https://journals.bilpubgroup.com/index.php/jaeser/issue/feed
Journal of Architectural Environment & Structural Engineering Research
2025-02-06T09:56:01+08:00
Managing Editor: Dorothy Xu
jaeser@bilpubgroup.com
Open Journal Systems
<p>ISSN: 2630-5232(Online)</p> <p>Email: jaeser@bilpubgroup.com</p> <p>Follow the journal: <a style="display: inline-block;" href="https://twitter.com/JAESER_BPC" target="_blank" rel="noopener"><img style="width: 20px; position: relative; top: 5px; left: 5px;" src="https://journals.bilpubgroup.com/public/site/Twitter _logo.jpg" alt="" /></a></p>
https://journals.bilpubgroup.com/index.php/jaeser/article/view/8666
Structural Analysis and Design of a Seismically Resilient Multi-Story Primary School Building in Rural Bangladesh
2025-02-06T09:56:01+08:00
Maksudel Hassan
shoma.acc17@gmail.com
Dibya Lok Paul
shoma.acc17@gmail.com
Ashifur Rahman
shoma.acc17@gmail.com
Shoma Hore
shoma.acc17@gmail.com
<p>School buildings play a vital role in the development of a country's infrastructure, serving as key facilities for education and community growth. These structures must fulfill essential criteria, including structural safety, functionality, and cost-effectiveness. This study explores the structural analysis and design of a four-story primary school building located in Dhorenda, Savar Upazila, Dhaka. The site, encompassing 7.68 Katha, is approximately 12 meters southeast of the Dhaka-Aricha National Highway and 100 meters southeast of Nabinagor market. The primary goal of the project is to develop a multi-story school building that enhances student capacity and provides improved facilities. Various floor plan configurations are evaluated to ensure optimal performance under these forces. The study is organized into two main components: structural analysis and structural design. For structural analysis, the Load and Resistance Factor Design (LRFD) method is applied to determine the impact of various loads, including self-weight, live loads, and wind forces, on the building. Finite element software, ETABS, is utilized to simulate the structure’s behavior and validate its response to these loads. The structural design involves determining the dimensions and reinforcements of key components, such as beams, columns, slabs, and foundations, to ensure the stability and strength of the building. This research highlights the complexities involved in designing and constructing a robust educational facility and offers recommendations for improving the efficiency of similar projects in the future. The findings serve as a resource for professionals seeking to implement sustainable and resilient designs in school infrastructure development.</p>
2024-10-30T00:00:00+08:00
Copyright © 2024 Maksudel Hassan, Dibya Lok Paul, Ashifur Rahman, Shoma Hore