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Auxetic materials have several properties very useful to be applied to 
architecture structures. This paper is aimed to test structurally a specific 
auxetic structure model. This hypothesis will be checked: if auxetic ma-
terials have innovative properties in nanoscale then they will also have 
these properties in macro-scale. But there are some differences between 
these dissimilar scales. In the nanoscale auxetic structures have rigid 
knots with flexible bars, but in the macroscale they will have articulated 
knots and a cable that stabilizes the set.
A unity of the hexagonal reentrant structure will be tested in order to ob-
tain its structural characteristics. The application of this structure and its 
behavior in architecture are not yet known, that’s why this auxetic model 
will become an experimental model to establish a structural evaluation of 
one of the most innovative auxetic geometries, to apply to the construc-
tion of new architectures. The results of this research will be clarified by 
their structural evaluation, by means of the utilization of manual calculus.
The reentrant hexagonal geometry provides a strong foundation for 
research of application of new structural systems on the production of 
architecture, while identifying transformations that new geometries and 
their application techniques, will contribute to the development and di-
vulgation of new spatial and typological solutions. That is the reason to 
claim a detailed analysis to advance on the design and construction of 
new architectures.
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1. Introduction 

Auxetic materials are a special type of materials 
that have a negative Poisson's ratio: they get fat 
when they are stretched and they get slim when 

they are compressed. Auxetic behavior is a scale-indepen-
dent property: this auxetic behavior can be achieved at 
different structural levels, from molecular to macroscopic 
level. The internal structure of the material (geometry) is 
very important to obtain the auxetic effect. The negative 
Poisson's ratio is the reason why auxetic materials show 
some particular features when they are compared to con-

ventional materials [1].
In recent years, auxetic material research have been 

carried out by authors such as R. Lakes, Prall y Gaoyu-
an, Smith, Alderson, Master-Evans, Grima and others[2], 
studying their geometry, properties and applications of 
these auxetic materials, in theoretical and experimental 
basis since the last third of the 20th century. The applica-
tions that have emerged up to the present, include sectors 
such as textile, industry, aerospace, protection, biomed-
ical, sensors and actuators[3]. In all these cases patterns 
are defined like continuous structures. The application of 
these geometries and their behavior in the scalar level of 
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architecture like bars and knots structures with tendons, 
are not yet known, that’s why the behavior of these articu-
lated auxetic structures will become experimental models 
to establish a structural and constructive evaluation of the 
most innovative variable geometries, to apply to the con-
struction of new transformable architectures.

On this way, the structural behavior of similar struc-
tures to the rigid auxetic geometries known in the na-
noscale will be studied. But the patterns will be defined 
like articulated structures with bars and knots which are 
self-stabilized by tensors. These tensors could be materi-
alized by a new type of buckling-restrained braces (BRB), 
namely a pre-tensioned cable stayed buckling-restrained 
brace (PCS-BRB) design by Yan-Lin Guo, Peng-Peng 
Fu, Peng Zhou and Jing-Zhong Tong, which is formed 
through introducing an additional structural system of 
pre-tensioned cables and a number of cross-arms to the 
outside of a common BRB [4]. 

The final purpose is seeing if the characteristics of the 
reentrant hexagonal structure have an adequate behavior 
that can be useful in order to provide a future constructive 
definition of developments with this type of geometries in 
the transformable architecture scale.

2. Material and Methods

A single unit of hexagonal re-entrant auxetic structure ex-
posed in “Transformables 2013 International Congress” [5] 
will be calculated. The analysis will be realized using bar 
structures with articulated joints and external pre-forces 
(tendons) that keep the structure balanced, this mean using 
auxetic structures as a structure that works due a forces 
balance. The idea is obtaining the equilibrated positions 
(aperture angles depending on the force that the tendon 
supports) defining equilibrium of forces equations.  

So, the first item will be calculating a simple auxetic 
hexagonal structure with balance forces of tendons in 
order to test if it is auto stabilized and if it improves its 
structural behavior. All this will be done by hand. 

3. Theory

It is expected that the auxetic structures exhibit many at-
tractive properties, such as the high shear modulus [6-8], 
high indentation resistivity [9-10], high fracture toughness 
[11] and high energy absorption [12-15]. 

Many authors have designed and controlled molecular 
auxetic structures to develop these structures [16]. Tex-
tile fibers have been engineered from molecular auxetic 
polymers with a rigid rod re-orientation approach to the 
design of auxetic polymers. Auxetic geometric patterns 

are increasingly used in the generation of novel products, 
especially in the fields of intelligent expandable actuators, 
morphological structures of forms and minimally invasive 
implantable devices. As for smart actuators based on aux-
etic structures, some investigations were mentioned about 
the behavior of the shape memory polyurethane foams 
with auxetic properties, initiated with several stages of 
post-processing [17]. This behavior is a one-way effect, and 
it is an embedded property of the polyurethane (PU) con-
stituent of the foam. In the field of medical devices, recent 
research has evaluated the properties of some auxetic ge-
ometries to implement expandable stents [18]. In this paper, 
a systematic study on the influence of the continuous cell 
geometry of a cardiovascular stent on its radial compli-
ance and longitudinal strain was presented. Some recent 
studies regarding shape memory auxetics alloys (SMA) 
were used for the development of drop-down satellite 
antennas [19]. The antenna is made using a hybrid truss/
honeycomb concept, where the ligaments provide axial 
deformation (they are flexible), and bending is transmitted 
through rotating cylinders.

The research of materials for tensile effort has been 
crucial due to the fact that continuous tension is the main 
support of structures under investigation.

Before the 18th Century, efficient “push-and-pull” 
structures would have been inconceivable, because of 
the inability to get effective behavior of material under 
tension. Edmonson [20] establishes that, until that moment, 
only the tensile strength of wood had been wronged 
(mainly in construction of the ships), but its tensile had 
not comparison with the stone masonry compression.

However this situation changed greatly in 1851 with 
the first mass production of steel. That steel was able to 
attain similar to stone masonry, in both compression and 
tensile, resulted in a lot of new possibilities and, accord-
ing to Edmonson [20], a new era of tensional design was 
opened with the building of the Brooklyn Bridge. Fuller [20] 
said: “Tension is a very new thing”.

The development of steels and other alloys of them led 
to unexpected results in terms of resistance, weight and 
performances of materials, which permitted architects 
and engineers to create new structural concepts and de-
signs. These novel materials not only allowed to get better 
the resistance of the elements, but also to decrease their 
cross-section and, consequently, their weight.

However, the type of load modifies the behavior of ele-
ments under this load. The tendency of a lineal element is 
to augment its cross-section when it is compressed along 
its main axis, (because of the Poisson’s ratio effect) and 
to bulge, which means that it loses its straight form. Con-
versely, the same element tends to become thinner when it 
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is tensioned in the same direction, and more importantly, 
it “reaffirms” its straight axis. That is why the innovation 
in materials is vital for the pre-stressed structures future. 
Compressed elements will be more resistant to buckling, 
and tensioned members will have better resistance to the 
tensile forces.

The most recent resources were adopted by some 
works. These works benefit of their most privileged prop-
erties, especially their tensile strength.

The first cable roofs were designed by V. G. Shookhov 
in 1896 according to Tibert [21]. This Russian engineer de-
veloped four pavilions with pending roofs at an exhibition 
in Nizjny-Novgorod (Russia). Some other structures were 
proposed during the 1930s after this first attempt, but they 
were not very important examples.

Apart from the suspension bridges, the importance of 
tension was elevated to the same level that compression 
had had during the preceding centuries by other types of 
bridges. An example is the cable-stayed bridges, which 
support the deck and also put it under compression by use 
of the stressed cables. Thus, the cover is prestressed and 
balanced. Barrios de Luna Bridge in Asturias (Spain), by 
Javier Manterola, is a very good example, what demon-
strates this principle perfectly in its two towers and its 
main span of 440 m[22]. 

The Festival of Britain's South Bank Exhibition took 
place in London in 1951, just three years after the official 
discovery of tensegrity. In occasion of this, a competi-
tion was organized to build a “Vertical Feature”, a basic 
element of international exhibitions. The Skylon was de-
signed by Philip Powell and Hidalgo Moya (inspired and 
helped by their former Felix Samuely), and it is selected 
as the best proposal and built near the Dome of Discovery.

Some authors [23-24] establish that this needle-shaped 
structure was a monument with no functional purpose. 
However, it became a symbol for the festival, a beacon of 
technological and social potentialities and, finally, a ref-
erence for future architects and engineers. The 300-foot-
high needle was a cigar-shaped aluminum-clad body, sus-
pended almost invisibly by only three wires, and seemed 
to float 40 feet above the ground.

The structure was made-up of a cradle of prestressed 
steel wires and three splayed pylons. According to Moya: 
“By an amazing stroke of genius (Felix Samuely) ar-
ranged a system of hydraulic jacks underneath the three 
smaller pylons. Once the whole structure was assembled, 
he pumped up these jacks and raised the pylons. This put 
tension or stresses into all the cables and by doing that the 
whole thing became a stressed structure. This reduced the 
number of wires needed to anchor the Skylon and halved 
the amount of oscillation in the structure. This lack of sup-

port made the structure look tremendously hazardous. You 
felt there weren’t enough wires to hold it up, which made 
it tremendously exciting [24].

The stable equilibrium due to its particular configuration 
provides the feeling of not having enough cables to hold 
the zeppelin-like shape element up. A diagram displayed 
by Francis [25] explains the condition for stability of a post 
supported by stressed wires. If one cable is attached to the 
soil, the equilibrium of the stanchion will depend on the 
position where the other chain is held: it collapses if it is 
fixed in a point down the level of the post. Exist an unstable 
equilibrium (it fall down with any movement) if the post is 
at the same level. However, the set is in a stable equilibrium 
if it is held in a point on the ground; in other words, it tends 
to return to the erect position when there is any alteration of 
this situation. Skylon has a similar diagram.

Consequently, the point of application of the ends of 
the cables that fix a strut conditions the equilibrium of it 
in a three-dimensional space.

The exploitation of tensile cables was not only im-
proved during the 1950s, but also appear other elements 
such as membranes, materials and tissues.

In 1950, Matthew Nowicki designed the State Fair 
Arena, at Raleigh (North Carolina), following his intuitive 
concepts of suspended roofs.

A German architecture student called Frei Otto had a 
brief look at the plans and drawings during an USA ex-
change trip that same year, and he was completely fasci-
nated by the novel idea. In fact, he carried out a doctoral 
thesis presented in 1952 in which he developed a system-
atic investigation about this. It was the first comprehen-
sive documentation on suspended roofs [22, 26].

Frei Otto founded the Development Centre for Light-
weight Construction five years later in Berlin, and it was 
included in 1964 in The Institute of Light Surface Struc-
tures at the Stuttgart University, to encourage the increase 
of the tensile architecture research. Therefore, the tensile 
properties of materials were exploited in order to develop 
some important works. These materials were especially 
steel, but also polyurethane, glass fibre, PVC, cotton-poly-
ester mix, acrylic panels, polyester... Between these proj-
ects, there was an early four-point tent as a Music Pavilion 
of the Bundesgartenschau, Kassel (Germany) in 1955, the 
first large wire-frame network structure with cloth lining, 
the German pavilion at the World’s fair in Montreal 1967 
and the famous Olympic Stadium in Munich in 1972, 
whose structure was calculated by Jörg Schlaich.

A dome made out of plastic skin and wooden struts was 
built by Pugh [27]. The plastic skin was the component in 
tension that was supported by the compression members 
of the structure.
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The name of “tensegrity” has been extended to include 
any type of pin-connected structure in which some of the 
frame members are bars only in compression or cables only 
in tension as W. O. Williams [28] points out. This is the case 
of the “Wire Wheel Domes” or “Cable-Domes”, designed 
by David Geiger [29]. Since then, many domes have been 
built with this technique, in which a set of radial tensegrity 
bundles are connected to an external ring in compression, 
and converges to an internal ring to join all of them.

Even though some engineers and architects consider 
these roof structures as tensegrities, Motro [30] identify 
them as false tensegrities quickly since they have a com-
pressed member in the borderline. It should be recalled 
that Fuller [31] patented a similar kind of structure, which 
he later called “Aspension”. Geiger designed the first 
cable-domes for the Olympics in Seoul (1986), followed 
by the first oval cable-dome, the Redbird Arena in Illi-
nois (1988), the Florida Suncoast Dome in St. Petersburg 
(1988), and the Tayouan Arena in Taiwan (1993). In fact, 
the biggest dome built in the world to date was the Geor-
gia Dome in Atlanta (1992) by Levy and Weidlinger Asso-
ciates, which was demolished in 2017.

By the shortage of the cable-dome network it might be 
interesting to note that these structures are not very deter-
minate in classical linear terms and have several indepen-
dent mechanisms, or in other words, inextensional modes 
of deformation [32].

4. Calculation

A six articulated bars structure in which the bars are called 
a, b, c, d, e and f, and the knots are called 1, 2, 3, 4, 5 and 
6 will be studied. The structure have two tendons in or-
der to stabilize the structure (one of these going to knot 1 
to knot 3, and the other going to knot 4 to knot 6) as the 
figure 1 shows. The rotations are only permitted around 
the y axis because it is the axis in which the structure is 
opened and closed. The structure has 6 restrictions. It has 
3 restrictions to the displacements + 1 restriction to the 
rotation respecting to the x axis in the left support. And it 
has 2 restrictions to the displacements in the y and z axis 
in the right support.

Figure 1. Six articulated bars with tendons structure

The structure will be calculated by manual methods 
in this manner: if the figure 1 is supposed to appear only 
with bars and articulated, (without external forces), the 
system is folded only by the own height action. That is 
why the own height depends on the gravity acceleration. If 
we insert a cable or tendon in the interior of the bars, the 
structure will remain open in a certain position depending 
on the tensile force applied. This force depends on the 
longitude of the cable: if the cable is shorter more tension 
will be obtained and therefore, more opening.

Through this way, the first thing that we need to know 
is the mass and the length of the bars: we will consider bb 
= bc = bd = be = 1m and ba = bf = 2m, where “b” is the 
bar. To graphical effects of calculation we consider despi-
cable the dimensions of the bars (like thickness and den-
sity of the knots) to be able to fold totally the structure. 
A standardized 100.6 round hollow profile is considered 
to effects of calculus. This profile has a maximum tensile 
resistance of Nt,u = A · fy = 1770mm2 · 215N/mm2 = 
380550N = 380,55KN

In where
A, area of the transversal section
fy, calculus resistance of steel
fy = 215N/mm2 is chosen because it is the fy more un-

favorable for the different types of designations and nomi-
nal thicknesses in steels. fy = 215N/mm2 corresponds to a 
steel S235.

As buckling capability by bending, in centered com-
pression, of a constant section bar, it can be taken

Nb,Rd = χ · A · fyd 
In where
A, area of the transversal section in classes 1, 2 y 3, or 

effective area Aeff in sections of class 4, 
fyd, calculus resistance of steel, when it is chosen fyd 

= fy / γM1 with γM1 = 1,05 according to 2.3.3 section of 
the CTE’s DBSE-A [33], where γM1 is the partial safety 
factor for instability phenomena. 

χ, reduction coefficient by buckling, the value of 
which can be obtained in the 6.3.2.1 section of the CTE’s 
DBSE-A [33] on the basis of the reduced slenderness and 
the appropriate buckling curve. 

The square root of the ratio between the plastic resis-
tance of the calculation section and the critical compres-
sion by buckling is called reduced slenderness (λ). Its 
value is 
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where
E, modulus of elasticity (Esteel = 210000MPa = 

210000·106 Pa = ); 
I, moment of inertia of the area of the section for flex-

ion in the considered plane; 
L, buckling length of the piece. It is equivalent to the 

distance between points of inflection of the buckling de-
formation that is greater. For canonical cases it is defined 
in the table 6.1 of the CTE’s DBSE-A [33] depending on 
the length of the piece. For different conditions for axial 
load or section it is defined in later sections.

The Area Moment of Inertia for a hollow cylindrical 
section is as follows: 

To the proposed case, 
I = 490,87cm4 – 294,37cm4 = 196,5 cm4 = 1,965·10-

6m4 (it is the same that the number given in the table)
And the Area of a hollow cylindrical section is: 
A = p  R2
Where
R, radius of the hollow cylindrical section
To the proposed case, 
A = 502 mm2- 442 mm2 = 1771,86 mm2 = 17,7 cm2 (it 

is the same that the number given in the table)
In this way,

Then, 

is determined from the reduced slenderness and accord-
ing to the figure 6.3 of the CTE’s DBSE-A [33] exposed in 
continuation like figure 2. It is supposed a cold formed 
profile because it is the most unfavorable case of round 
hollow profiles exposed in the Figure 2. Buckling curve 
depending on the cross section of the CTE’s DBSE-A [33].

Figure 2. Buckling curves, CTE’s DBSE-A

A buckling coefficient χ of 0,775 is obtained according 
to the figure 3 and the provided dates. So, for these bars 
the buckling capacity by flexion in centered compression 
can be taken like:

Nb,Rd=x · A · fyd = 0,775 · 1771,86 mm2 · 
1,05

215N/mm2

= 281177,03 N= 281,177 KN
A maximum compression effort of 280 KN will be con-

sidered. So, a cable that supports 280 KN of tensile will 
have to be calculated in order to compensate the compres-
sion effort and to balance the structure:

= A
F  => b = 

A
F

b

b  = 
, cm

KN
17 70
280

2  = 15,82 KN/cm2

The tension which supports the cable will have to be 
much greater than the one that supports the bar, because 
its section is much smaller. So, a cable 19×GALVA 8 will 
be chosen, because it owns a very high tensile strength 
and a very big section. The properties of this cable appear 
on figure 3.

19x7 Galva 1960 N/mm2 EN 12 385-4

Nominal diameter (mm) approximate weight (kg/m) breaking load (kg)

8 0.257 4200

Figure 3. Table of steel cables

The maximum tensile strength that the cable is capable 
of support is 1960 · 50,24 = 98470,4 N = 98,47 KN

With all these data different positions of the structure 
will be calculated in order to verify the structural behavior 
of these balanced forces structures. In no case the maxi-
mum tension admissible of compression for the bar will 
can be exceeded. In the same way, in no case the maxi-
mum tension admissible of tensile for the cable will can 
be exceeded.

5. Results

The 100.6 considered standard hollow round profile has a 
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bar “d” mass of mbd = 13,90kp/m = 13,90 kg
The cable has a mass of mc = 0,257kg/m => mc 1m = 

0,257kg
So, the total mass to the bar + the cable is mTd = mbd + 

mc1m = 13,89kg + 0,257kg = 14,147kg
The own weight for a total mass of mTd is Ppd = mTd · g 

= 14,147kg · 9,81 m/s2 = 138,78 N, where “g” is the grav-
itational acceleration.

The vertical component of the force that the cable sup-
ports is the equivalent to the reaction that would have the 
structure in the basis. The results of the all cases of calcu-
lus are exposed in continuation.

5.1 Results for Own Weight of the Vertical Bar 
and Cabled
In this calculus case the masses of the weight force of the 
vertical bar and the proportional cable are the only ones 
considered.

For a totally deployed structure (a=90° ), the base reac-
tion in the knot 3 is 

R3 = Pbd+cd + Pbb+cb = 138,78 N + 138,78 N = 277,56 N 
= 0,27756 KN 

Where
Pbd+cd, own weight of “d” bar and the “d” cable
Pbb+cb, own weight of “b” bar and the “b” cable
The bar and the cable support perfectly this force.
Calculus with this weight will be done in order to find 

the aperture of the structure depending on the components 
of the force on bar “d” in the axis represents in the figure 4. 
The obtained results are in the figure 4 too.

Figure 4. Considered loads and structure apertures for 
these loads

The result is totally coherent because when tension and 
force (these two properties are directly proportional) de-
creases the structure is more closed. 

5.2 Own Weight of the Vertical and Horizontal 
Bars and Cable
The weight of the vertical and horizontal elements that fall 
over to the considered bar “d” is added to the own weight 
of the bar “d” and the cable. So:

mbd = 13,90kp/m = 13,90 kg

mcd = 0,257kg/m => mc 1m = 0,257kg
mTd = mbd + mcd = 13,89kg + 0,257kg = 14,147kg
Ppd = mTd · g = 14,147kg · 9,81 m/s2 = 138,78 N
mover d = mbb + mcb + mba = 13,89kg + 0,257kg + 13,89kg 

= 28,037kg
where
mover d, mass over “d” bar
mbb, “b” bar mass
mcb, “b” cable mass
mba, “a” bar mass
Pover d = mover d · g = 28,037kg · 9,81 m/s2 = 275,04 N
FT2d = Ppd + Pover d = 138,78 N + 275,04 N = 413,82N
Where
FT2d, total force on “d” to the case 2
Calculus with this weight will be done in order to find 

the aperture of the structure depending on the components 
of the force on bar “d” in the axis represents in the figure 5. 
The obtained results are in the figure 5 too.

Figure 5. Considered loads and structure apertures for 
these loads

The result is totally coherent because when tension and 
force (these two properties are directly proportional) de-
creases the structure is more closed. 

5.3 Own Weight of the Vertical and Horizontal 
Bars and Cable and Vertical Exterior Forces

The vertical exterior forces than can affect are:
- Ported constructional elements, 1,2 KN/m
- Use overload, 5KN/m
- Snow, 5KN/m
These loads have been defined with a basis of the CTE 

DB-SE-AE [34]. The forces considered are:
FT2d = Ppd + Pover d = 138,78 N + 275,04 N = 413,82N
Fve d = 11,2KN = 11200N
Where 
Fve d, vertical exterior force on “d”
FT3d = FT2d+ Fve d = 413,82N + 11200N = 11613,82N
Where
FT3d, total force on “d” to the case 3
Calculus with this weight will be done in order to find 

the aperture of the structure depending on the components 
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of the force on bar “d” in the axis represents in the figure 6. 
The obtained results are in the figure 6 too. 

Figure 6. Considered loads and structure apertures for 
these loads

The result is totally coherent because when tension and 
force (these two properties are directly proportional) de-
creases the structure is more closed. 

5.4 Own Weight of the Vertical and Horizontal 
Bars and Cable, Vertical Exterior Forces and 
Horizontal Exterior Forces

The horizontal exterior force which can affect is 1,6 
KN like horizontal load of wind. This load has been de-
fined with a basis of the CTE DB-SE-AE [34]. The forces 
considered are:

FT3d = FT2d + Fve d = 413,82N + 11200N = 11613,82N
FTdh = 1600N
Where
FTdh, total applied horizontal force on “d” to the case 

4
FT4d = FT3d + FTdh = 11613,82N + 1600N = 

13213,82N
Where
FT4d, total force on “d” to the case 4
Calculus with this weight will be done in order to find 

the aperture of the structure depending on the components 
of the force on bar “d” in the axis represents in the figure 7. 
The obtained results are in the figure 7 too.

Figure 7. Considered loads and structure apertures for 
these loads

The result is totally coherent because when tension and 
force (these two properties are directly proportional) de-

creases the structure is more closed.

6. Discussion

In this paper an analysis of forces and positions in struc-
tures with articulated joints with external pre-forces that
keep the structure balanced has been made. This mean
using auxetic structures as a structure that works due a
forces balance.

As a result we have obtained very elastic structures
that receive only small forces on their bars when a load is
applied. These structures could work fine if we piled them
and apply loads caused by wind, quakes...

The maximum force that is supported by the cable in
the proposed conditions is 13213,82 N or 13,21 KN. This
force satisfies the characteristics of the cables that exist in
the market.

The opening and closing positions according to the
applied stresses are totally coherent. All these positions
support the external forces typical in architecture.

7. Conclusion

It is concluded that auxetic structures, used in other dis-
ciplines, could be very useful in architecture, creating a
new structural conception for architecture and resolving
current problems. It’s very useful the negative Poisson´s
ratio applied in the change of scale according to the use of
auxetic geometries.

Concretely, it is concluded that this structure work cor-
rectly to the tensions and loads proposed. So, it is a new
possibility to explorer in the discipline of architecture.

As a future line could be studied the auxetic structures
for architecture made with Self-compacting Concrete con-
taining Silica Quicksand[35], whose high quality has been
achieved for SCC mixture contains the quicksand and sili-
ca fume contents with low lubricant admixture dosage.

Appendices

A. Pressure exerted by the wind
The wind action qe can be expressed like qe = qb · ce ·

cp, where:
qb, dynamic pressure of the wind. In simplified form

can be adopted 0,5 KN/m2 in all points of Spain. More
accurate values can be obtained by the annexed D of the
CTE DB-SE-AE [34]. These more accurate values evaluate
the geographical location of the work.

ce, exposition coefficient, variable with the height of
the point considered. This coefficient evaluates the rough-
ness of the environment where the construction is located.
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To urban buildings until 8 floors can be taken a constant 
height independent value of 2,0.

cp, wind coefficient or pressure coefficient. It depends 
on the shape and orientation of the surface respect to the 
wind. It also depends on the situation of the point respect 
to the surface edges. A negative value indicates suction. 
For this structure a value of 0,8 is taken. 

So:
qe = qb · ce · cp = 0,5 KN/m2 · 2 · 0,8 = 0,8 KN/m2 = 

800 N/m2
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