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ARTICLE

Survival Analysis Using Cox Proportional Hazards Regression for 
Pile Bridge Piles Under Wet Service Conditions

Naiyi Li*
 

, Kuang-Yuan Hou, Yunchao Ye, Chung C. Fu

The Bridge Engineering Software & Technology Center, Civil & Environmental Engineering, University of Maryland, 
College Park, Maryland, 20742, United States

ABSTRACT
This paper studies the deterioration of bridge substructures utilizing the Long-Term Bridge Performance (LTBP) 

Program InfoBridgeTM and develops a survival model using Cox proportional hazards regression. The survival anal-
ysis is based on the National Bridge Inventory (NBI) dataset. The study calculates the survival rate of reinforced and 
prestressed concrete piles on bridges under marine conditions over a 29-year span (from 1992 to 2020). The state of 
Maryland is the primary focus of this study, with data from three neighboring regions, the District of Columbia, Vir-
ginia, and Delaware to expand the sample size. The data obtained from the National Bridge Inventory are condensed 
and filtered to acquire the most relevant information for model development. The Cox proportional hazards regres-
sion is applied to the condensed NBI data with six parameters: Age, ADT, ADTT, number of spans, span length, and 
structural length. Two survival models are generated for the bridge substructures: Reinforced and prestressed concrete 
piles in Maryland and reinforced and prestressed concrete piles in wet service conditions in the District of Columbia, 
Maryland, Delaware, and Virginia. Results from the Cox proportional hazards regression are used to construct Markov 
chains to demonstrate the sequence of the deterioration of bridge substructures. The Markov chains can be used as a 
tool to assist in the prediction and decision-making for repair, rehabilitation, and replacement of bridge piles. Based on 
the numerical model, the Pile Assessment Matrix Program (PAM) is developed to facilitate the assessment and main-
tenance of current bridge structures. The program integrates the NBI database with the inspection and research reports 
from various states’ department of transportation, to serve as a tool for condition state simulation based on mainte-
nance or rehabilitation strategies.
Keywords: Survival analysis of bridge structures; Cox proportional hazards regression; Bridge rehabilitation and 
maintenance; Bridge substructure protection; National bridge inventory; Simulation of bridge substructure condition state
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1. Introduction
Deterioration of bridge structures plays an es-

sential role in maintaining the functionality of trans-
portation networks as aging infrastructure becomes 
more prevalent nowadays. Bridges are unique be-
cause there are few substitutions to them when a fail-
ure occurs. Hence, any obstruction during a bridge’s 
operational life will create major losses. Due to 
the complexity of bridge deterioration, prediction 
models derived using analytical methods struggle 
to provide accurate predictions of the deterioration 
process. Since large-scale datasets became available, 
engineers can perform statistical analysis with the 
aid of evolving computational power. In addition, 
deterministic models are gradually being replaced by 
probabilistic approaches, which account for uncer-
tainties. Hence, a probabilistic-based model is pre-
ferred over a deterministic model in the prediction of 
a bridge condition rating.

Bridges under wet service conditions generally 
deteriorate faster than those on land. In a wet envi-
ronment, the piles are the most vulnerable compo-
nents of a bridge. Yet it is a critical part of the bridge 
integrity, especially in terms of seismic resistance [1-3].  
Michael and Sagues concluded that in marine en-
vironments, bridge piles are highly susceptible to 
server localized corrosion [4]. The condition rating of 
a bridge can be considered as individual incidents 
throughout the lifespan of the bridge, and the defects 
in structural integrity can be viewed as hazards [5]. 
The Cox proportional hazards regression is widely 
used in clinical trials that describe the survival rate, 
hazard rate, and cumulative survival function [6].  
In bridge studies, the survival function outlines 
the deterioration of bridges or bridge components 
over the lifespan of the structure [5]. Missing data in 
bridge inventory records can also be accounted for 
by survival models [7,8]. The deterioration of bridge 
structures can be modeled as a Markov process with 
discrete time, with the stochastic characteristic of 
bridge deterioration maintained [9,10]. The transition 
probability is key to the Markov chain. In bridge 
maintenance, the transition probability is the proba-
bility of a bridge component, will transition into the 

next condition rating. It is calculated by dividing the 
total number of bridge components in a particular 
condition state in the year prior by the number of 
bridge components in the same condition state in the 
current year [11]. 

Using modern computers and advanced programs, 
large-scale statistical analysis can investigate the de-
terioration trend of bridge structures with customized 
parameters deemed relevant by the user. Such an 
approach allows researchers to acquire probabilistic 
models for both a large area and a specific region [12]. 
The parameters can also be adjusted to reflect critical 
factors that may not be predominant in a larger-scale 
model.

The scope of this research is to study the deterio-
ration of bridge substructures using the Long-Term 
Bridge Performance (LTBP) Program InfoBridgeTM [13], 
and bridges with reinforced or prestressed concrete 
(RC/PC) columns/piles are chosen. The dataset is ob-
tained from the National Bridge Inventory (NBI) [14]  
for bridge information from 1992 to 2020. This study 
primarily focuses on the bridges in the state of Mary-
land, with three additional northeast regions also in-
cluded to facilitate the survival analysis, particularly 
for bridges in wet service conditions. The NBI dataset 
was condensed to only include items considered to be 
reverent to the deterioration model. The Cox propor-
tional hazards regression was selected as the statistical 
tool to develop the survival model that reflects the 
deterioration of bridge piles. Results of the survival 
analysis are used to construct two Markov chains for 
visualization and prediction of pile deterioration.

The stakeholders of bridge structures rely on 
a robust and comprehensive bridge management 
system to secure the serviceability and longevity of 
the bridges [15]. However, there is a lack of existing 
studies in developing a tool for the assessment and 
prediction of bridge piles under wet service condi-
tions. Robert et al. discovered that prestressed con-
crete piles deteriorate in marine environments as the 
jackets deteriorate, exposing prestressing strands and 
tie reinforcement that exhibit heavy corrosion due to 
high levels of chloride [16]. The challenge of moni-
toring pile deterioration is that the process is gradual 
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and continuous throughout the lifespan of the struc-
ture. When deterioration becomes visible, the piles 
are severely compromised. Moreover, major corro-
sion can be hidden by jackets designed to protect the 
piles, and the deterioration of jackets can also boost 
the corrosion of the reinforcing steel. Therefore, 
there is a need for an automatic, robust, and reliable 
tool for assessing the integrity of piles. The tool 
needs to be easily implemented and user-friendly and 
can be applied to different regions as the service con-
dition of the bridge structures dramatically affects 
the deterioration of piles.

A total of 979 bridges in the state of Maryland 
were chosen to be the primary focus of this study, 
complemented by bridges in the state of New York, 
North Carolina, Virginia, Delaware, and the Dis-
trict of Washington to expand the sample size. The 
goal of the study is to perform a survival analysis of 
bridge piles under wet service conditions and devel-
op a pile assessment tool for simulating future pile 
conditions based on maintenance and rehabilitation 
strategies. Users can easily implement the computer 
program to assist in decision-making.

2. Materials and methods

2.1 Cox proportional hazards regression model

The deterioration of bridge substructures is 
controlled by various factors, such as geological 
location, usage, soil, and service condition [5]. The 
deterioration of bridge substructures is similar to 
that of clinical trial studies. In clinical trial studies, 
a certain outcome, for instance, death, is associated 
with various parameters in the treatment. The Cox 
proportional hazards regression model [6] is one of 
the most popular regression techniques in survival 
analysis. The model calculates the hazard rate given 
the subject has survived for a certain amount of time. 
The Cox proportional hazards regression is based 
upon three fundamental assumptions:

1) The survival times between each distinct indi-
vidual are independent.

2) The predictors and the hazards share a multi-
plicative relationship.

3) The hazard ratio is constant over time.
The general expression of the Cox proportional 

hazards regression can be written as:

ℎ() = ℎ0()exp(11 + 22 ++ ) � (1)
where h(t) represents the hazard at time t, and X is 
the predictor and independent variable that affects 
the hazard rate over time t. h0(t) is the baseline haz-
ard when all the parameters are equal to zero. The 
relevance of the predictors is quantified by the re-
gression coefficients, b.

The hazard ratio relates the hazard ratio at time t 
and the individual item X and can be written as:

�() =
ℎ(,)
ℎ0()

= exp[
=1


��� ] � (2)

The Cox proportional hazards regression model is 
semi-parametric, meaning that the shape of the base-
line hazard function is not assumed. The hazard ratio 
of the Cox proportional regression model provides 
a clear sign of the association between the predictor 
variable and the hazard rate. The hazard ratio of a 
variable can be calculated as exp(bi), and the inter-
pretation can be summarized below:

1) If hazard ratio > 1, increase in hazard.
2) If hazard ratio < 1, decrease in hazard.
3) If hazard ratio = 1, no effect on hazard.
Since the hazard rate is related to the survival 

rate, the survival rate at time t can be derived as:

�() = 0()�(�) � (3)

To complete the regression, the cumulative haz-
ard function is calculated as:

(,) =
0


ℎ(,) = (�) 0

 ℎ0() = (�)0()�� �(4)

Thus, the cumulative survival function can be 
calculated as follows [8]:

(,) = −(,) = −(�)0() = [−0()](�) = [0()](�)

(,) = −(,) = −(�)0() = [−0()](�) = [0()](�)
� (5)

The cumulative survival function can be used 
to calculate the transition probability to construct 
a Markov chain. The Markov chain defined in this 
study has a time interval of one year [5]. Hence, the 
transition probabilities describe the probabilities of 
a bridge substructure remaining in one condition for 
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a year, as shown by Mishalani and Madanat [11]. The 
transition probabilities are calculated as:

(,) =
(+,)
(,)

= (+1,)
(,)

� (6)

where Δt = 1 year.
The transition probabilities between substructure 

condition states can be modeled using a Markov 
chain [9,10]. It is assumed that the deterioration of the 
bridge substructure only goes in one direction: from 
a better state to a worse state. The process is irrevers-
ible without repair or rehabilitation. Once the bridge 
substructure rating reaches the failure state, it will 
remain in the failure state. The Markov chain uses 
the NBE condition state format, with an artificial 
condition state CS5 added solely for mathematical 
reasons. The Markov chain adopted in this research 
is illustrated in Figure 1.

Figure 1. Markov chain for deterioration of bridge substructures.

2.2 Survival analysis of bridge structures

The general approach of this study adopts the my-
thology presented by the research report published 
by Goyal et al. [1]. Using LTBP InfobridgeTM [13].  
bridges with RC/PC columns/piles are selected. 
Then, two survival analyses were performed based 
on the filtered data from New York, North Carolina, 
Maryland, and Virginia. The first analysis focuses 
on 979 bridges in the state of Maryland. All 979 
bridges are constructed with RC/PC columns/piles. 
The number of Maryland’s bridges with prestressed 
concrete piles in wet service conditions is relative-
ly small to represent the entire population. Hence, 
additional states (NY, NC, and VA) in the northeast 
are included to facilitate the second survival analysis 
where the hollow prestressed concrete pile is adopt-
ed in wet service conditions.

The NBI dataset provides bridge information for 
all states starting from 1992, which makes it the most 
comprehensive dataset on LTBP InfobridgeTM [13].  
Meanwhile, the National Bridge Element (NBE) [14] 

is a great complementary tool to the NBI dataset, as 
NBE offers detailed information on specific bridge 
elements. Items in the NBE dataset represent the 
condition of the primary structural component of a 
bridge and can be used as indicators in the assess-
ment of the overall condition rating of the structure. 
However, unlike the NBI dataset, some bridges’ 
NBE datasets are not provided in the LTBP Info-
bridgeTM database. In Maryland, only 1,972 bridges 
have NBE data among all 5,430 bridges. In this 
study, the NBE dataset is used as a filter to identify 
bridges that meet the criteria of this research. The 
locate the bridges with reinforced or prestressed col-
umns/piles and bridges with RC/PC columns/piles in 
wet service condition, the following NBE items are 
used in Table 1. 

Table 1. National bridge element items.

Item number Description
204 Prestressed Concrete Column
205 Reinforced Concrete Column
226 Prestressed Concrete Pile
227 Reinforced Concrete Pile

In the NBI dataset, item 92B (underwater in-
spection) is used to select bridges that are under wet 
service conditions, including lakes, rivers, bay areas, 
and oceans. The items listed in Table 2 are processed 
and converted into parameters that serve as predic-
tors for the Cox proportional hazards regression. 
Among them, item 60 (substructure condition) is the 
target output of the model. Hence, the purpose of the 
regression is to study the association of the variables 
with the substructure condition. Then, the condensed 
NBI data was processed to prepare the parameters 
for the Cox proportional hazards regression. 

Table 2. Nation bridge inventory items for Cox proportional 
hazards regression.

NBI item number Description
27 Year built (age of the bridge)
29 Average daily traffic
45 Number of spans in main unit
46 Number of approach spans
48 Length of maximum span
49 Structure length
109 Average daily truck traffic (%)
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Per MDOT State Highway Administration, the 
NBI substructure condition rating is converted into 
the NBE condition state format before processing 
Cox proportional hazards regression, with one addi-
tional condition state (CS5: failure) added. The add-
ed condition state is only necessary for mathematical 
reasons in the Markov chain developed in the latter 
section. The conversion follows the instruction of 
the MDOT State Highway Administration and is 
displayed in Table 3. The NBI condition ratings are 
based on the recording and coding guide by the Fed-
eral Highway Administration [17]. When a bridge is in 
condition rating 9 to 8, there is no defect. In ratings 
7 to 6, minor defects become visible. At 5, the main 
structural components are in good condition while 
they may exhibit slight deterioration in certain areas, 
such as section loss, cracks, and scour. Starting from 
rating 4 the bridge shows advanced section loss and 
deterioration and will quickly enter critical condi-
tions. In practice, bridges reaching a condition rating 
of 4 or below demand immediate attention and reha-
bilitation effort.

Table 3. Nation bridge element items.

NBI condition rating NBE condition rating

9-8 CS1

7-6 CS2

5 CS3

4 or less CS4

failure CS5 (failure)

With the condensed NBI dataset established, a 
series of scripts were created in MATLAB to per-
form the Cox proportional hazards regression. The 
MATLAB scripts are streamlined: First, import 
bridge data from 1992 to 2020; next, select bridges 
that meet the research criteria using structural num-
ber/ID; then, perform data cleaning and prepare the 
NBI data for regression; finally, perform Cox pro-
portional hazards regression to obtain cumulative 
survival function, calculate transition probability and 
construct the Markov chain. An example of the con-
densed data in MATLAB is shown in Appendix A for 
bridge number 100000210108014.

To prepare the data for regression, censoring in-
formation, and data normalization need to be includ-
ed. Censoring is crucial for acquiring an accurate 
model since it is not always possible when the event 
is completely observed. In this study, a bridge may 
exhibit substructure condition state 7 in the year 
1992. There is no definitive information of when 
did this bridge reach substructure condition state 7, 
and for exactly how long has the bridge been in that 
condition state, since the NBI record starts in the 
year 1992. Because of the reconstruction or repair of 
the bridge, the natural deterioration process is inter-
rupted. Hence, substructure condition state 7 for this 
bridge is censored. While only the fully observed 
substructure condition states remain effective, data 
normalization is required to limit the bias of predic-
tor variables in terms of their impact on the event 
of interest. For instance, the value of average daily 
traffic usually contains a larger number compared 
to that of the age of the structure; the value of span 
length is also considerably greater than that of the 
number of spans. Parameters with large fluctuations 
will also introduce bias without proper treatment. 
The regression may be biased without balancing and 
normalizing these parameters. Hence, the parameters 
are normalized into a standard 1 to 10 scale before 
being processed by the Cox proportional hazards re-
gression model.

3. Results

3.1 Results of survival analysis of Maryland 
bridges with RC/PC columns and piles

Two survival analyzes were performed using the 
Cox proportional hazards model. The first case gener-
ates the cumulative survival function for 979 bridges 
in Maryland with RC/PC columns and piles. The sec-
ond case calculates the cumulative survival function 
for the same type of bridges in wet service conditions 
in New York, Maryland, Virginia, and North Carolina. 
The following data visualizations are based on results 
for Maryland bridges. Figure 2 shows the occurrence 
of each rating of the substructure condition.
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Figure 2. Occurrence of each substructure condition rating.

Based on the graphs above, most of the bridges in 
Maryland stay in substructure condition rating CS2 
(20904), while CS4 has the least occurrence (317) 
over the past 29 years. The NBI dataset was fitted by 
the Cox proportional regression, and four cumulative 
survival functions are generated. The cumulative sur-
vival function reflects the probability of the bridge 
substructure staying in a specific condition rating 
each year. Likewise, it can also be interpreted as the 
percentage of bridge substructures remaining in a 
condition state at a year. At CS1, the deterioration 
rate of the substructure is considerably faster as the 

cumulative survival function displays a faster drop. 
This observation shows that a new bridge exhibits an 
accelerated deterioration rate when the substructure 
is still in the best condition ratings. The substructure 
condition ratings of bridges constructed with rein-
forced or prestressed concrete columns/piles stabilize 
in CS2 and CS3. A bridge structure will spend most 
of its service life in these two condition states, where 
the deterioration of the substructure remains steady. 
Conversely, the deterioration rate accelerates rapidly 
in CS4. Under substructure condition rating CS4, 
the substructure is considered in “poor” condition. 
As deterioration accumulates over the life span, the 
substructure experiences an increased rate of drop 
in structural integrity, as shown by the steeper slope 
and sudden drop in the cumulative survival function. 
Overall, the substructure condition rating exhibits an 
accelerated deterioration rate in CS1 and CS4 and 
stabilizes during CS2 and CS3. cumulative survival 
function of the bridges over 29 years are plotted in 
Figure 3.

The hazard ratio of each predictor variable was 
calculated and shown in Table 4. The hazard ratios 
give a direct indication of the association between 
the predictor variables and the substructure condition 
rating. If the hazard ratio is greater than one, that 

Figure 3. Cumulative survival function for Maryland bridge.
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translates to an increase in hazard; when the hazard 
ratio is smaller than one, it shows a reduction in 
hazard. The value of the hazard ratio reflects the in-
crease in hazard when the predictor variable increas-
es by one unit, and vice versa. Note that for bridges 
under wet service conditions, the dataset does not 
distinguish seawater and freshwater because this 
classification is not available in the National Bridge 
Inventory data portal. Hence, results for bridges 
in wet service conditions are based on the general 
condition where the bridge is water-crossing. For in-
stance, if the age of the bridge increase by one unit, 
there is an increase of 2.5% in hazard at CS1. The 
hazard ratios contradict the four condition states. 
At CS1, an increase in age, ADT, number of spans, 
and ADTT results in an increase in hazard, while 
longer maximum length and structure length result 
in a hazard reduction. At CS2, the structure length is 
the only variable that offers a hazard reduction, and 
the reduction is greater than that in CS1. At CS3, the 
maximum span length becomes the only variable 
with a hazard ratio smaller than one, however, it has 
almost no effect on the deterioration rate. At CS4, 
the number of spans and ADTT are identified as the 
only two variables with a hazard ratio greater than 
one, while others are smaller than one.

Table 4. Hazard ratios of predictor variables for Maryland bridge.

Parameter CS1 CS2 CS3 CS4

Age 1.025689 1.06883 1.075101 0.811192

ADT 1.030079 0.913986 1.053165 0.643571

Number of spans 1.168937 1.318656 1.158964 1.785335

Max span length 0.980824 1.357925 0.284489 0.975701

Structure length 0.843096 0.609547 1.41E-06 0.739896

ADTT 1.036217 1.04808 0.930124 1.832976

The transition probability is calculated based on 

the cumulative survival function according to Equa-
tion (6). Under the NBE condition status rating, the 
Markov chain was developed to account for the tran-
sition from CS1 to CS5, with CS5 being an artificial 
condition state solely for mathematical purposes. 
The Markov chain for Maryland bridges is shown in 
Figure 4. Based on the results, there is a 77.7% of 
chance that a Maryland bridge will remain in CS1 
for a year and a 22.3% of chance to transition into 
CS2. Then, it has a 96% of chance staying in CS2 
and a 4% of chance deteriorating into CS3. Next, the 
bridge has a 95.7% of chance remaining in CS3 for 
another year, and a 4.3% of chance degrading into 
CS4. Finally, at CS4, the structure has a 76.1% of 
chance remaining in CS4 and a 23.9% of chance of 
failure. Once the structure reaches failure (CS5), it 
cannot transition into any other condition state. The 
Markov chain also reflects the same trend observed 
in the cumulative survival functions: the deteriora-
tion rate accelerates at CS1 and CS4 but stabilizes at 
CS2 and CS3.

Figure 4. Markov chain for Maryland bridge.

3.2 Results of survival analysis of bridge 
structures with pre-stressed piles/columns

The survival analysis based on bridges construct-
ed with pre-stressed piles/columns was carried out 
similarly. To obtain an adequate amount of bridge 
structures within regions where water-induced de-
terioration may be an issue, the sample comprises 
330 bridges from New York, Virginia, Maryland, and 
North Carolina. The results are shown in Figures 5 
and 6.
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3.3 Pile assessment matrix program (PAM)

Overview
To facilitate the simulation of bridge piles based 

on rehabilitation and maintenance strategies, the Pile 
Assessment Matrix Program (PAM) was developed 
to offer users an accessible tool to model the con-
dition rating of piles in the future to assist in deci-
sion-making. PAM is constructed to incorporate the 
NBI database with research reports for state DOTs, 
forming a framework for pile condition rating sim-
ulation. To ease accessibility, the program is devel-
oped using Visual Basic for Applications so the users 
can simply operate the program in MS Excel. The 
workflow of PAM is presented in Figure 7.

The current version of PAM has integrated the 
NBI dataset of Maryland up to the year 2020, with 
the corresponding survival rates generated based on 
the same dataset. Hence, the numerical model is re-

gion-specific. As the NBI dataset gets updated each 
year, users can easily update the program database 
by adding the latest dataset to the program. There are 
two options regarding the preset for survival rates of 
bridge piles: One based on the reinforced/prestressed 
concrete bridges and the other based on the pre-
stressed concrete bridges with hollow cross sections. 
The user can choose the appropriate option based on 
the bridge inventory being managed. In addition, the 
user is free to enter their survival rates carried out 
from other studies. Though the program is primarily 
a simulation tool for forecasting pile condition rat-
ings, it also serves as a condensed database for the 
bridge inventory system. The user can access the 
bridge’s age, length, longest span length, number of 
spans, number of approach spans, annual average 
daily traffic, and the total number of piles of a bridge 
by entering the structure ID. The general steps for 
using PAM can be summarized in Figure 8.

Figure 5. Cumulative survival function for bridge with pre-stressed piles/columns.

Figure 6. Markov chain for bridges with pre-stressed piles/columns.
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Figure 7. Flowchart of workflow in PAM.

Figure 8. General steps in PAM.
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Assessment of pile condition using PAM
Users can enter information regarding the current 

condition of the bridge pile based on inspection re-
ports. There are two options for describing the pile 
conditions. The simplified method has the user enter-
ing the number of piles in each condition state, and 
the detailed approach enables more data entries on 
the pile conditions, including the overall condition of 
the bents and deterioration of specific categories.

Evaluation and recommendation
Based on the pile conditions, PAM can offer rec-

ommendations on potential location and cause of 
pile damage. These suggestions are based on vari-
ous reports from DOTs across the U.S. Table 5 and 
Figure 9 show the reference guide for the potential 
cause of damages. Suggestions on the following in-
spection are also generated to focus on vulnerable 
components that may require immediate attention for 
repair.

Prediction of pile condition
The key functionality of PAM is to simulate the 

pile condition ratings based on the initial pile con-
dition and maintenance strategies. The transition 
probabilities between condition ratings are calculat-
ed during the survival analysis. But the user has the 
freedom to specify the transition probabilities manu-
ally to suit the specific use case. As shown in Figure 
10, PAM will estimate the percentage of piles in 
each condition rating and calculate the future values 
based on the specified time interval. The expected 
ratings are also listed for reference. A series of pie 
charts will be generated at the end of the simulation 
to visualize the change in pile conditions over time 
(shown in Figure 11). Likewise, simulation of the 
pile conditions also allows inputs regarding rehabili-
tation. The transition probability will adjust based on 
the rehabilitation implemented. Figure 12 shows a 
summary report of a simulation.

Table 5. Common deteriorations.

Symptoms Damage Cause
Cracking w/rusted stains Loss and exposed material Corrosion of reinforcing steel
Longitudinal cracking above water 
level

Loss of material & exposure in splash and 
tidal zone Freeze/Thaw

Softening of concrete Loss and exposed material Sulfate attack
Cracking Loss and exposed material Chemical reaction of aggregates with water
Hairline cracking and spall at the top 
of the pile Loss and exposed material Overloaded structure

Hairline circumferential cracks Loss and exposed material Overloaded structure
Exposed foundations Loss of foundation soil & exposed footing Erosion due to bridge scour or major flooding

Localized major cracking Exposed material, impact damage, large 
section loss

Abnormal events (earthquakes, ship collisions, 
etc.)

Figure 9. The common cause of damage.
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4. Discussion
Survival analysis carried out by the Cox propor-

tional hazards regression model offers flexibility for 
users to generate various models based on specific 
criteria. The choice of predictor variables can be de-

fined based on the project, and the dataset can also 
be chosen to reflect the structural deterioration in a 
certain region. For this study, there are six predictor 
variables included in the regression. The collection 
of predictor variables can always be expanded as 

Figure 10. Estimated percentage of pile ratings.

Figure 11. Change of pile ratings over time.

Figure 12. Summary report on pile condition simulation.
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deemed necessary. Whereas a larger number of pre-
dictor variables does not guarantee improvement in 
the accuracy as irrelevant data may introduce noise 
into the sample. Hence, further statistical analysis 
can be performed to identify any predictor variables 
that are not important. Results in this study might be 
improved by performing an in-depth analysis of the 
statistical correlation of the predictor variables and 
identifying the best subset for the algorithm.

The deterioration rate of newly built bridges with 
substructure condition state CS1 is faster than ex-
pected. One potential explanation is not all bridges 
are built with encapsulation of the columns or piles. 
In certain situations, pile jackets are installed after 
repair, or substantial damage has been found on 
the substructures. This effect can be observed with 
bridges in wet service conditions when a 68.3% 
probability is calculated compared to 77.7% of 
the general case. Bridges in wet service conditions 
are more susceptible to damage such as corrosion, 
spalling, and chloride contamination.

5. Conclusions
Two survival analyses were accomplished using 

the NBI, NBE dataset, and the Cox proportional 
hazards regression model. Two sets of cumulative 
survival functions were plotted to reflect the deterio-
ration process of bridges constructed with reinforced 
RC/PC columns/piles. The associated Markov chains 
were developed based on the transition probabilities 
calculated from the cumulative survival function. 
The Markov chains are used as a probabilistic basis 
for a separate program forecasting the bridge sub-
structure condition states. The key findings of this 
research are summarized below:

1) The deterioration of bridge substructures with 
RC/PC columns/piles can be modeled using Cox 
proportional hazards regression. The condition states 
of the bridge piles are treated as individual incidents, 
similar to those in medical trials.

2) The choice of predictor parameters affects the 
results. Though the NBI database offers a wide range 

of bridge parameters, only a portion of them is sig-
nificant concerning the efficiency and accuracy of the 
survival analysis. When selecting the predictor varia-
bles, only the most relevant parameters are included, 
based on the specific subject on which the survival 
analysis is performed. For instance, the direction of 
traffic may not be important when calculating the 
survival rate of the piles.

3) The deterioration rates of bridge substructures 
with reinforced or prestressed columns/piles are 
fastest during the best or worst condition states (CS1 
and CS4) but stabilize in the intermediate condition 
states (CS2 and CS3). That is, when the piles are in 
pristine condition, they tend to deteriorate faster as 
the material is settling into the surrounding environ-
ment and numerous chemical reactions are initiated. 
As the fresh materials interact with the environment, 
the deterioration starts to slow down, and the outer 
portion of the piles will start to show visible cracks 
without major damage. At last, deterioration of the 
piles accelerates again when they are in the worst 
condition state because at this point most of the pro-
tections have been consumed and the structure is 
severely exposed to the surrounding environment, 
promoting faster reactions between the materials and 
moisture contents. 

4) In wet service conditions, bridge substructures 
experience an accelerated deterioration rate. This 
is mostly caused by chloride-induced reactions be-
tween the piles and water.

5) The Pile Assessment Matrix (PAM) is a com-
puter program designed to facilitate the assessment 
and simulation of bridge piles under wet service 
conditions. The program is region-specific as the sur-
vival rates are dependent on the geological locations 
of the bridges. The user can use the default setting 
if the target bridge inventory is similar to those of 
Maryland. Otherwise, the user can manually specify 
the survival rates based on the particular use case. 
The main functionality of PAM is to simulate the 
pile conditions in the future and offer potential caus-
es of deterioration and recommendations for future 
inspection.
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