
1

Journal of Architectural Environment & Structural Engineering Research | Volume 05 | Issue 04 | October 2022

Journal of Architectural Environment & Structural Engineering Research

https://ojs.bilpublishing.com/index.php/jaeser

Copyright © 2022 by the author(s). Published by Bilingual Publishing Co. This is an open access article under the Creative Commons 
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License. (https://creativecommons.org/licenses/by-nc/4.0/).

*Corresponding Author:
Paulo Roberto Lopes Lima, 
State University of Feira de Santana, Technology Department, Feira de Santana, Bahia, 44030-900, Brazil; 
Email: lima.prl@pq.cnpq.br

DOI: https://doi.org/10.30564/jaeser.v5i4.5028

ARTICLE  
Failure Evaluation of Reinforced Concrete Beams Using Damage 
Mechanics and Classical Laminate Theory

José Mário Feitosa Lima    Geraldo José Belmonte dos Santos    Paulo Roberto Lopes 
Lima*

State University of Feira de Santana, Technology Department, Feira de Santana, Bahia, 44030-900, Brazil

ARTICLE INFO ABSTRACT

Article history
Received: 30 August 2022
Revised: 16 September 2022
Accepted: 20 October 2022	
Published Online: 26 October 2022

The prediction of the behavior of reinforced concrete beams under bending 
is essential for the perfect design of these elements. Usually, the classical 
models do not incorporate the physical nonlinear behavior of concrete under 
tension and compression, which can underestimate the deformations in the 
structural element under short and long-term loads. In the present work, a 
variational formulation based on the Finite Element Method is presented 
to predict the flexural behavior of reinforced concrete beams. The physical 
nonlinearity due cracking of concrete is considered by utilization of damage 
concept in the definition of constitutive models, and the lamination theory it 
is used in discretization of section cross of beams. In the layered approach, 
the reinforced concrete element is formulated as a laminated composite that 
consists of thin layers, of concrete or steel that has been modeled as elastic-
perfectly plastic material. The comparison of numerical load-displacement 
results with experimental results found in the literature demonstrates a good 
approximation of the model and validates the application of the damage 
model in the Classical Laminate Theory to predict mechanical failure of 
reinforced concrete beam. The results obtained by the numerical model 
indicated a variation in the stress–strain behavior of each beam, while for 
under-reinforced beams, the compressive stresses did not reach the peak 
stress but the stress–strain behavior was observed in the nonlinear regime 
at failure, for the other beams, the concrete had reached its ultimate strain, 
and the beam’s neutral axis was close to the centroid of the cross-section.
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1. Introduction
The nonlinear numerical analysis of reinforced con-

crete structures has been implemented to predict both the 
reduction in stiffness with the increase in deformations, 

as well as the mechanism and process of failure [1]. The 
incorporation of nonlinear stress–strain models under ten-
sion and/or compression [2-4] has changed the constitutive 
equations of concrete.

Concrete is a cement-based composite material whose 
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mechanical properties depend on the constituents and 
interfaces between them. Its behavior is defined by the 
pre-existence of pores, voids, inclusions, and microcracks 
prior to loading, which induces: (i) a post-cracking be-
havior of strain softening; (ii) progressive deterioration of 
the mechanical properties; (iii) volumetric expansion; (iv) 
induced anisotropy; (v) asymmetry in response to traction 
and compression; (iv) considered fragile in traction and 
quasi-ductile in compression. In contrast, reinforced con-
crete uses steel reinforcements embedded in the cemen-
titious matrix to increase the strength and stiffness of the 
composite, primarily in the tension regions. Reinforced 
concrete exhibits an initially linear elastic behavior with 
a progressive increase in loading that progress to a non-
linear inelastic behavior induced by crack propagation 
and concrete crushing or steel yielding. Mathematical 
modeling of the nonlinear inelastic behavior of concrete, 
without considering creep, is typically based on plasticity 
theory, continuous damage theory, fracture mechanics, or 
a combination of these [5-12].

The isotropic Mazar damage model [13] allows the con-
tinuous representation of the structural model even after 
concrete cracking has generated good results in the mod-
eling of reinforced concrete structures [14,15]. This model 
uses theories based on the mechanics of continuous dam-
age that define the constitutive laws of concrete. Only one 
internal variable is required to apply this model and its 
evolution law is easily obtained by performing tensile and 
compression tests on the material. 

In terms of discrete representation of reinforced con-
crete structures, the most common model for numerical 
analysis has been the use of the finite element method, 
wherein the concrete and reinforcement bars are mod-
eled separately using two different types of elements. An 
additional approach has been used with the adoption of 
lamination, wherein the structural element is divided into 
several layers [2,16]. Based on the classical laminate theory, 
this model associates a specific type of material with each 
layer of the beam and considers the perfect adhesion be-
tween the layers. By monitoring the stresses and strains in 
each layer, the commencement of cracking in the concrete 
and the yielding of the reinforcement can be identified, 
thus resulting in a more realistic evaluation of the behav-
ior of the structural elements of reinforced concrete.

The objective of this study is to assess the effective-
ness of damage mechanics and classical lamination 
theory in the failure prediction of reinforced concrete 
beams. For this purpose, a variational formulation model 
was developed based on such theories and the principle 
of virtual work. Subsequently, it was applied using the 
finite element method (FEM) and the obtained results 

were compared with the experimental results reported in 
the literature. 

2. Problem Formulation and Numerical Mod-
eling

2.1 Materials Modelling

The model proposed by Mazars [13] is based on exper-
imental evidence observed in the behavior of concrete 
under uniaxial tension and compression, wherein the ma-
terial degrades owing to distributed microcracking caused 
by tensile stresses. In this model, the damage is repre-
sented by scalar variable D, whose evolution occurs only 
when an equivalent strain measure, 
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� = < 1 >+
2 +< 2 >+

2 +< 3 >+
2 , (1)

where <  >+ is the positive part of the elongation in the principal direction i and is defined as

<  >+ =
1
2
 +  = , �  > 0

0, �  ≤ 0 . (2)

In the pre-cracking phase ( ≤ 0), the concrete exhibits linear elastic behavior. Whereas
in the post-cracking phase, when the strain is greater than the elastic strain limit ( > 0 ), the
concrete exhibits nonlinear elastic behavior when the initial elastic modulus 0 is progressively
damaged.

Thus, the uniaxial stress–strain behavior of concrete can be established by:

 =
 ,  ≤ 0

1 −  ,  > 0
. (3)

In Equation (3), the damage parameter D varies between 0 (when  ≤ 0 ) and 1 (when
the material is completely damaged), as expressed by (see [14,15]):

 =  +  , (4)

with

 = <>+�

<>+� + <>+�
, (5)
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where  +  = 1 ,  and  are the components of the principal strains determined by the
positive and negative parts, respectively. The values , , ,  and 0 are the experimental
parameters obtained from the material tests.

For the reinforcing steel bars, the linear elastic behavior between the stress and strain
before yield deformation is assumed to be  = , se  < , where  is the elastic modulus of
the steel. After yielding  ≥  , the stress is assumed to be constant,  =  , where  is the
yielding stress of the steel and exhibits linearly elastic–perfectly plastic behavior.

In this study, the cross section of the beams was discretized in NC layers of thickness hk
(k=1,..., NC), as shown in Figure 1.

Figure 1. Discretization of the laminated beam

Classical laminate theory establishes that the laminae that form the laminate are in a
plane stress state. In this context, and based on the generalized Hooke’s law for homogeneous and
isotropic materials, the following relationship between stresses and strains in each layer of the
laminate is valid [16].
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the damage that occurs in the concrete layers and is given 
by Equations (4)–(8). When the layer is steel, the stress–
strain relationship incorporates plastic strain after the 
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only for laminates formed by orthotopic or isotropic ma-
terials [16]. However, this theory can be considered as an 
extension of the classical theory to address problems in-
volving materials subject to damage and plasticity.
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 = � � =  −ℎ 2
ℎ 2 �� , (15)

where N denotes the normal force; M denotes the bending moment; b denotes the width of the
section; and h denotes its height.

For a laminated cross section, as shown in Figure 1, the evaluation of these internal stress
resultants is performed by adding the contribution from each lamina; in this process, different
materials are considered. With the development of the addition, we obtain Equations (16) and
(17), which are compact expressions of the resultants.
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The quantities 11 , 11 , and 11 are associated with the term [1, 1] of the matrices of
extensional stiffness [A], bending stiffness [B], and coupling [D], respectively, as they are
referred to in the classical laminate theory [16]. However, mote that Equations (18)–(20)
incorporate the width of section b of the beam, which is not present in the equations of classical
laminate theory.

2.3 Principle of Virtual Works

In this study, FEM was used to model the laminated beam, and the principle of virtual
work was used to write equilibrium equations and transform the continuous problem into a
discrete problem.

Given that the structural system will be in equilibrium, if the total virtual work of the
applied forces is zero, for any compatible virtual (and infinitesimal) displacement, the initial
problem is determining the virtual work done by the internal forces and the virtual work done by
external forces.

The virtual work done by the internal forces for the problem is given by:

� =  � , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.
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For a laminated cross section, as shown in Figure 1, the evaluation of these internal stress
resultants is performed by adding the contribution from each lamina; in this process, different
materials are considered. With the development of the addition, we obtain Equations (16) and
(17), which are compact expressions of the resultants.
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The quantities 11 , 11 , and 11 are associated with the term [1, 1] of the matrices of
extensional stiffness [A], bending stiffness [B], and coupling [D], respectively, as they are
referred to in the classical laminate theory [16]. However, mote that Equations (18)–(20)
incorporate the width of section b of the beam, which is not present in the equations of classical
laminate theory.

2.3 Principle of Virtual Works

In this study, FEM was used to model the laminated beam, and the principle of virtual
work was used to write equilibrium equations and transform the continuous problem into a
discrete problem.

Given that the structural system will be in equilibrium, if the total virtual work of the
applied forces is zero, for any compatible virtual (and infinitesimal) displacement, the initial
problem is determining the virtual work done by the internal forces and the virtual work done by
external forces.

The virtual work done by the internal forces for the problem is given by:

� =  � , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.
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The quantities A11, B11, and D11 are associated with the 
term [1, 1] of the matrices of extensional stiffness [A], 
bending stiffness [B], and coupling [D], respectively, as 
they are referred to in the classical laminate theory [16]. 
However, note that Equations (18)–(20) incorporate the 
width of section b of the beam, which is not present in the 
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equations of classical laminate theory.

2.3 Principle of Virtual Works

In this study, FEM was used to model the laminated 
beam, and the principle of virtual work was used to write 
equilibrium equations and transform the continuous prob-
lem into a discrete problem.

Given that the structural system will be in equilibrium, 
if the total virtual work of the applied forces is zero, for 
any compatible virtual (and infinitesimal) displacement, 
the initial problem is determining the virtual work done by 
the internal forces and the virtual work done by external 
forces.

The virtual work done by the internal forces for the 
problem is given by:

� =  � , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

� = 0
 11
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− 11
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− 11
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∂2  ∂20

∂2 � . (22)

The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0�  + � 0 + � 0 −�  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively; �  and �  represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and� represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is, � =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:
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3 =−   or �
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=−   , (24)

11
30
3 − 11

40
4 =   or 2

2 =   . (25)

Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 = � 0 and 0 = � 0 or � = � , (26)

0 = � 0 and 0 = � 0 or  = � , (27)
0


= � 0


and  0


=  � 0


or  = � , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.

 = 

= 11

20
2 − 11

30
3 . (29)

2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length � were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

� (21)
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where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.
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where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively; �  and �  represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and� represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is, � =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:
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where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.
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= 11
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30
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2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length � were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

 is the variation in the strain component 

The model used in the study, which appears in the Euler–Bernoulli Beam theory in a
single stress component  in Equation (9) used for the analysis of beams, is believed to have
only one non-zero strain component , as given below.

 = 11
 . (13)

The internal stresses in the generic cross-section of the laminate of area A are related by
the following equations.

 = �  =  −ℎ 2
ℎ 2 �� , (14)

 = � � =  −ℎ 2
ℎ 2 �� , (15)

where N denotes the normal force; M denotes the bending moment; b denotes the width of the
section; and h denotes its height.

For a laminated cross section, as shown in Figure 1, the evaluation of these internal stress
resultants is performed by adding the contribution from each lamina; in this process, different
materials are considered. With the development of the addition, we obtain Equations (16) and
(17), which are compact expressions of the resultants.
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where
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The quantities 11 , 11 , and 11 are associated with the term [1, 1] of the matrices of
extensional stiffness [A], bending stiffness [B], and coupling [D], respectively, as they are
referred to in the classical laminate theory [16]. However, mote that Equations (18)–(20)
incorporate the width of section b of the beam, which is not present in the equations of classical
laminate theory.

2.3 Principle of Virtual Works

In this study, FEM was used to model the laminated beam, and the principle of virtual
work was used to write equilibrium equations and transform the continuous problem into a
discrete problem.

Given that the structural system will be in equilibrium, if the total virtual work of the
applied forces is zero, for any compatible virtual (and infinitesimal) displacement, the initial
problem is determining the virtual work done by the internal forces and the virtual work done by
external forces.

The virtual work done by the internal forces for the problem is given by:

� =  � , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

; and 
V is the volume of the beam.

For the laminated section shown in Figure 1, we obtain 
the following.

� =  � , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

� = 0
 11

∂0
∂
− 11

∂20
∂2  ∂0

∂
− 11

∂0
∂
− 11

∂20
∂2  ∂20

∂2 � . (22)

The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0�  + � 0 + � 0 −�  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively; �  and �  represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and� represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is, � =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:

11
20
2 −11

30
3 =−   or �


=−   , (24)

11
30
3 − 11

40
4 =   or 2

2 =   . (25)

Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 = � 0 and 0 = � 0 or � = � , (26)

0 = � 0 and 0 = � 0 or  = � , (27)
0


= � 0


and  0


=  � 0


or  = � , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.

 = 

= 11

20
2 − 11

30
3 . (29)

2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length � were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type
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where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

� = 0
 11

∂0
∂
− 11

∂20
∂2  ∂0

∂
− 11

∂0
∂
− 11

∂20
∂2  ∂20

∂2 � . (22)
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where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively; �  and �  represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and� represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is, � =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:
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where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.
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2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and
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to represent the displacements along the finite element of length � were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type
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The virtual work done by the external forces, assuming 
that the loads are applied directly to the axis of the struc-
ture to produce bending, is given by:
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where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.
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The virtual work done by the external forces, assuming that the loads are applied directly
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where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively; �  and �  represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and� represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is, � =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.
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where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.
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2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and
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. The interpolation functions used

to represent the displacements along the finite element of length � were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0
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where  is the variation in the strain component ; and  is the volume of the beam.
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where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively; �  and �  represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and� represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
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where Q is the shear force in the section obtained from the equilibrium of the differential element
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2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and
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to represent the displacements along the finite element of length � were cubic polynomials for
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where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.
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The virtual work done by the external forces, assuming that the loads are applied directly
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where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively; �  and �  represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and� represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
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where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.
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2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and
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∂
. The interpolation functions used

to represent the displacements along the finite element of length � were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0
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where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.
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where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively; �  and �  represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and� represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is, � =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:
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where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.
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2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and
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. The interpolation functions used

to represent the displacements along the finite element of length � were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0
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where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.
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The virtual work done by the external forces, assuming that the loads are applied directly
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where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively; �  and �  represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and� represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is, � =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:
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where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.
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2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and
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. The interpolation functions used

to represent the displacements along the finite element of length � were cubic polynomials for
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where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.
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where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively; �  and �  represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and� represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is, � =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:
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where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.
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2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and
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. The interpolation functions used

to represent the displacements along the finite element of length � were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by
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domain portions in Equations (22) and (23) through inte-
gration by parts. 

This result in the system of differential equations asso-
ciated with the model:

� =  � , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

� = 0
 11

∂0
∂
− 11

∂20
∂2  ∂0

∂
− 11

∂0
∂
− 11

∂20
∂2  ∂20

∂2 � . (22)

The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0�  + � 0 + � 0 −�  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively; �  and �  represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and� represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is, � =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:

11
20
2 −11

30
3 =−   or �


=−   , (24)

11
30
3 − 11

40
4 =   or 2

2 =   . (25)

Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 = � 0 and 0 = � 0 or � = � , (26)

0 = � 0 and 0 = � 0 or  = � , (27)
0


= � 0


and  0


=  � 0


or  = � , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.

 = 

= 11

20
2 − 11

30
3 . (29)

2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length � were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

� (24)

� =  � , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

� = 0
 11

∂0
∂
− 11

∂20
∂2  ∂0

∂
− 11

∂0
∂
− 11

∂20
∂2  ∂20

∂2 � . (22)

The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0�  + � 0 + � 0 −�  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively; �  and �  represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and� represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is, � =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:

11
20
2 −11

30
3 =−   or �


=−   , (24)

11
30
3 − 11

40
4 =   or 2

2 =   . (25)

Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 = � 0 and 0 = � 0 or � = � , (26)

0 = � 0 and 0 = � 0 or  = � , (27)
0


= � 0


and  0


=  � 0


or  = � , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.

 = 

= 11

20
2 − 11

30
3 . (29)

2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length � were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

� (25)

Because of the application of PTV, the following 
boundary conditions are extracted at x = 0 and x = L, in-

herent to the model:

� =  � , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

� = 0
 11

∂0
∂
− 11

∂20
∂2  ∂0

∂
− 11

∂0
∂
− 11

∂20
∂2  ∂20

∂2 � . (22)

The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0�  + � 0 + � 0 −�  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively; �  and �  represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and� represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is, � =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:

11
20
2 −11

30
3 =−   or �


=−   , (24)

11
30
3 − 11

40
4 =   or 2

2 =   . (25)

Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 = � 0 and 0 = � 0 or � = � , (26)

0 = � 0 and 0 = � 0 or  = � , (27)
0


= � 0


and  0


=  � 0


or  = � , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.

 = 

= 11

20
2 − 11

30
3 . (29)

2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length � were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

� (26)

� =  � , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

� = 0
 11

∂0
∂
− 11

∂20
∂2  ∂0

∂
− 11

∂0
∂
− 11

∂20
∂2  ∂20

∂2 � . (22)

The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0�  + � 0 + � 0 −�  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively; �  and �  represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and� represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is, � =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:

11
20
2 −11

30
3 =−   or �


=−   , (24)

11
30
3 − 11

40
4 =   or 2

2 =   . (25)

Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 = � 0 and 0 = � 0 or � = � , (26)

0 = � 0 and 0 = � 0 or  = � , (27)
0


= � 0


and  0


=  � 0


or  = � , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.

 = 

= 11

20
2 − 11

30
3 . (29)

2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length � were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

� (27)

� =  � , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

� = 0
 11

∂0
∂
− 11

∂20
∂2  ∂0

∂
− 11

∂0
∂
− 11

∂20
∂2  ∂20

∂2 � . (22)

The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0�  + � 0 + � 0 −�  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively; �  and �  represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and� represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is, � =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:

11
20
2 −11

30
3 =−   or �


=−   , (24)

11
30
3 − 11

40
4 =   or 2

2 =   . (25)

Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 = � 0 and 0 = � 0 or � = � , (26)

0 = � 0 and 0 = � 0 or  = � , (27)
0


= � 0


and  0


=  � 0


or  = � , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.

 = 

= 11

20
2 − 11

30
3 . (29)

2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length � were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

� (28)

where Q is the shear force in the section obtained from the 
equilibrium of the differential element of the beam.

� =  � , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

� = 0
 11

∂0
∂
− 11

∂20
∂2  ∂0

∂
− 11

∂0
∂
− 11

∂20
∂2  ∂20

∂2 � . (22)

The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0�  + � 0 + � 0 −�  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively; �  and �  represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and� represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is, � =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:

11
20
2 −11

30
3 =−   or �


=−   , (24)

11
30
3 − 11

40
4 =   or 2

2 =   . (25)

Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 = � 0 and 0 = � 0 or � = � , (26)

0 = � 0 and 0 = � 0 or  = � , (27)
0


= � 0


and  0


=  � 0


or  = � , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.

 = 

= 11

20
2 − 11

30
3 . (29)

2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length � were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

� (29)

2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for 
treatment using FEM for formulation developed in the 
previous subsections [17]. This element is delimited by two 
nodes at its ends, with three degrees of freedom at each of 
these nodes: u0, w0, and 

� =  � , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

� = 0
 11
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∂20
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∂2 � . (22)

The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0�  + � 0 + � 0 −�  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively; �  and �  represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and� represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is, � =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:
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Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 = � 0 and 0 = � 0 or � = � , (26)

0 = � 0 and 0 = � 0 or  = � , (27)
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or  = � , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.
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30
3 . (29)

2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length � were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

. The interpolation functions 
used to represent the displacements along the finite ele-
ment of length Lel were cubic polynomials for 

� =  � , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.
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The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0�  + � 0 + � 0 −�  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively; �  and �  represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and� represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is, � =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:
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Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 = � 0 and 0 = � 0 or � = � , (26)

0 = � 0 and 0 = � 0 or  = � , (27)
0
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and  0


=  � 0


or  = � , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.
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2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length � were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

and linear polynomials for 

� =  � , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

� = 0
 11
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∂20
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The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0�  + � 0 + � 0 −�  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively; �  and �  represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and� represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is, � =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:
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40
4 =   or 2

2 =   . (25)

Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 = � 0 and 0 = � 0 or � = � , (26)

0 = � 0 and 0 = � 0 or  = � , (27)
0


= � 0


and  0


=  � 0


or  = � , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.

 = 
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30
3 . (29)

2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length � were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

. Finally, the rotation 

� =  � , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

� = 0
 11
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The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0�  + � 0 + � 0 −�  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively; �  and �  represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and� represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is, � =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:
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Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 = � 0 and 0 = � 0 or � = � , (26)

0 = � 0 and 0 = � 0 or  = � , (27)
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and  0
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

or  = � , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.
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2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length � were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

 was obtained by deriving from 

� =  � , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.
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The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
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where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively; �  and �  represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and� represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is, � =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:
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Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 = � 0 and 0 = � 0 or � = � , (26)

0 = � 0 and 0 = � 0 or  = � , (27)
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and  0
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

or  = � , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.
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
= 11

20
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30
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2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length � were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

.
The FEM application generates a system of nodal equi-

librium equations of type
  =  , (30)

where  is the global stiffness matrix of the structure, a function of both the geometry of the
beam and the mechanical properties of the materials, and is given by the assembly of elements, as
shown in Equation (31);  is the global vector of loads, containing the equivalent nodal loads
acting on the structure; and  is the vector of nodal displacements, obtained by solving the
system of Equations (30).

 = 1
� �� , (31)

where NE is the number of finite elements defined in the beam discretization; and � is the
stiffness matrix of the beam element, which is given by
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During the process of applying loads on the structural element, the matrix � can be
different even for elements of the same length � because the cracking process of the concrete or
the yielding of the reinforcement causes the damage variable to assume different values along the
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental application of external loads was
performed to obtain an initial (predicted) solution, followed by an iterative Newton–Raphson
using force or displacement control process. Table 1 summarizes the flowchart of the program.

Table 1. Iterative process of obtaining a solution

Pre-cracking phase (D = 0) Post-cracking phase (D > 0)

1. Calculation of the stiffness matrix;

2. The load is updated from the load increment  ;

3. Solve the system of Equation (30);

4. Return to step 1;

1. Calculation of the stiffness matrix in relation to the
last equilibrium configuration using displacements,
strains, stresses, and the updated damage variable;

2. Update load from load increment  F ;

3. Solve the system of Equation (30);

4. Check convergence through the unbalanced force
(external forces minus internal forces);

5. If there is no convergence, the stiffness of the
structure must be updated and then the increment of the
nodal displacements  must be calculated through the
unbalance force. Subsequently, the displacements
(  +  ) and the damage variable are updated.
Finally, the unbalanced force is updated and the
convergence is verified (external force minus internal

� (30)
where   =  , (30)

where  is the global stiffness matrix of the structure, a function of both the geometry of the
beam and the mechanical properties of the materials, and is given by the assembly of elements, as
shown in Equation (31);  is the global vector of loads, containing the equivalent nodal loads
acting on the structure; and  is the vector of nodal displacements, obtained by solving the
system of Equations (30).

 = 1
� �� , (31)

where NE is the number of finite elements defined in the beam discretization; and � is the
stiffness matrix of the beam element, which is given by
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During the process of applying loads on the structural element, the matrix � can be
different even for elements of the same length � because the cracking process of the concrete or
the yielding of the reinforcement causes the damage variable to assume different values along the
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental application of external loads was
performed to obtain an initial (predicted) solution, followed by an iterative Newton–Raphson
using force or displacement control process. Table 1 summarizes the flowchart of the program.

Table 1. Iterative process of obtaining a solution

Pre-cracking phase (D = 0) Post-cracking phase (D > 0)

1. Calculation of the stiffness matrix;

2. The load is updated from the load increment  ;

3. Solve the system of Equation (30);

4. Return to step 1;

1. Calculation of the stiffness matrix in relation to the
last equilibrium configuration using displacements,
strains, stresses, and the updated damage variable;

2. Update load from load increment  F ;

3. Solve the system of Equation (30);

4. Check convergence through the unbalanced force
(external forces minus internal forces);

5. If there is no convergence, the stiffness of the
structure must be updated and then the increment of the
nodal displacements  must be calculated through the
unbalance force. Subsequently, the displacements
(  +  ) and the damage variable are updated.
Finally, the unbalanced force is updated and the
convergence is verified (external force minus internal

 is the global stiffness matrix of the structure, a 
function of both the geometry of the beam and the me-
chanical properties of the materials, and is given by the 
assembly of elements, as shown in Equation (31);   =  , (30)

where  is the global stiffness matrix of the structure, a function of both the geometry of the
beam and the mechanical properties of the materials, and is given by the assembly of elements, as
shown in Equation (31);  is the global vector of loads, containing the equivalent nodal loads
acting on the structure; and  is the vector of nodal displacements, obtained by solving the
system of Equations (30).

 = 1
� �� , (31)

where NE is the number of finite elements defined in the beam discretization; and � is the
stiffness matrix of the beam element, which is given by
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During the process of applying loads on the structural element, the matrix � can be
different even for elements of the same length � because the cracking process of the concrete or
the yielding of the reinforcement causes the damage variable to assume different values along the
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental application of external loads was
performed to obtain an initial (predicted) solution, followed by an iterative Newton–Raphson
using force or displacement control process. Table 1 summarizes the flowchart of the program.

Table 1. Iterative process of obtaining a solution

Pre-cracking phase (D = 0) Post-cracking phase (D > 0)

1. Calculation of the stiffness matrix;

2. The load is updated from the load increment  ;

3. Solve the system of Equation (30);

4. Return to step 1;

1. Calculation of the stiffness matrix in relation to the
last equilibrium configuration using displacements,
strains, stresses, and the updated damage variable;

2. Update load from load increment  F ;

3. Solve the system of Equation (30);

4. Check convergence through the unbalanced force
(external forces minus internal forces);

5. If there is no convergence, the stiffness of the
structure must be updated and then the increment of the
nodal displacements  must be calculated through the
unbalance force. Subsequently, the displacements
(  +  ) and the damage variable are updated.
Finally, the unbalanced force is updated and the
convergence is verified (external force minus internal

 is 
the global vector of loads, containing the equivalent nodal 
loads acting on the structure; and   =  , (30)

where  is the global stiffness matrix of the structure, a function of both the geometry of the
beam and the mechanical properties of the materials, and is given by the assembly of elements, as
shown in Equation (31);  is the global vector of loads, containing the equivalent nodal loads
acting on the structure; and  is the vector of nodal displacements, obtained by solving the
system of Equations (30).

 = 1
� �� , (31)

where NE is the number of finite elements defined in the beam discretization; and � is the
stiffness matrix of the beam element, which is given by
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During the process of applying loads on the structural element, the matrix � can be
different even for elements of the same length � because the cracking process of the concrete or
the yielding of the reinforcement causes the damage variable to assume different values along the
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental application of external loads was
performed to obtain an initial (predicted) solution, followed by an iterative Newton–Raphson
using force or displacement control process. Table 1 summarizes the flowchart of the program.

Table 1. Iterative process of obtaining a solution

Pre-cracking phase (D = 0) Post-cracking phase (D > 0)

1. Calculation of the stiffness matrix;

2. The load is updated from the load increment  ;

3. Solve the system of Equation (30);

4. Return to step 1;

1. Calculation of the stiffness matrix in relation to the
last equilibrium configuration using displacements,
strains, stresses, and the updated damage variable;

2. Update load from load increment  F ;

3. Solve the system of Equation (30);

4. Check convergence through the unbalanced force
(external forces minus internal forces);

5. If there is no convergence, the stiffness of the
structure must be updated and then the increment of the
nodal displacements  must be calculated through the
unbalance force. Subsequently, the displacements
(  +  ) and the damage variable are updated.
Finally, the unbalanced force is updated and the
convergence is verified (external force minus internal

 is the vector of nod-
al displacements, obtained by solving the system of Equa-
tions (30).

  =  , (30)

where  is the global stiffness matrix of the structure, a function of both the geometry of the
beam and the mechanical properties of the materials, and is given by the assembly of elements, as
shown in Equation (31);  is the global vector of loads, containing the equivalent nodal loads
acting on the structure; and  is the vector of nodal displacements, obtained by solving the
system of Equations (30).

 = 1
� �� , (31)

where NE is the number of finite elements defined in the beam discretization; and � is the
stiffness matrix of the beam element, which is given by
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During the process of applying loads on the structural element, the matrix � can be
different even for elements of the same length � because the cracking process of the concrete or
the yielding of the reinforcement causes the damage variable to assume different values along the
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental application of external loads was
performed to obtain an initial (predicted) solution, followed by an iterative Newton–Raphson
using force or displacement control process. Table 1 summarizes the flowchart of the program.

Table 1. Iterative process of obtaining a solution

Pre-cracking phase (D = 0) Post-cracking phase (D > 0)

1. Calculation of the stiffness matrix;

2. The load is updated from the load increment  ;

3. Solve the system of Equation (30);

4. Return to step 1;

1. Calculation of the stiffness matrix in relation to the
last equilibrium configuration using displacements,
strains, stresses, and the updated damage variable;

2. Update load from load increment  F ;

3. Solve the system of Equation (30);

4. Check convergence through the unbalanced force
(external forces minus internal forces);

5. If there is no convergence, the stiffness of the
structure must be updated and then the increment of the
nodal displacements  must be calculated through the
unbalance force. Subsequently, the displacements
(  +  ) and the damage variable are updated.
Finally, the unbalanced force is updated and the
convergence is verified (external force minus internal

� (31)

where NE is the number of finite elements defined in the 
beam discretization; and 

  =  , (30)

where  is the global stiffness matrix of the structure, a function of both the geometry of the
beam and the mechanical properties of the materials, and is given by the assembly of elements, as
shown in Equation (31);  is the global vector of loads, containing the equivalent nodal loads
acting on the structure; and  is the vector of nodal displacements, obtained by solving the
system of Equations (30).

 = 1
� �� , (31)

where NE is the number of finite elements defined in the beam discretization; and � is the
stiffness matrix of the beam element, which is given by
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During the process of applying loads on the structural element, the matrix � can be
different even for elements of the same length � because the cracking process of the concrete or
the yielding of the reinforcement causes the damage variable to assume different values along the
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental application of external loads was
performed to obtain an initial (predicted) solution, followed by an iterative Newton–Raphson
using force or displacement control process. Table 1 summarizes the flowchart of the program.

Table 1. Iterative process of obtaining a solution

Pre-cracking phase (D = 0) Post-cracking phase (D > 0)

1. Calculation of the stiffness matrix;

2. The load is updated from the load increment  ;

3. Solve the system of Equation (30);

4. Return to step 1;

1. Calculation of the stiffness matrix in relation to the
last equilibrium configuration using displacements,
strains, stresses, and the updated damage variable;

2. Update load from load increment  F ;

3. Solve the system of Equation (30);

4. Check convergence through the unbalanced force
(external forces minus internal forces);

5. If there is no convergence, the stiffness of the
structure must be updated and then the increment of the
nodal displacements  must be calculated through the
unbalance force. Subsequently, the displacements
(  +  ) and the damage variable are updated.
Finally, the unbalanced force is updated and the
convergence is verified (external force minus internal

 is the stiffness matrix of the 
beam element, which is given by

  =  , (30)

where  is the global stiffness matrix of the structure, a function of both the geometry of the
beam and the mechanical properties of the materials, and is given by the assembly of elements, as
shown in Equation (31);  is the global vector of loads, containing the equivalent nodal loads
acting on the structure; and  is the vector of nodal displacements, obtained by solving the
system of Equations (30).

 = 1
� �� , (31)

where NE is the number of finite elements defined in the beam discretization; and � is the
stiffness matrix of the beam element, which is given by
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During the process of applying loads on the structural element, the matrix � can be
different even for elements of the same length � because the cracking process of the concrete or
the yielding of the reinforcement causes the damage variable to assume different values along the
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental application of external loads was
performed to obtain an initial (predicted) solution, followed by an iterative Newton–Raphson
using force or displacement control process. Table 1 summarizes the flowchart of the program.

Table 1. Iterative process of obtaining a solution

Pre-cracking phase (D = 0) Post-cracking phase (D > 0)

1. Calculation of the stiffness matrix;

2. The load is updated from the load increment  ;

3. Solve the system of Equation (30);

4. Return to step 1;

1. Calculation of the stiffness matrix in relation to the
last equilibrium configuration using displacements,
strains, stresses, and the updated damage variable;

2. Update load from load increment  F ;

3. Solve the system of Equation (30);

4. Check convergence through the unbalanced force
(external forces minus internal forces);

5. If there is no convergence, the stiffness of the
structure must be updated and then the increment of the
nodal displacements  must be calculated through the
unbalance force. Subsequently, the displacements
(  +  ) and the damage variable are updated.
Finally, the unbalanced force is updated and the
convergence is verified (external force minus internal
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During the process of applying loads on the structural 
element, the matrix 

  =  , (30)

where  is the global stiffness matrix of the structure, a function of both the geometry of the
beam and the mechanical properties of the materials, and is given by the assembly of elements, as
shown in Equation (31);  is the global vector of loads, containing the equivalent nodal loads
acting on the structure; and  is the vector of nodal displacements, obtained by solving the
system of Equations (30).

 = 1
� �� , (31)

where NE is the number of finite elements defined in the beam discretization; and � is the
stiffness matrix of the beam element, which is given by
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During the process of applying loads on the structural element, the matrix � can be
different even for elements of the same length � because the cracking process of the concrete or
the yielding of the reinforcement causes the damage variable to assume different values along the
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental application of external loads was
performed to obtain an initial (predicted) solution, followed by an iterative Newton–Raphson
using force or displacement control process. Table 1 summarizes the flowchart of the program.

Table 1. Iterative process of obtaining a solution

Pre-cracking phase (D = 0) Post-cracking phase (D > 0)

1. Calculation of the stiffness matrix;

2. The load is updated from the load increment  ;

3. Solve the system of Equation (30);

4. Return to step 1;

1. Calculation of the stiffness matrix in relation to the
last equilibrium configuration using displacements,
strains, stresses, and the updated damage variable;

2. Update load from load increment  F ;

3. Solve the system of Equation (30);

4. Check convergence through the unbalanced force
(external forces minus internal forces);

5. If there is no convergence, the stiffness of the
structure must be updated and then the increment of the
nodal displacements  must be calculated through the
unbalance force. Subsequently, the displacements
(  +  ) and the damage variable are updated.
Finally, the unbalanced force is updated and the
convergence is verified (external force minus internal

 can be different even for ele-
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ments of the same length Lel because the cracking process 
of the concrete or the yielding of the reinforcement causes 
the damage variable to assume different values along the 
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental 
application of external loads was performed to obtain an 
initial (predicted) solution, followed by an iterative New-
ton–Raphson using force or displacement control process. 
Table 1 summarizes the flowchart of the program.

2.5 Model Validation

The experimental results obtained by Álvares [15] were 
used to validate the proposed model. Reinforced concrete 
beams with different reinforcement ratios were experi-
mentally investigated to evaluate their failure form when 
subjected to a four-point bending test. The experimental 
test of the beams was performed with load control such 
that the test was interrupted when the breaking load was 
reached.

The beams evaluated by Álvares [15] had a rectangular 
section measuring 120 mm × 300 mm, with a span of 
2400 mm and loads located 800 mm from the support, as 
shown in Figure 2a and 2b. 

The reinforcement rate of the beams was varied such 
that three types of failures, namely flexural tension fail-
ure (under-reinforced section), flexural compression 

failure (over-reinforced section), and simultaneous fail-
ure (optimized section), could be evaluated. The upper 
reinforcement of all beams consisted of two bars with a 
diameter of 5 mm. The lower reinforcement varied based 
on the type of failure expected for the beam: i) for the un-
der-reinforced section beam (Figure 2b), three bars with 
a diameter of 10 mm were used (As = 236 mm2); ii) for 
the optimized section beam (Figure 2c), five bars with a 
diameter of 10 mm were used (As = 393 mm2); iii) for the 
over-reinforced section beam (Figure 2d), seven bars with 
a diameter of 10 mm were used (As = 550 mm2). For beam 
reinforcement, the following properties were assumed for 
steel: Es = 196 GPa, fy = 500 MPa, and fu = 500 MPa. 

For concrete modeling, an elastic modulus of 29.2 GPa 
and the following parameters necessary for the Mazar 
damage model, defined by Álvares [15], were used. At = 

995, Bt = 8000, Ac = 0.85, Bc = 1620 and 

force). Repeat this process until the solution converges to
that charge level.

6. After convergence, go back to step 1.

2.5 Model Validation
The experimental results obtained by Álvares [15] were used to validate the proposed

model. Reinforced concrete beams with different reinforcement ratios were experimentally
investigated to evaluate their failure form when subjected to a four-point bending test. The
experimental test of the beams was performed with load control such that the test was interrupted
when the breaking load was reached.

The beams evaluated by Álvares [15] had a rectangular section measuring 120 mm × 300
mm, with a span of 2400 mm and loads located 800 mm from the support, as shown in Figure 2a
and b.

The reinforcement rate of the beams was varied such that three types of failures, namely
flexural tension failure (under-reinforced section), flexural compression failure (over-reinforced
section), and simultaneous failure (optimized section), could be evaluated. The upper
reinforcement of all beams consisted of two bars with a diameter of 5 mm. The lower
reinforcement varied based on the type of failure expected for the beam: i) for the under-
reinforced section beam (Figure 2b), three bars with a diameter of 10 mm were used (As = 236
mm2); ii) for the optimized section beam (Figure 2c), five bars with a diameter of 10 mm were
used (As = 393 mm2); iii) for the over-reinforced section beam (Figure 2d), seven bars with a
diameter of 10 mm were used (As = 550 mm2). For beam reinforcement, the following properties
were assumed for steel:  = 196 GPa,  = 500 MPa, and  = 500 MPa.

Figure 2. Experimental setup [15]: a) four-point bending test; b) under-reinforced beam; c)
optimized beam; d) over-reinforced beam.

For concrete modeling, an elastic modulus of 29.2 GPa and the following parameters
necessary for the Mazar damage model, defined by Álvares [15], were used.  = 0.995 ,  =
8000 ,  = 0.85,  = 1620 and 0 = 0.00007 . Additionally, a Poisson’s ratio of 0.2 was
assumed.

A convergence study (verification process) of the discretization parameters of the load–
displacement solution was performed to determine the finite element mesh of the beams by
varying the number of layers (10, 20, and 40 layers) of the cross section, the number of elements
for the length of the beams (12, 24, 36, and 48 elements), the initial load step (0.5, 1.0, and 2.0
kN), and the tolerance of the iterative process (10–3, 10–4, and 10–6). Therefore, the investigation
recommended for the simulation of the three beams were a discretization of 20 layers and 36
elements, an initial load step of 1 kN and tolerance of 10–6.
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Table 1. Iterative process of obtaining a solution

Pre-cracking phase (D = 0) Post-cracking phase (D > 0)

1. Calculation of the stiffness matrix;
2. The load is updated from the load increment 

  =  , (30)

where  is the global stiffness matrix of the structure, a function of both the geometry of the
beam and the mechanical properties of the materials, and is given by the assembly of elements, as
shown in Equation (31);  is the global vector of loads, containing the equivalent nodal loads
acting on the structure; and  is the vector of nodal displacements, obtained by solving the
system of Equations (30).
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where NE is the number of finite elements defined in the beam discretization; and � is the
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During the process of applying loads on the structural element, the matrix � can be
different even for elements of the same length � because the cracking process of the concrete or
the yielding of the reinforcement causes the damage variable to assume different values along the
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental application of external loads was
performed to obtain an initial (predicted) solution, followed by an iterative Newton–Raphson
using force or displacement control process. Table 1 summarizes the flowchart of the program.
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2. The load is updated from the load increment  ;

3. Solve the system of Equation (30);
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1. Calculation of the stiffness matrix in relation to the
last equilibrium configuration using displacements,
strains, stresses, and the updated damage variable;

2. Update load from load increment  F ;

3. Solve the system of Equation (30);

4. Check convergence through the unbalanced force
(external forces minus internal forces);

5. If there is no convergence, the stiffness of the
structure must be updated and then the increment of the
nodal displacements  must be calculated through the
unbalance force. Subsequently, the displacements
(  +  ) and the damage variable are updated.
Finally, the unbalanced force is updated and the
convergence is verified (external force minus internal
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beam and the mechanical properties of the materials, and is given by the assembly of elements, as
shown in Equation (31);  is the global vector of loads, containing the equivalent nodal loads
acting on the structure; and  is the vector of nodal displacements, obtained by solving the
system of Equations (30).
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During the process of applying loads on the structural element, the matrix � can be
different even for elements of the same length � because the cracking process of the concrete or
the yielding of the reinforcement causes the damage variable to assume different values along the
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental application of external loads was
performed to obtain an initial (predicted) solution, followed by an iterative Newton–Raphson
using force or displacement control process. Table 1 summarizes the flowchart of the program.
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3. Solve the system of Equation (30);
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beam and the mechanical properties of the materials, and is given by the assembly of elements, as
shown in Equation (31);  is the global vector of loads, containing the equivalent nodal loads
acting on the structure; and  is the vector of nodal displacements, obtained by solving the
system of Equations (30).
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where NE is the number of finite elements defined in the beam discretization; and � is the
stiffness matrix of the beam element, which is given by
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During the process of applying loads on the structural element, the matrix � can be
different even for elements of the same length � because the cracking process of the concrete or
the yielding of the reinforcement causes the damage variable to assume different values along the
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental application of external loads was
performed to obtain an initial (predicted) solution, followed by an iterative Newton–Raphson
using force or displacement control process. Table 1 summarizes the flowchart of the program.
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where  is the global stiffness matrix of the structure, a function of both the geometry of the
beam and the mechanical properties of the materials, and is given by the assembly of elements, as
shown in Equation (31);  is the global vector of loads, containing the equivalent nodal loads
acting on the structure; and  is the vector of nodal displacements, obtained by solving the
system of Equations (30).
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where NE is the number of finite elements defined in the beam discretization; and � is the
stiffness matrix of the beam element, which is given by
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During the process of applying loads on the structural element, the matrix � can be
different even for elements of the same length � because the cracking process of the concrete or
the yielding of the reinforcement causes the damage variable to assume different values along the
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental application of external loads was
performed to obtain an initial (predicted) solution, followed by an iterative Newton–Raphson
using force or displacement control process. Table 1 summarizes the flowchart of the program.
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(external forces minus internal forces);

5. If there is no convergence, the stiffness of the
structure must be updated and then the increment of the
nodal displacements  must be calculated through the
unbalance force. Subsequently, the displacements
(  +  ) and the damage variable are updated.
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) and 
the damage variable are updated. Finally, the unbalanced force is updated and 
the convergence is verified (external force minus internal force). Repeat this 
process until the solution converges to that charge level.
6. After convergence, go back to step 1.



6

Journal of Architectural Environment & Structural Engineering Research | Volume 05 | Issue 04 | October 2022

3. Results and Discussion

For the three types of beams, Figures 3~5 show the 
force–displacement curves obtained experimentally by 
Álvares [15] and the respective numerical results obtained 
from the proposed model. The experimentally acquired 
force–displacement curves exhibited the typical behavior 
of reinforced concrete beams subjected to bending failure, 
along with the identification of three stages (Figure 3). In 
Stage I, the concrete was undamaged, and the stiffness of 
the EII beams was because of the combined action of con-
crete and steel. The cracking of concrete indicates the end 
of this stage. The cracking load is defined by the tensile 
strength of the concrete.

In stage II, the curve initially exhibits nonlinear be-
havior that is characterized by the appearance of multiple 
cracks on the lower face of the beam. Gradually, stress 
is transferred to the steel bars, which provide the tensile 
strength of the beam. As the load increases, a second lin-
ear section is formed whose slope represents the stiffness 
EIII of the cracked beam and is defined primarily by the 
reinforcement rate. However, the cracked concrete can 
contribute to the stiffness in a phenomenon called the ten-
sion-stiffening effect [18]. 

Stage III begins with a further reduction in the stiffness 
and a trend to stabilize the force until the beam fails. The 
reinforcement rate of the beam affects the force and dis-
placements that define the beginning and end of stage III, 
which can lead to three types of failure associated with 
deformations in steel and concrete at the instant of beam 
collapse. 

For stages I and II, a good approximation between the 
experimental load–displacement curves and the curves 
obtained using the proposed model, wherein the damage 
model is associated with the classical theory of laminates, 
can be confirmed by comparing the numerical results with 

the experimental results. However, the experimental curve 
presents an ultimate displacement during the beam test 
that is smaller than that predicted by the numerical result. 
This is because the load control used in the experiment 
halts the test when the maximum load is reached. 

In the numerical model, taking the limits of deforma-
tion presented in Figure 6 as a reference, the beam failure 
was established by monitoring the strains in the most com-
pressed concrete layer and in the most stressed steel layer. 
The ultimate limit states of a reinforced concrete beam 
can be established when the strain in the concrete reaches 
a value = 0.35% because of compression failure, and/
or by tensile failure when the strain in the steel reaches a 
value = 1.00% caused by crushing the compressed sec-
tion. Balanced beams fail because of crushing of the com-
pressed region; however, the strain in the steel is equal to 
or less than the yield strain . When the beam cross-sec-
tion and reinforcement ratio are optimally designed, fail-
ure occurs simultaneously in the top compressed layer and 
the most tensioned reinforcement section.

The proposed numerical model allows for the moni-
toring of the strains of the materials of the beam and the 
identification of the failure mechanism, as shown in Figure 
7. In the over-reinforced beam, failure occurs by crushing 
the compressed region. This beam has the highest failure 
load, of the order of 73 kN, but a lower total displacement 
than the other beams analyzed. For the under-reinforced 
beam, the maximum load obtained was 81% lower than 
the load observed for the over-reinforced beam, and the 
deformation was 1.2 times greater. The optimized beam 
presents a load 46% less than the load observed for the 
over-reinforced beam, but with a deformation 1.3 times 
greater. In addition, this beam presents the best use of ma-
terials, which contributes to the reduction of energy con-
sumption and non-renewable materials, thereby increasing 
the sustainability of the structures.

Figure 2. Experimental setup [15]: a) four-point bending test; b) under-reinforced beam; c) optimized beam; d) over-rein-
forced beam.
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Figure 3. Flexural behavior of under-reinforced beam

Figure 4. Flexural behavior of optimized beam

Figure 5. Flexural behavior of over-reinforced beam

The results obtained by the numerical model indicated 
a variation in the stress–strain behavior of each beam, 
as shown in Figure 8. For under-reinforced beams, the 

compressive stresses did not reach the peak stress but the 
stress–strain behavior was observed in the nonlinear re-
gime at failure, thus indicating the appearance of damage 
to the stiffness of the concrete. As the strains in the rein-
forcement reached their maximum value, the neutral axis 
approached the upper surface of the beam section. For the 
other beams, the concrete had reached its ultimate strain, 
and the beam’s neutral axis was close to the centroid of 
the cross-section.

Figure 6. Strain limits for steel and concrete in the beam 
cross section

Figure 7. Theoretical identification of limiting strains of 
steel and concrete

Evidently, the proposed model for the behavior of ten-
sioned concrete considers the contribution of cracking 
concrete (below the neutral axis), in contrast to design 
codes for reinforced concrete structures, even though the 
tensile stress value is low when comparing the stresses in 
the reinforcement and even in the compressed concrete. 
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The variation in the stress–strain behavior is a function 
of the evolution of the damage parameter. As established 
by Equation (3), when the deformations exceed the limit 
value, , there is a gradual reduction in the stiffness 
of the beam owing to cracking of the concrete. Figure 9 
shows the variation in the damage parameter (1-Dc) for 
the three types of beams investigated, with the increase in 
the vertical displacement of the beam. Initially, the value 
of (1-Dc) was equal to unity because there was no damage 
to the compressed concrete. With increasing displacement, 
a reduction in this parameter was verified; however, it was 
affected by the reinforcement ratio of the beam. At failure, 
compression damage of approximately 60% was observed 
for under-reinforced beams, and the damage was approxi-
mately 80% for the optimized and over-reinforced beams. 

Figure 9. Variation in the damage parameter with increase 
in the vertical displacement of the beams.

4. Limitations of the Study

The model used in this study, within the scope of static 
loading, ignores shear and geometric nonlinearity effects. 
Furthermore, the Mazars damage model is elastic and is 
not appropriate for situations of cyclic loadings, which is 
not the case in the present study. However, the order of 

magnitude of the maximum transverse displacement of 
the beam with respect to the height is small, thus justify-
ing the geometric linear analysis. The failure modes of the 
beams did not include shear failures.

5. Conclusions

The proposed model combines the classic theory of 
laminates and the Mazars damage model. By using FEM, 
it was able to evaluate the flexural behavior of reinforced 
concrete beams up to the failure of these elements for 
different rates of flexural using numerical simulation of 
the reinforced concrete beams under four-point bend tests. 
This was possible because the strategy of incorporating in 
the finite elements, the lamination of the transverse sec-
tion, and the physical nonlinearity of the materials by con-
tinuous damage mechanics allowed the following of the 
stress and strain state of each layer of material, whether 
concrete (with its progressive cracking) or the reinforce-
ment (even in the yielding). 

Therefore, despite the relative simplicity of the pro-
posed model, its potential to predict the behavior of rein-
forced concrete beams under bending was demonstrated, 
thereby allowing a precise identification of deformations 
and rupture criteria. The numerical model allowed the 
identification of the failure form of each type of rein-
forced concrete beam analyzed, through the prediction 
of the neutral line variation and the determination of the 
stress-strain behavior. In this way, the model can be used 
to predict the behavior of structural elements subjected to 
bending and lead to optimized designs, with greater safety 
and lower cost.
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