space.

In order to avoid the random search caused by the 
"Big Bang Operator", the occurrence rate of this operator 
should be inferior to 15% of the universes in the multi-
verse, at each iteration.

3.4 Armageddon Operator
Similarly to a natural catastrophe, the Armageddon oper-
ator, A(.), disturbs some characteristics of a universe. The 
Armageddon operator perturbs the characteristics of a uni-
verse by having small constants, ∆c, added to their current 
values, as can be seen in figure 3.

Figure 3. Armageddon Operator, A(.), acting over  
characteristic c1

The effect of this operator can be tuned by the Arma-
geddon operator rate, allowing the algorithm to perform 
local searches around the current characteristics of the 
universes.

4. Application  Example
In this section, some examples of the use of APA for op-
timization problems will be presented. The experiments 
were carried out on a Macbook with 2.2 GHz Intel Pro-
cessor and 4.0 GB RAM. All the codes were written and 
executed in Matlab R2013. The operating system was 
Mac OS Lion.

4.1 Rosenbrock Function Example
In order to exemplify the solution of an optimization prob-
lem using the APA, consider the Rosenbrock function:

f (x)=(a-x1)
2+b (x2-x1

2)2,� (9)
in which f : R2 → R is a non-convex function, with a = 1 

and b = 100, used in tests for global optimization. The 
objective of the optimization is to find the vector x* = [x1, 
x2] that minimizes f (x):

x* = argmin { f (x) }� (10)
the global optimum of this function is located at x□ = [1, 

1], the objective function is f □ = 0.
In this example, each universe has 2 characteristics, [c1, 
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c2], which represent the values [x1, x2] of the Rosenbrock 
function, and two laws, [l1, l2] responsible for updating 
these characteristics. It is worth to mention that the phys-
ical laws, L, used in this example, were a class of equa-
tions with the structure presented in (8). In addition, the 
APA evaluation function is f (x).

In order to illustrate the progress of the algorithm, the 
Rosenbrock function was minimized using the APA. In 
all runs of this section, the APA uses 200 universes, char-
acteristics propagation rate starting with 50% and ending 
with 30%, the Big-Bang rate starting with 5% and ending 
with 10% and the Armageddon rate starting with 5% and 
ending with 15%, varying linearly.

For illustration purposes, the algorithm was run only 
for 10 iterations. The best solution found for each iteration 
is plotted in figure 4 and detailed in table 2.

Figure 4. History of a Multiverse. The evolution of the 
characteristics of an universe during the APA's convergence

Table 2. Characteristics for the best Universe in  
each iteration

Iter. c1 c2 Δc1 Δc2 ΔF

1 -5.5024 30.2659 NA NA NA

2 -3.6278 13.3869 -39.2095 -7.2623 -1.5511×108

3 -3.6582 13.3894 0.0305 0.0025 -72.4581

4 3.4940 12.2212 -7.1522 -1.1682 -8.0588×107

5 -0.5403 0.2111 -0.4129 -2.9837 -523.4355

6 -0.0485 0.0877 -0.9072 -2.3368 -230.3496

7 0.5232 0.2301 -0.6340 -0.3256 -1.9760

8 0.6736 0.4385 0.0023 0.2083 -1.9823×104

9 0.8378 0.7159 0.1642 0.1693 -1.3187×104

10 0.8448 0.7276 0.0070 0.0117 -1.2819×105

From table 2, one may see that the APA did not reach 
the optimal point [1, 1] in only 10 iterations, however the 
convergence process of the proposed algorithm can be 
clearly observed. In order to further investigate this pro-
cess, we present the laws (represented by the coefficients 
a1 and a2) of the best universe at each iteration in table 3.
Table 3. The laws for the best Universe in each iteration

l1 l2

Iter. a1 a2 a1 a2

1 0.0556 2.0082×10-8 0.6309 6.5930×10-8

2 0.3287 9.9367×10-8 0.1148 2.3732×10-8

3 0.7401 1.6827×10-8 0.3792 2.0312×10-8

4 0.3889 9.225×10-8 0.4464 1.5073×10-8

5 0.2505 5.4600×10-8 0.6141 2.7179×10-8

6 0.4815 1.5400×10-8 0.2903 7.9859×10-8

7 0.5318 5.4355×10-8 4.1028 7.9859×10-8

8 0.1386 7.8980×10-8 0.4280 7.8184×10-8

9 0.4242 3.9651×10-8 0.2491 5.8548×10-8

10 0.4428 7.6638×10-8 0.4401 7.2683×10-8

Most of the universes presented in table 2 are not total-
ly connected in an evolutionary way. In other words, they 
evolved from other universes, in the multiverse, which 
were not the best in the previous iteration of the algo-
rithm.

In table 2, in 4 iterations the best universe evolved 
from itself: iterations 2 to 3, 3 to 4, 8 to 9 and 9 to 10. In 
these cases, it is possible to calculate manually the evo-
lution of these universes using the values presented in 
tables 2 and 3, since the physical laws were responsible 
for the characteristics update that resulted in the decrease 
of the objective function. In the other iterations, the best 
universe was reached by the action of the APA operators. 
In the transition from iteration 4 to 5, 6 to 7 and 7 to 8 the 
best universe was reached by propagation of the best char-
acteristics to universes with physical laws that allowed 
decreasing the evaluation function. In the transition from 
iteration 1 to iteration 2, the best universe was reached by 
the Armageddon Operator. In this example, the Big Bang 
operator did not generate best universes.

Now, we run the APA for 50 iterations, and then com-
pare its results to two well-known metaheuristic algo-
rithms: GA and PSO. In this situation, the proposed algo-
rithm reached as best solution x□ = [1.0001, 1.0002]. As it 
is known that the optimum of the Rosenbrock function is 
[1, 1] [17], one can consider that it is a close result, reaching 
an evaluation function equal to 1.1125 x 10−8. The APA's 
convergence curve for this run is illustrated in figure 5.
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Figure 5. Convergence curve of the Anthropic  
Principle Algorithm

In order to compare the APA to a GA and a PSO, table 
4 shows the objective function reached by these algo-
rithms in a single optimization run. The stopping criterion 
for all the algorithms was 50 iterations. The APA and GA 
results were generated by the authors and the PSO result 
was taken from the literature [18].
Table 4. Minimization of the Rosenbrock Function Results

Method. APA GA PSO

Function value 1.1125×10-8 0.0018 0.001341

In the GA, 200 chromosomes were used, with cross-
over rate starting in 80% and ending with 60%. The 
mutation rate starting in 5% and ending in 10%, varying 
linearly. For the PSO, were used 200 particles with social 
adjustment equal to the self adjustment (1.49).

One can see in table 4 that the lowest value of the 
Rosenbrock function was obtained with the APA, outper-
forming in this case, the other metaheuristic algorithms.

4.2 System Identification Example
System Identification deals with the problem of building 
approximated mathematical models of dynamic systems 
based on observed (experimental) data [19]. In this section, 
we briefly present the problem to be solved, thus the inter-
est reader is referred to [20] and [21] for further details. In this 
section, the APA is applied to a system identification prob-
lem. In this context, consider the following stable, linear 
and time invariant system, with input u(k) and output y(k):

𝐻𝐻(𝑧𝑧) = 𝑍𝑍 �
𝑦𝑦(𝑘𝑘)
𝑢𝑢(𝐾𝐾)� =

𝑌𝑌(𝑧𝑧)
𝑋𝑋(𝑧𝑧) =

2𝑧𝑧 − 1
𝑧𝑧2 − 0.2𝑧𝑧 + 0.26 � (11)

in which Z represents the Z transform and z is the com-
plex variable associated to this transform. Consider also 
that one can seek an approximated model for such a sys-

tem using linear combinations of Laguerre functions, as 
expressed in (12):

𝑀𝑀(𝑧𝑧)  = 𝑑𝑑1𝐿𝐿1(𝑧𝑧) + 𝑑𝑑2𝐿𝐿2(𝑧𝑧) + . . . + 𝑑𝑑𝑟𝑟𝐿𝐿𝑟𝑟(𝑧𝑧)  = Σ𝑖𝑖=1 
𝑟𝑟 𝑑𝑑𝑖𝑖  𝐿𝐿𝑖𝑖(𝑧𝑧), � (12)

in which M (z) is the approximated model of the system 
H(z) based on Laguerre functions, given by:

Li(z) = �1−p2

z−p
�1−pz

z−p
�

i−1
,  (13)

in which p ϵ R is the pole of the Laguerre functions.
Thus, in order to identify the system H(z), expressed in 

(11), it is necessary to find the pole, p and the coefficients 
di that minimize F(.), as expressed in equation (14),

x*=argmin{F(IR, Ip(x))}� (14) 
in which x = [d1, ..., dr, p] is the design vector com-

prised by the r coefficients di and the pole p; F(IR,IP) is 
the evaluation function of the algorithm, expressed by 
the mean square error (MSE), of the approximated model 
output with respect to the observed (measured) system 
output. It is important to mention here that, in the identifi-
cation problem, the image IR of the reference universe UR 
is known from experimental data. Hence, the evaluation 
function can be constructed as detailed above.

In order to identify the system H(z), one can resort to 
an input u(k), PRBS type, Pseudo Random Binary Signal. 
For the identification step, it was used 128 input/output 
system samples. Another 128 samples were reserved 
for the validation step. In this example, we constructed 
the approximated model using three Laguerre functions, 
i.e.,r=3 in (12). Thus, the resulting optimization problem 
has 4 design variables: 3 coefficients di and the pole p.

In order to solve such a problem a multiverse with 200 
universes was em- ployed for 50 iterations. The algorithm 
ran with characteristic propagation rate starting with 50% 
and ending with 30%, the Big-Bang rate starting with 5% 
and ending with 10% and the Armageddon rate starting 
with 5% and ending with 10%, varying linearly. In addi-
tion, it is worth to mention that the physical laws, L, used 
in this example, were a class of difference equations of 
first order, in which a1 and a2 ϵ R are generated by random 
values in each law of each universe.

The general structure of these laws is:

li: ci
(k+1) = a1ci

(k) +a2� (15)

in which ci
(k+1) +is the i-th characteristic of a universe, 

updated by equation (15), in the iteration (k + 1) of the al-
gorithm.

The best characteristics obtained by the APA are given 
in (16), which resulted in a MSE = 6.011 × 10−4.

d = [1.4350  2.1601－ 0.1512],
p = 0.1868.� (16)
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Now, using the information provided by APA, through 
the pole p, one can generate the Laguerre function basis, 
[L1(z), L2(z), L3(z)], used in the model (12):

𝐿𝐿1 (𝑧𝑧) = 0.982
𝑧𝑧−0.187

 , � (17)

𝐿𝐿2 (𝑧𝑧) =  
−0.184𝑧𝑧 + 0.982

𝑧𝑧2 − 0.374𝑧𝑧 + 0.035 � (18)

𝐿𝐿3(𝑧𝑧) =
0.034𝑧𝑧2 − 0.367𝑧𝑧 + 0.982

𝑧𝑧3 − 0.560𝑧𝑧2 + 0.105𝑧𝑧 − 0.0065 � (19)

and finally construct the approximation model M (z) ≈    
𝑌𝑌(𝑧𝑧)
𝑋𝑋(𝑧𝑧)  as shown in (20).

M(z) = 1.4350L1(z)+2.1601L2(z)-0.1512L3(z)� (20)
the pole, p, that has parameterized L1(z), L2(z) and L3(z) 

was 0.1868, as can be seen in (16).
The measured output of the system and the output ob-

tained by the approximated model M(z) are illustrated in 
figure 6. From this figure, we may see that the approxi-
mation model represents well the experimental data, thus 
successfully solving the identification problem.

Figure 6. Input signal u(k) applied to the system H(z) and 
its output y(k)

The convergence curve of APA for this problem is 
shown in figure 7.

In figure 7, one can see that the APA convergence 
process is more intense in the first iterations and, then, 
evolves slowly to the end value.

In order to make a comparison between the perfor-
mance of the APA and a classic GA, this identification 
problem was solved by both algorithms using the same 

stopping criterion: 100 iterations. In the GA, the crossover 
rate starting in 80% and ending with 60%, the mutation 
rate starting in 5% and ending in 10%. The resulting MSE 
of the approximated model provided by the APA and GA 
are given in table 5.
Table 5. Results of the minimization of MSE in the identi-

fication system problem with Laguerre functions

Method. APA GA

MSE 6.011×10-4 7.110×10-4

As it can be seen in table 5, the APA also provided a 
slightly better solution than the GA for this example.

It is import to mention that the APA was developed 
focusing in system identification problems, because the 
restrictions that characterize the IR are achieved directly 
from the sampled input/output data. However, is possible 
to infer that the APA algorithm can be applied for general 
optimization problems as can be seen in the next sections.

5. Statistical Analysis
In order to pursue a fair comparison among the APA and 
other metaheuristic algorithms, not only the best design 
found using each method should be com- pared, but also 
the statistics of each algorithm due to their stochastic 
nature. Thus, here, each optimization problem is run in-
dependently several times and the statistics of these runs 
are computed, such as the optimum mean value and co-
efficient of variation (C.O.V.) of the optimum objective 
function. The number of independent runs (NIR) for all 
the problems is taken as 50. Also, the stopping criterion 
used in all the problems is the number of iterations, which 
is set to 100.

The seven classical test functions shown in table 6 are 
analyzed. Functions f1, f2 and f3 are unimodal functions, 
with dimension equal to 30; f3 is a random function; func-
tions f4, f5 and f7 are multimodal, with 30 dimensions and 

Figure 7. Anthropic Principle Algorithm Convergence



47

Journal of Architectural Environment & Structural Engineering Research | Volume 01 | Issue 01 | 2018

     Distributed under creative commons license 4.0	       DOI: https://doi.org/10.30564/jaeser.v1i1.353

many local minima, while function f6 is a polynomial type 
with 2 dimensions [9].

The results of the comparison between the APA and the 
others algorithms is presented in table 7. The GA and PSO 
results were taken from the literature, in He et. al., (2009) [9]. 
Table 6. Seven Benchmark functions, in which n is the di-
mension of the function, S represents the function domain 

and fmin is the global minimum value of the function

It is worth to mention that the domain and correct min-
ima of the functions are shown in table 6 on the third and 
fourth column. In the APA, the initialization of Universe's 
characteristics has followed the range expressed in these 
domains. From table 7, one can see that the APA reached 
better values than GA on functions f1, f2, f5, f6 and f7.  In 
comparison with the PSO, the APA results were better on 
functions f2, f5, f6 and f7. GA and PSO algorithms present-
ed better results for the cases expressed by the functions f3 
and f4. The stochastic nature of the function f3 can explain 
why the APA did not return the best result for this case.  
Concerning function f4, since it is a multimodal function, 
the conclusion is that APA got stuck in a local minimum, 
even though its result is a value near to the one presented 
by the PSO.

Table 7. Results for the seven-benchmark functions  
expressed in table 6

Func. Algorit. Mean Std. C.O.V.

f1
GA

PSO APA
3.1711

3.6927×10−37

1.5859×10−10

1.6621
2.4598×10−36

1.6380×10−10

0.5241
6.6612
1.0329

f2
GA

PSO APA
9749.9145

1.1979×10−3

7.4209×10−6

2594.9593
2.1109×10−3

1.3054×10−5

0.2661
1.7622
1.7591

f3
GA

PSO APA
0.1045

9.9024×10−3

8.9354

3.6217×10−2

3.5380×10−2

0.5094

0.3466
3.5729

5.7009×10−2

f4
GA

PSO APA
0.6509
20.7863
34.6328

0.3594
5.9400
36.8309

0.5521
0.2858
1.0635

f5
GA

PSO APA
1.0038
0.2323

2.1888 ×10−4

6.7545×10−2

0.4434
2.4709×10−4

6.7289×10−2

1.9087
1.5857

f6
GA

PSO APA
-1.0298
-1.0160
-1.0316

3.1314×10−3

1.2786×10−2

3.8328×10−16

NA
NA NA

f7
GA

PSO APA
12.9804
2.2500
0.0219

0.5979
4.5895
0.1256

0.0461
2.0398
5.7322

In summary, the APA reached reasonable results for 
the majority of tested cases, overcoming the others meta-

heuristic algorithms in many cases.

6. Conclusion
In this paper, the concepts related to the Anthropic Princi-
ple were presented, as well as a new metaheuristic algo-
rithm based on it. This algorithm is conceptually simple 
and easy to implement. Regarding the study of the effect 
of the control parameters, the authors found that the APA 
is not so sensitive to most of parameters with the excep-
tion of the coefficients of the physical laws. With respect 
to the applicability of the algorithm, one can see that it is 
appealing for solving real world problems, since it is ap-
plicable to a variety of optimization problems.

In order to test APA capability to find the minimum of 
a non-convex function, the Rosenbrock function was an-
alyzed and compared, in a single run, with GA and PSO. 
From this comparison, one can conclude that the APA 
reached a value close to the known minimum, with better 
results than GA and PSO.

In order to test the algorithm in a practical engineering 
application, the APA was applied to a system identifica-
tion problem. In other words, the APA was used to find 
the parameters in a Laguerre model for a dynamic system. 
In the comparison between the algorithms, the APA out-
performed the GA. By the lower MSE reached and from 
figure 6, one can see that the approximated model is very 
close to the experimental data. Therefore, one can con-
clude that the approximated model provided by the APA is 
representative.

In figures 5 and 7, one can see that, typically, the APA 
convergence process is more intense in the firsts iterations 
and then, evolves slowly, but almost continuously, as seen 
in these figures.

In order to compare the statistics of the APA, GA and 
PSO, a set of seven benchmark functions were employed. 
50 runs of each algorithm were pursued for each function. 
From table 7, one can see that the APA reached better 
values than GA on functions f1, f2, f5 and f6. In comparison 
with the PSO, the APA results were better on functions f2, 
f5 and f6.

Considering that the APA is in its initial development, 
it is reasonable to assume that many improvements are 
still possible in the algorithm. In future work, it is possible 
to use the gradient-based methods as physical laws for the 
APA, mixing the deterministic and metaheuristic optimi-
zation.

Is important to mention that, in APA, the reference 
individual, IR, is fixed and the environment, U, is "adapt-
ed" to him, while in GA, the environment is fixed and the 
individuals are evolved. It also is noteworthy that the APA 
differs from the GA in the issue of defining its search di-
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rections. The spread of the characteristics of propagating 
universe to other universes generates a range of "direction 
searches". As the physical laws are random, it is likely 
that different universes have different physical laws, and 
the search space is swept in different manners.

In the comparison between the results obtained with 
application of Anthropic Principle Algorithm and other 
heuristic algorithms, one can conclude that the APA pre-
sented reasonable results in all studied cases, and reached 
the best values and statistics in the majority of the tested 
cases. Moreover, it is expected that APA can be used for 
general heuristic optimization problems.
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