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The prediction of the behavior of reinforced concrete beams under bending 
is essential for the perfect design of these elements. Usually, the classical 
models do not incorporate the physical nonlinear behavior of concrete under 
tension and compression, which can underestimate the deformations in the 
structural element under short and long-term loads. In the present work, a 
variational formulation based on the Finite Element Method is presented 
to predict the flexural behavior of reinforced concrete beams. The physical 
nonlinearity due cracking of concrete is considered by utilization of damage 
concept in the definition of constitutive models, and the lamination theory it 
is used in discretization of section cross of beams. In the layered approach, 
the reinforced concrete element is formulated as a laminated composite that 
consists of thin layers, of concrete or steel that has been modeled as elastic-
perfectly plastic material. The comparison of numerical load-displacement 
results with experimental results found in the literature demonstrates a good 
approximation of the model and validates the application of the damage 
model in the Classical Laminate Theory to predict mechanical failure of 
reinforced concrete beam. The results obtained by the numerical model 
indicated a variation in the stress–strain behavior of each beam, while for 
under-reinforced beams, the compressive stresses did not reach the peak 
stress but the stress–strain behavior was observed in the nonlinear regime 
at failure, for the other beams, the concrete had reached its ultimate strain, 
and the beam’s neutral axis was close to the centroid of the cross-section.

Keywords:
Reinforced concrete
Damage mechanics
Finite element method
Laminate theory

1. Introduction
The nonlinear numerical analysis of reinforced con-

crete structures has been implemented to predict both the 
reduction in stiffness with the increase in deformations, 

as well as the mechanism and process of failure [1]. The 
incorporation of nonlinear stress–strain models under ten-
sion and/or compression [2-4] has changed the constitutive 
equations of concrete.
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Concrete is a cement-based composite material whose 
mechanical properties depend on the constituents and 
interfaces between them. Its behavior is defined by the 
pre-existence of pores, voids, inclusions, and microcracks 
prior to loading, which induces: (i) a post-cracking be-
havior of strain softening; (ii) progressive deterioration of 
the mechanical properties; (iii) volumetric expansion; (iv) 
induced anisotropy; (v) asymmetry in response to traction 
and compression; (iv) considered fragile in traction and 
quasi-ductile in compression. In contrast, reinforced con-
crete uses steel reinforcements embedded in the cemen-
titious matrix to increase the strength and stiffness of the 
composite, primarily in the tension regions. Reinforced 
concrete exhibits an initially linear elastic behavior with 
a progressive increase in loading that progress to a non-
linear inelastic behavior induced by crack propagation 
and concrete crushing or steel yielding. Mathematical 
modeling of the nonlinear inelastic behavior of concrete, 
without considering creep, is typically based on plasticity 
theory, continuous damage theory, fracture mechanics, or 
a combination of these [5-12].

The isotropic Mazar damage model [13] allows the con-
tinuous representation of the structural model even after 
concrete cracking has generated good results in the mod-
eling of reinforced concrete structures [14,15]. This model 
uses theories based on the mechanics of continuous dam-
age that define the constitutive laws of concrete. Only one 
internal variable is required to apply this model and its 
evolution law is easily obtained by performing tensile and 
compression tests on the material. 

In terms of discrete representation of reinforced con-
crete structures, the most common model for numerical 
analysis has been the use of the finite element method, 
wherein the concrete and reinforcement bars are mod-
eled separately using two different types of elements. An 
additional approach has been used with the adoption of 
lamination, wherein the structural element is divided into 
several layers [2,16]. Based on the classical laminate theory, 
this model associates a specific type of material with each 
layer of the beam and considers the perfect adhesion be-
tween the layers. By monitoring the stresses and strains in 
each layer, the commencement of cracking in the concrete 
and the yielding of the reinforcement can be identified, 
thus resulting in a more realistic evaluation of the behav-
ior of the structural elements of reinforced concrete.

The objective of this study is to assess the effectiveness 
of damage mechanics and classical lamination theory in 
the failure prediction of reinforced concrete beams. For 
this purpose, a variational formulation model was devel-
oped based on such theories and the principle of virtual 
work. Subsequently, it was applied using the finite element 

method (FEM) and the obtained results were compared 
with the experimental results reported in the literature. 

2. Problem Formulation and Numerical Mod-
eling

2.1 Materials Modelling

The model proposed by Mazars [13] is based on exper-
imental evidence observed in the behavior of concrete 
under uniaxial tension and compression, wherein the ma-
terial degrades owing to distributed microcracking caused 
by tensile stresses. In this model, the damage is repre-
sented by scalar variable D, whose evolution occurs only 
when an equivalent strain measure, 
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� = < 1 >+
2 +< 2 >+

2 +< 3 >+
2 , (1)

where <  >+ is the positive part of the elongation in the principal direction i and is defined as

<  >+ =
1
2
 +  = ,   > 0

0,   ≤ 0 . (2)

In the pre-cracking phase ( ≤ 0), the concrete exhibits linear elastic behavior. Whereas
in the post-cracking phase, when the strain is greater than the elastic strain limit ( > 0 ), the
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damaged.

Thus, the uniaxial stress–strain behavior of concrete can be established by:

 =
 ,  ≤ 0

1 −  ,  > 0
. (3)

In Equation (3), the damage parameter D varies between 0 (when  ≤ 0 ) and 1 (when
the material is completely damaged), as expressed by (see [14,15]):

 =  +  , (4)
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 = <>+

<>+ + <>+
, (5)
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where  +  = 1 ,  and  are the components of the principal strains determined by the
positive and negative parts, respectively. The values , , ,  and 0 are the experimental
parameters obtained from the material tests.

For the reinforcing steel bars, the linear elastic behavior between the stress and strain
before yield deformation is assumed to be  = , se  < , where  is the elastic modulus of
the steel. After yielding  ≥  , the stress is assumed to be constant,  =  , where  is the
yielding stress of the steel and exhibits linearly elastic–perfectly plastic behavior.

In this study, the cross section of the beams was discretized in NC layers of thickness hk
(k=1,..., NC), as shown in Figure 1.

Figure 1. Discretization of the laminated beam

Classical laminate theory establishes that the laminae that form the laminate are in a
plane stress state. In this context, and based on the generalized Hooke’s law for homogeneous and
isotropic materials, the following relationship between stresses and strains in each layer of the
laminate is valid [16].
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 incorporates 
the damage that occurs in the concrete layers and is given 
by Equations (4)–(8). When the layer is steel, the stress–
strain relationship incorporates plastic strain after the 
yield limit.

The classical laminate theory is typically developed 
only for laminates formed by orthotopic or isotropic ma-
terials [16]. However, this theory can be considered as an 
extension of the classical theory to address problems in-
volving materials subject to damage and plasticity.

2.2 Internal Stress Resultants in the Laminated 
Section

The model used in the study, which appears in the Eul-
er–Bernoulli Beam theory in a single stress component 

The model used in the study, which appears in the Euler–Bernoulli Beam theory in a
single stress component  in Equation (9) used for the analysis of beams, is believed to have
only one non-zero strain component , as given below.
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where N denotes the normal force; M denotes the bending moment; b denotes the width of the
section; and h denotes its height.

For a laminated cross section, as shown in Figure 1, the evaluation of these internal stress
resultants is performed by adding the contribution from each lamina; in this process, different
materials are considered. With the development of the addition, we obtain Equations (16) and
(17), which are compact expressions of the resultants.

 = 11
0

− 11

20
2 , (16)

 = 11
0

− 11

20
2 , (17)

where

11 =  =1
 11

 +1 −  , (18)

11 =

2 =1

 11
 +1

2 − 2 , (19)

11 =

3 =1

 11
 +1

3 − 3 . (20)

The quantities 11 , 11 , and 11 are associated with the term [1, 1] of the matrices of
extensional stiffness [A], bending stiffness [B], and coupling [D], respectively, as they are
referred to in the classical laminate theory [16]. However, mote that Equations (18)–(20)
incorporate the width of section b of the beam, which is not present in the equations of classical
laminate theory.

2.3 Principle of Virtual Works

In this study, FEM was used to model the laminated beam, and the principle of virtual
work was used to write equilibrium equations and transform the continuous problem into a
discrete problem.

Given that the structural system will be in equilibrium, if the total virtual work of the
applied forces is zero, for any compatible virtual (and infinitesimal) displacement, the initial
problem is determining the virtual work done by the internal forces and the virtual work done by
external forces.

The virtual work done by the internal forces for the problem is given by:
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where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.
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where N denotes the normal force; M denotes the bend-
ing moment; b denotes the width of the section; and h de-
notes its height.
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referred to in the classical laminate theory [16]. However, mote that Equations (18)–(20)
incorporate the width of section b of the beam, which is not present in the equations of classical
laminate theory.

2.3 Principle of Virtual Works

In this study, FEM was used to model the laminated beam, and the principle of virtual
work was used to write equilibrium equations and transform the continuous problem into a
discrete problem.

Given that the structural system will be in equilibrium, if the total virtual work of the
applied forces is zero, for any compatible virtual (and infinitesimal) displacement, the initial
problem is determining the virtual work done by the internal forces and the virtual work done by
external forces.

The virtual work done by the internal forces for the problem is given by:

 =   , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.
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The model used in the study, which appears in the Euler–Bernoulli Beam theory in a
single stress component  in Equation (9) used for the analysis of beams, is believed to have
only one non-zero strain component , as given below.
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where N denotes the normal force; M denotes the bending moment; b denotes the width of the
section; and h denotes its height.

For a laminated cross section, as shown in Figure 1, the evaluation of these internal stress
resultants is performed by adding the contribution from each lamina; in this process, different
materials are considered. With the development of the addition, we obtain Equations (16) and
(17), which are compact expressions of the resultants.
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incorporate the width of section b of the beam, which is not present in the equations of classical
laminate theory.

2.3 Principle of Virtual Works

In this study, FEM was used to model the laminated beam, and the principle of virtual
work was used to write equilibrium equations and transform the continuous problem into a
discrete problem.

Given that the structural system will be in equilibrium, if the total virtual work of the
applied forces is zero, for any compatible virtual (and infinitesimal) displacement, the initial
problem is determining the virtual work done by the internal forces and the virtual work done by
external forces.

The virtual work done by the internal forces for the problem is given by:
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where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.
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For a laminated cross section, as shown in Figure 1, the evaluation of these internal stress
resultants is performed by adding the contribution from each lamina; in this process, different
materials are considered. With the development of the addition, we obtain Equations (16) and
(17), which are compact expressions of the resultants.
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extensional stiffness [A], bending stiffness [B], and coupling [D], respectively, as they are
referred to in the classical laminate theory [16]. However, mote that Equations (18)–(20)
incorporate the width of section b of the beam, which is not present in the equations of classical
laminate theory.

2.3 Principle of Virtual Works

In this study, FEM was used to model the laminated beam, and the principle of virtual
work was used to write equilibrium equations and transform the continuous problem into a
discrete problem.

Given that the structural system will be in equilibrium, if the total virtual work of the
applied forces is zero, for any compatible virtual (and infinitesimal) displacement, the initial
problem is determining the virtual work done by the internal forces and the virtual work done by
external forces.

The virtual work done by the internal forces for the problem is given by:
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where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.
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The quantities A11, B11, and D11 are associated with the 
term [1, 1] of the matrices of extensional stiffness [A], 
bending stiffness [B], and coupling [D], respectively, as 
they are referred to in the classical laminate theory [16]. 
However, note that Equations (18)–(20) incorporate the 
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width of section b of the beam, which is not present in the 
equations of classical laminate theory.

2.3 Principle of Virtual Works

In this study, FEM was used to model the laminated 
beam, and the principle of virtual work was used to write 
equilibrium equations and transform the continuous prob-
lem into a discrete problem.

Given that the structural system will be in equilibrium, 
if the total virtual work of the applied forces is zero, for 
any compatible virtual (and infinitesimal) displacement, 
the initial problem is determining the virtual work done by 
the internal forces and the virtual work done by external 
forces.

The virtual work done by the internal forces for the 
problem is given by:

 =   , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

 = 0
 11

∂0
∂
− 11

∂20
∂2  ∂0

∂
− 11

∂0
∂
− 11

∂20
∂2  ∂20

∂2  . (22)

The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0  +  0 +  0 −  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively;   and   represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is,  =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:

11
20
2 −11

30
3 =−   or 


=−   , (24)

11
30
3 − 11

40
4 =   or 2

2 =   . (25)

Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 =  0 and 0 =  0 or  =  , (26)

0 =  0 and 0 =  0 or  =  , (27)
0


=  0


and  0


=   0


or  =  , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.

 = 

= 11

20
2 − 11

30
3 . (29)

2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length  were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type
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where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.
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where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively;   and   represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is,  =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:
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Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:
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where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.
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2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length  were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

 is the variation in the strain component 

The model used in the study, which appears in the Euler–Bernoulli Beam theory in a
single stress component  in Equation (9) used for the analysis of beams, is believed to have
only one non-zero strain component , as given below.

 = 11
 . (13)

The internal stresses in the generic cross-section of the laminate of area A are related by
the following equations.

 =   =  −ℎ 2
ℎ 2  , (14)

 =   =  −ℎ 2
ℎ 2  , (15)

where N denotes the normal force; M denotes the bending moment; b denotes the width of the
section; and h denotes its height.

For a laminated cross section, as shown in Figure 1, the evaluation of these internal stress
resultants is performed by adding the contribution from each lamina; in this process, different
materials are considered. With the development of the addition, we obtain Equations (16) and
(17), which are compact expressions of the resultants.
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The quantities 11 , 11 , and 11 are associated with the term [1, 1] of the matrices of
extensional stiffness [A], bending stiffness [B], and coupling [D], respectively, as they are
referred to in the classical laminate theory [16]. However, mote that Equations (18)–(20)
incorporate the width of section b of the beam, which is not present in the equations of classical
laminate theory.

2.3 Principle of Virtual Works

In this study, FEM was used to model the laminated beam, and the principle of virtual
work was used to write equilibrium equations and transform the continuous problem into a
discrete problem.

Given that the structural system will be in equilibrium, if the total virtual work of the
applied forces is zero, for any compatible virtual (and infinitesimal) displacement, the initial
problem is determining the virtual work done by the internal forces and the virtual work done by
external forces.

The virtual work done by the internal forces for the problem is given by:

 =   , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

; 
and V is the volume of the beam.

For the laminated section shown in Figure 1, we obtain 
the following.

 =   , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

 = 0
 11

∂0
∂
− 11

∂20
∂2  ∂0

∂
− 11

∂0
∂
− 11

∂20
∂2  ∂20

∂2  . (22)

The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0  +  0 +  0 −  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively;   and   represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is,  =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:

11
20
2 −11

30
3 =−   or 


=−   , (24)

11
30
3 − 11

40
4 =   or 2

2 =   . (25)

Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 =  0 and 0 =  0 or  =  , (26)

0 =  0 and 0 =  0 or  =  , (27)
0


=  0


and  0


=   0


or  =  , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.

 = 

= 11
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2 − 11

30
3 . (29)

2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and
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. The interpolation functions used

to represent the displacements along the finite element of length  were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0
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deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type
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where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.
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The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:
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where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively;   and   represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is,  =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:
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Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 =  0 and 0 =  0 or  =  , (26)
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where Q is the shear force in the section obtained from the equilibrium of the differential element
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2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and
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. The interpolation functions used

to represent the displacements along the finite element of length  were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0
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was obtained by

deriving from 0  .
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where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
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where Q is the shear force in the section obtained from the equilibrium of the differential element
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Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and
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where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively;   and   represent the forces applied at the beam ends (x = 0 and
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where Q is the shear force in the section obtained from the equilibrium of the differential element
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Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
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For the laminated section shown in Figure 1, we obtain the following.

 = 0
 11

∂0
∂
− 11

∂20
∂2  ∂0

∂
− 11

∂0
∂
− 11

∂20
∂2  ∂20

∂2  . (22)

The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0  +  0 +  0 −  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively;   and   represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
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integration by parts.

This result in the system of differential equations associated with the model:

11
20
2 −11

30
3 =−   or 


=−   , (24)

11
30
3 − 11

40
4 =   or 2

2 =   . (25)

Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 =  0 and 0 =  0 or  =  , (26)

0 =  0 and 0 =  0 or  =  , (27)
0


=  0


and  0


=   0


or  =  , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.
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Herein, the classical beam element was chosen for treatment using FEM for formulation
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∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length  were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

 
represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the 
principle of virtual work (PTV), that is, 

 =   , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

 = 0
 11

∂0
∂
− 11

∂20
∂2  ∂0

∂
− 11

∂0
∂
− 11

∂20
∂2  ∂20

∂2  . (22)

The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0  +  0 +  0 −  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
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to represent the displacements along the finite element of length  were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

, 
the differential equations of the problem can be instituted, 
previously making the variations of displacements in the 
domain portions in Equations (22) and (23) through inte-
gration by parts. 

This result in the system of differential equations asso-
ciated with the model:

 =   , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

 = 0
 11

∂0
∂
− 11

∂20
∂2  ∂0

∂
− 11

∂0
∂
− 11

∂20
∂2  ∂20

∂2  . (22)

The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0  +  0 +  0 −  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively;   and   represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is,  =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:

11
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2 −11

30
3 =−   or 


=−   , (24)

11
30
3 − 11

40
4 =   or 2

2 =   . (25)

Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 =  0 and 0 =  0 or  =  , (26)

0 =  0 and 0 =  0 or  =  , (27)
0


=  0


and  0


=   0


or  =  , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.

 = 

= 11

20
2 − 11

30
3 . (29)

2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length  were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

 (24)

 =   , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

 = 0
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∂20
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− 11

∂0
∂
− 11

∂20
∂2  ∂20

∂2  . (22)

The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0  +  0 +  0 −  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively;   and   represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is,  =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:
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40
4 =   or 2

2 =   . (25)

Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 =  0 and 0 =  0 or  =  , (26)

0 =  0 and 0 =  0 or  =  , (27)
0


=  0


and  0


=   0


or  =  , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.

 = 

= 11

20
2 − 11

30
3 . (29)

2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length  were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

 (25)

Because of the application of PTV, the following 

boundary conditions are extracted at x = 0 and x = L, in-
herent to the model:

 =   , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

 = 0
 11

∂0
∂
− 11

∂20
∂2  ∂0

∂
− 11

∂0
∂
− 11

∂20
∂2  ∂20

∂2  . (22)

The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0  +  0 +  0 −  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively;   and   represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is,  =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:
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20
2 −11

30
3 =−   or 


=−   , (24)

11
30
3 − 11

40
4 =   or 2

2 =   . (25)

Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 =  0 and 0 =  0 or  =  , (26)

0 =  0 and 0 =  0 or  =  , (27)
0


=  0


and  0


=   0


or  =  , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.

 = 

= 11

20
2 − 11

30
3 . (29)

2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length  were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

 (26)

 =   , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

 = 0
 11

∂0
∂
− 11

∂20
∂2  ∂0

∂
− 11

∂0
∂
− 11

∂20
∂2  ∂20

∂2  . (22)

The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0  +  0 +  0 −  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively;   and   represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is,  =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:

11
20
2 −11

30
3 =−   or 


=−   , (24)

11
30
3 − 11

40
4 =   or 2

2 =   . (25)

Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 =  0 and 0 =  0 or  =  , (26)

0 =  0 and 0 =  0 or  =  , (27)
0


=  0


and  0


=   0


or  =  , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.

 = 

= 11

20
2 − 11

30
3 . (29)

2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length  were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

 (27)

 =   , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

 = 0
 11

∂0
∂
− 11

∂20
∂2  ∂0

∂
− 11

∂0
∂
− 11

∂20
∂2  ∂20

∂2  . (22)

The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0  +  0 +  0 −  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively;   and   represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is,  =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:
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40
4 =   or 2

2 =   . (25)

Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 =  0 and 0 =  0 or  =  , (26)

0 =  0 and 0 =  0 or  =  , (27)
0


=  0


and  0


=   0


or  =  , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.
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
= 11

20
2 − 11

30
3 . (29)

2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length  were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

 (28)

where Q is the shear force in the section obtained from 
the equilibrium of the differential element of the beam.

 =   , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

 = 0
 11

∂0
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∂20
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∂2  . (22)

The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0  +  0 +  0 −  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively;   and   represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is,  =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:
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4 =   or 2

2 =   . (25)

Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 =  0 and 0 =  0 or  =  , (26)

0 =  0 and 0 =  0 or  =  , (27)
0


=  0


and  0


=   0


or  =  , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.
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
= 11

20
2 − 11

30
3 . (29)

2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length  were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

 (29)

2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for 
treatment using FEM for formulation developed in the 
previous subsections [17]. This element is delimited by two 
nodes at its ends, with three degrees of freedom at each of 
these nodes: u0, w0, and 

 =   , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

 = 0
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∂0
∂
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∂2  . (22)

The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0  +  0 +  0 −  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively;   and   represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is,  =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:
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4 =   or 2

2 =   . (25)

Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 =  0 and 0 =  0 or  =  , (26)

0 =  0 and 0 =  0 or  =  , (27)
0


=  0


and  0


=   0


or  =  , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.
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30
3 . (29)

2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length  were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

. The interpolation functions 
used to represent the displacements along the finite ele-
ment of length Lel were cubic polynomials for 

 =   , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.
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The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0  +  0 +  0 −  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively;   and   represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is,  =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:
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2 =   . (25)

Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 =  0 and 0 =  0 or  =  , (26)

0 =  0 and 0 =  0 or  =  , (27)
0


=  0


and  0


=   0


or  =  , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.
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2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length  were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

and linear polynomials for 

 =   , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

 = 0
 11
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∂20
∂2  ∂0

∂
− 11

∂0
∂
− 11
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∂2  . (22)

The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0  +  0 +  0 −  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively;   and   represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is,  =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:
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11
30
3 − 11

40
4 =   or 2

2 =   . (25)

Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 =  0 and 0 =  0 or  =  , (26)

0 =  0 and 0 =  0 or  =  , (27)
0


=  0


and  0


=   0


or  =  , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.
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
= 11

20
2 − 11

30
3 . (29)

2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length  were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

. Finally, the rotation 

 =   , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.

 = 0
 11

∂0
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∂20
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∂2  . (22)

The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
   0 +   0  +  0 +  0 −  ∂0

∂ 0


, (23)

where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively;   and   represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is,  =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:
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4 =   or 2

2 =   . (25)

Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 =  0 and 0 =  0 or  =  , (26)

0 =  0 and 0 =  0 or  =  , (27)
0

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

and  0


=   0


or  =  , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.
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2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length  were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

 was obtained by deriving from 

 =   , (21)

where  is the variation in the strain component ; and  is the volume of the beam.

For the laminated section shown in Figure 1, we obtain the following.
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The virtual work done by the external forces, assuming that the loads are applied directly
to the axis of the structure to produce bending, is given by:

 = 0
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
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where p(x) and q(x) represent the distributed loads of the domain according to the axial x axis and
transverse z axis, respectively;   and   represent the forces applied at the beam ends (x = 0 and
x = L), respectively; and represents the external moments applied at the same ends.

By applying the equilibrium condition imposed by the principle of virtual work (PTV),
that is,  =  , the differential equations of the problem can be instituted, previously
making the variations of displacements in the domain portions in Equations (22) and (23) through
integration by parts.

This result in the system of differential equations associated with the model:
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2 =   . (25)

Because of the application of PTV, the following boundary conditions are extracted at
 = 0 and  = , inherent to the model:

0 =  0 and 0 =  0 or  =  , (26)

0 =  0 and 0 =  0 or  =  , (27)
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and  0

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

or  =  , (28)

where Q is the shear force in the section obtained from the equilibrium of the differential element
of the beam.
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
= 11

20
2 − 11

30
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2.4 Discretization by the Finite Element Method

2.4.1 Determination of the Stiffness Matrix

Herein, the classical beam element was chosen for treatment using FEM for formulation
developed in the previous subsections [17]. This element is delimited by two nodes at its ends, with
three degrees of freedom at each of these nodes: 0, 0, and

∂0
∂
. The interpolation functions used

to represent the displacements along the finite element of length  were cubic polynomials for
0 = 0  and linear polynomials for 0 = 0  . Finally, the rotation ∂0

∂
was obtained by

deriving from 0  .

The FEM application generates a system of nodal equilibrium equations of type

.
The FEM application generates a system of nodal equi-

librium equations of type
  =  , (30)

where  is the global stiffness matrix of the structure, a function of both the geometry of the
beam and the mechanical properties of the materials, and is given by the assembly of elements, as
shown in Equation (31);  is the global vector of loads, containing the equivalent nodal loads
acting on the structure; and  is the vector of nodal displacements, obtained by solving the
system of Equations (30).

 = 1
  , (31)

where NE is the number of finite elements defined in the beam discretization; and  is the
stiffness matrix of the beam element, which is given by
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During the process of applying loads on the structural element, the matrix  can be
different even for elements of the same length  because the cracking process of the concrete or
the yielding of the reinforcement causes the damage variable to assume different values along the
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental application of external loads was
performed to obtain an initial (predicted) solution, followed by an iterative Newton–Raphson
using force or displacement control process. Table 1 summarizes the flowchart of the program.

Table 1. Iterative process of obtaining a solution

Pre-cracking phase (D = 0) Post-cracking phase (D > 0)

1. Calculation of the stiffness matrix;

2. The load is updated from the load increment  ;

3. Solve the system of Equation (30);

4. Return to step 1;

1. Calculation of the stiffness matrix in relation to the
last equilibrium configuration using displacements,
strains, stresses, and the updated damage variable;

2. Update load from load increment  F ;

3. Solve the system of Equation (30);

4. Check convergence through the unbalanced force
(external forces minus internal forces);

5. If there is no convergence, the stiffness of the
structure must be updated and then the increment of the
nodal displacements  must be calculated through the
unbalance force. Subsequently, the displacements
(  +  ) and the damage variable are updated.
Finally, the unbalanced force is updated and the
convergence is verified (external force minus internal

 (30)
where   =  , (30)

where  is the global stiffness matrix of the structure, a function of both the geometry of the
beam and the mechanical properties of the materials, and is given by the assembly of elements, as
shown in Equation (31);  is the global vector of loads, containing the equivalent nodal loads
acting on the structure; and  is the vector of nodal displacements, obtained by solving the
system of Equations (30).

 = 1
  , (31)

where NE is the number of finite elements defined in the beam discretization; and  is the
stiffness matrix of the beam element, which is given by
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During the process of applying loads on the structural element, the matrix  can be
different even for elements of the same length  because the cracking process of the concrete or
the yielding of the reinforcement causes the damage variable to assume different values along the
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental application of external loads was
performed to obtain an initial (predicted) solution, followed by an iterative Newton–Raphson
using force or displacement control process. Table 1 summarizes the flowchart of the program.

Table 1. Iterative process of obtaining a solution

Pre-cracking phase (D = 0) Post-cracking phase (D > 0)

1. Calculation of the stiffness matrix;

2. The load is updated from the load increment  ;

3. Solve the system of Equation (30);

4. Return to step 1;

1. Calculation of the stiffness matrix in relation to the
last equilibrium configuration using displacements,
strains, stresses, and the updated damage variable;

2. Update load from load increment  F ;

3. Solve the system of Equation (30);

4. Check convergence through the unbalanced force
(external forces minus internal forces);

5. If there is no convergence, the stiffness of the
structure must be updated and then the increment of the
nodal displacements  must be calculated through the
unbalance force. Subsequently, the displacements
(  +  ) and the damage variable are updated.
Finally, the unbalanced force is updated and the
convergence is verified (external force minus internal

 is the global stiffness matrix of the structure, 
a function of both the geometry of the beam and the me-
chanical properties of the materials, and is given by the 
assembly of elements, as shown in Equation (31);   =  , (30)

where  is the global stiffness matrix of the structure, a function of both the geometry of the
beam and the mechanical properties of the materials, and is given by the assembly of elements, as
shown in Equation (31);  is the global vector of loads, containing the equivalent nodal loads
acting on the structure; and  is the vector of nodal displacements, obtained by solving the
system of Equations (30).

 = 1
  , (31)

where NE is the number of finite elements defined in the beam discretization; and  is the
stiffness matrix of the beam element, which is given by
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During the process of applying loads on the structural element, the matrix  can be
different even for elements of the same length  because the cracking process of the concrete or
the yielding of the reinforcement causes the damage variable to assume different values along the
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental application of external loads was
performed to obtain an initial (predicted) solution, followed by an iterative Newton–Raphson
using force or displacement control process. Table 1 summarizes the flowchart of the program.

Table 1. Iterative process of obtaining a solution

Pre-cracking phase (D = 0) Post-cracking phase (D > 0)

1. Calculation of the stiffness matrix;

2. The load is updated from the load increment  ;

3. Solve the system of Equation (30);

4. Return to step 1;

1. Calculation of the stiffness matrix in relation to the
last equilibrium configuration using displacements,
strains, stresses, and the updated damage variable;

2. Update load from load increment  F ;

3. Solve the system of Equation (30);

4. Check convergence through the unbalanced force
(external forces minus internal forces);

5. If there is no convergence, the stiffness of the
structure must be updated and then the increment of the
nodal displacements  must be calculated through the
unbalance force. Subsequently, the displacements
(  +  ) and the damage variable are updated.
Finally, the unbalanced force is updated and the
convergence is verified (external force minus internal

 is 
the global vector of loads, containing the equivalent nodal 
loads acting on the structure; and   =  , (30)

where  is the global stiffness matrix of the structure, a function of both the geometry of the
beam and the mechanical properties of the materials, and is given by the assembly of elements, as
shown in Equation (31);  is the global vector of loads, containing the equivalent nodal loads
acting on the structure; and  is the vector of nodal displacements, obtained by solving the
system of Equations (30).

 = 1
  , (31)

where NE is the number of finite elements defined in the beam discretization; and  is the
stiffness matrix of the beam element, which is given by

 =

11


0 − 11


− 11


0 11


0 1211


3
611


2 0 − 1211


3
611


2

− 11


611


2
411


11


− 611


2
211


− 11


0 11


11


0 − 11


0 − 1211


3 − 611


2 0 1211


3 − 611


2

11


611


2
211


− 11


− 611


2
411


. (32)

During the process of applying loads on the structural element, the matrix  can be
different even for elements of the same length  because the cracking process of the concrete or
the yielding of the reinforcement causes the damage variable to assume different values along the
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental application of external loads was
performed to obtain an initial (predicted) solution, followed by an iterative Newton–Raphson
using force or displacement control process. Table 1 summarizes the flowchart of the program.

Table 1. Iterative process of obtaining a solution

Pre-cracking phase (D = 0) Post-cracking phase (D > 0)

1. Calculation of the stiffness matrix;

2. The load is updated from the load increment  ;

3. Solve the system of Equation (30);

4. Return to step 1;

1. Calculation of the stiffness matrix in relation to the
last equilibrium configuration using displacements,
strains, stresses, and the updated damage variable;

2. Update load from load increment  F ;

3. Solve the system of Equation (30);

4. Check convergence through the unbalanced force
(external forces minus internal forces);

5. If there is no convergence, the stiffness of the
structure must be updated and then the increment of the
nodal displacements  must be calculated through the
unbalance force. Subsequently, the displacements
(  +  ) and the damage variable are updated.
Finally, the unbalanced force is updated and the
convergence is verified (external force minus internal

 is the vector of nod-
al displacements, obtained by solving the system of Equa-
tions (30).

  =  , (30)

where  is the global stiffness matrix of the structure, a function of both the geometry of the
beam and the mechanical properties of the materials, and is given by the assembly of elements, as
shown in Equation (31);  is the global vector of loads, containing the equivalent nodal loads
acting on the structure; and  is the vector of nodal displacements, obtained by solving the
system of Equations (30).

 = 1
  , (31)

where NE is the number of finite elements defined in the beam discretization; and  is the
stiffness matrix of the beam element, which is given by
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During the process of applying loads on the structural element, the matrix  can be
different even for elements of the same length  because the cracking process of the concrete or
the yielding of the reinforcement causes the damage variable to assume different values along the
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental application of external loads was
performed to obtain an initial (predicted) solution, followed by an iterative Newton–Raphson
using force or displacement control process. Table 1 summarizes the flowchart of the program.

Table 1. Iterative process of obtaining a solution

Pre-cracking phase (D = 0) Post-cracking phase (D > 0)

1. Calculation of the stiffness matrix;

2. The load is updated from the load increment  ;

3. Solve the system of Equation (30);

4. Return to step 1;

1. Calculation of the stiffness matrix in relation to the
last equilibrium configuration using displacements,
strains, stresses, and the updated damage variable;

2. Update load from load increment  F ;

3. Solve the system of Equation (30);

4. Check convergence through the unbalanced force
(external forces minus internal forces);

5. If there is no convergence, the stiffness of the
structure must be updated and then the increment of the
nodal displacements  must be calculated through the
unbalance force. Subsequently, the displacements
(  +  ) and the damage variable are updated.
Finally, the unbalanced force is updated and the
convergence is verified (external force minus internal

 (31)

where NE is the number of finite elements defined in 
the beam discretization; and 

  =  , (30)

where  is the global stiffness matrix of the structure, a function of both the geometry of the
beam and the mechanical properties of the materials, and is given by the assembly of elements, as
shown in Equation (31);  is the global vector of loads, containing the equivalent nodal loads
acting on the structure; and  is the vector of nodal displacements, obtained by solving the
system of Equations (30).

 = 1
  , (31)

where NE is the number of finite elements defined in the beam discretization; and  is the
stiffness matrix of the beam element, which is given by
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During the process of applying loads on the structural element, the matrix  can be
different even for elements of the same length  because the cracking process of the concrete or
the yielding of the reinforcement causes the damage variable to assume different values along the
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental application of external loads was
performed to obtain an initial (predicted) solution, followed by an iterative Newton–Raphson
using force or displacement control process. Table 1 summarizes the flowchart of the program.

Table 1. Iterative process of obtaining a solution

Pre-cracking phase (D = 0) Post-cracking phase (D > 0)

1. Calculation of the stiffness matrix;

2. The load is updated from the load increment  ;

3. Solve the system of Equation (30);

4. Return to step 1;

1. Calculation of the stiffness matrix in relation to the
last equilibrium configuration using displacements,
strains, stresses, and the updated damage variable;

2. Update load from load increment  F ;

3. Solve the system of Equation (30);

4. Check convergence through the unbalanced force
(external forces minus internal forces);

5. If there is no convergence, the stiffness of the
structure must be updated and then the increment of the
nodal displacements  must be calculated through the
unbalance force. Subsequently, the displacements
(  +  ) and the damage variable are updated.
Finally, the unbalanced force is updated and the
convergence is verified (external force minus internal

 is the stiffness matrix of 
the beam element, which is given by

  =  , (30)

where  is the global stiffness matrix of the structure, a function of both the geometry of the
beam and the mechanical properties of the materials, and is given by the assembly of elements, as
shown in Equation (31);  is the global vector of loads, containing the equivalent nodal loads
acting on the structure; and  is the vector of nodal displacements, obtained by solving the
system of Equations (30).

 = 1
  , (31)

where NE is the number of finite elements defined in the beam discretization; and  is the
stiffness matrix of the beam element, which is given by
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During the process of applying loads on the structural element, the matrix  can be
different even for elements of the same length  because the cracking process of the concrete or
the yielding of the reinforcement causes the damage variable to assume different values along the
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental application of external loads was
performed to obtain an initial (predicted) solution, followed by an iterative Newton–Raphson
using force or displacement control process. Table 1 summarizes the flowchart of the program.

Table 1. Iterative process of obtaining a solution

Pre-cracking phase (D = 0) Post-cracking phase (D > 0)

1. Calculation of the stiffness matrix;

2. The load is updated from the load increment  ;

3. Solve the system of Equation (30);

4. Return to step 1;

1. Calculation of the stiffness matrix in relation to the
last equilibrium configuration using displacements,
strains, stresses, and the updated damage variable;

2. Update load from load increment  F ;

3. Solve the system of Equation (30);

4. Check convergence through the unbalanced force
(external forces minus internal forces);

5. If there is no convergence, the stiffness of the
structure must be updated and then the increment of the
nodal displacements  must be calculated through the
unbalance force. Subsequently, the displacements
(  +  ) and the damage variable are updated.
Finally, the unbalanced force is updated and the
convergence is verified (external force minus internal

 (32)

During the process of applying loads on the structural 
element, the matrix 

  =  , (30)

where  is the global stiffness matrix of the structure, a function of both the geometry of the
beam and the mechanical properties of the materials, and is given by the assembly of elements, as
shown in Equation (31);  is the global vector of loads, containing the equivalent nodal loads
acting on the structure; and  is the vector of nodal displacements, obtained by solving the
system of Equations (30).

 = 1
  , (31)

where NE is the number of finite elements defined in the beam discretization; and  is the
stiffness matrix of the beam element, which is given by
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During the process of applying loads on the structural element, the matrix  can be
different even for elements of the same length  because the cracking process of the concrete or
the yielding of the reinforcement causes the damage variable to assume different values along the
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental application of external loads was
performed to obtain an initial (predicted) solution, followed by an iterative Newton–Raphson
using force or displacement control process. Table 1 summarizes the flowchart of the program.

Table 1. Iterative process of obtaining a solution

Pre-cracking phase (D = 0) Post-cracking phase (D > 0)

1. Calculation of the stiffness matrix;

2. The load is updated from the load increment  ;

3. Solve the system of Equation (30);

4. Return to step 1;

1. Calculation of the stiffness matrix in relation to the
last equilibrium configuration using displacements,
strains, stresses, and the updated damage variable;

2. Update load from load increment  F ;

3. Solve the system of Equation (30);

4. Check convergence through the unbalanced force
(external forces minus internal forces);

5. If there is no convergence, the stiffness of the
structure must be updated and then the increment of the
nodal displacements  must be calculated through the
unbalance force. Subsequently, the displacements
(  +  ) and the damage variable are updated.
Finally, the unbalanced force is updated and the
convergence is verified (external force minus internal

 can be different even for ele-
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ments of the same length Lel because the cracking process 
of the concrete or the yielding of the reinforcement causes 
the damage variable to assume different values along the 
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental 
application of external loads was performed to obtain an 
initial (predicted) solution, followed by an iterative New-
ton–Raphson using force or displacement control process. 
Table 1 summarizes the flowchart of the program.

2.5 Model Validation

The experimental results obtained by Álvares [15] were 
used to validate the proposed model. Reinforced concrete 
beams with different reinforcement ratios were experi-
mentally investigated to evaluate their failure form when 
subjected to a four-point bending test. The experimental 
test of the beams was performed with load control such 
that the test was interrupted when the breaking load was 
reached.

The beams evaluated by Álvares [15] had a rectangular 
section measuring 120 mm × 300 mm, with a span of 
2400 mm and loads located 800 mm from the support, as 
shown in Figure 2a and 2b. 

The reinforcement rate of the beams was varied such 
that three types of failures, namely flexural tension fail-
ure (under-reinforced section), flexural compression 

failure (over-reinforced section), and simultaneous fail-
ure (optimized section), could be evaluated. The upper 
reinforcement of all beams consisted of two bars with a 
diameter of 5 mm. The lower reinforcement varied based 
on the type of failure expected for the beam: i) for the un-
der-reinforced section beam (Figure 2b), three bars with 
a diameter of 10 mm were used (As = 236 mm2); ii) for 
the optimized section beam (Figure 2c), five bars with a 
diameter of 10 mm were used (As = 393 mm2); iii) for the 
over-reinforced section beam (Figure 2d), seven bars with 
a diameter of 10 mm were used (As = 550 mm2). For beam 
reinforcement, the following properties were assumed for 
steel: Es = 196 GPa, fy = 500 MPa, and fu = 500 MPa. 

For concrete modeling, an elastic modulus of 29.2 GPa 
and the following parameters necessary for the Mazar 
damage model, defined by Álvares [15], were used. At = 

995, Bt = 8000, Ac = 0.85, Bc = 1620 and 

force). Repeat this process until the solution converges to
that charge level.

6. After convergence, go back to step 1.

2.5 Model Validation
The experimental results obtained by Álvares [15] were used to validate the proposed

model. Reinforced concrete beams with different reinforcement ratios were experimentally
investigated to evaluate their failure form when subjected to a four-point bending test. The
experimental test of the beams was performed with load control such that the test was interrupted
when the breaking load was reached.

The beams evaluated by Álvares [15] had a rectangular section measuring 120 mm × 300
mm, with a span of 2400 mm and loads located 800 mm from the support, as shown in Figure 2a
and b.

The reinforcement rate of the beams was varied such that three types of failures, namely
flexural tension failure (under-reinforced section), flexural compression failure (over-reinforced
section), and simultaneous failure (optimized section), could be evaluated. The upper
reinforcement of all beams consisted of two bars with a diameter of 5 mm. The lower
reinforcement varied based on the type of failure expected for the beam: i) for the under-
reinforced section beam (Figure 2b), three bars with a diameter of 10 mm were used (As = 236
mm2); ii) for the optimized section beam (Figure 2c), five bars with a diameter of 10 mm were
used (As = 393 mm2); iii) for the over-reinforced section beam (Figure 2d), seven bars with a
diameter of 10 mm were used (As = 550 mm2). For beam reinforcement, the following properties
were assumed for steel:  = 196 GPa,  = 500 MPa, and  = 500 MPa.

Figure 2. Experimental setup [15]: a) four-point bending test; b) under-reinforced beam; c)
optimized beam; d) over-reinforced beam.

For concrete modeling, an elastic modulus of 29.2 GPa and the following parameters
necessary for the Mazar damage model, defined by Álvares [15], were used.  = 0.995 ,  =
8000 ,  = 0.85,  = 1620 and 0 = 0.00007 . Additionally, a Poisson’s ratio of 0.2 was
assumed.

A convergence study (verification process) of the discretization parameters of the load–
displacement solution was performed to determine the finite element mesh of the beams by
varying the number of layers (10, 20, and 40 layers) of the cross section, the number of elements
for the length of the beams (12, 24, 36, and 48 elements), the initial load step (0.5, 1.0, and 2.0
kN), and the tolerance of the iterative process (10–3, 10–4, and 10–6). Therefore, the investigation
recommended for the simulation of the three beams were a discretization of 20 layers and 36
elements, an initial load step of 1 kN and tolerance of 10–6.

3. Results and Discussion

. Ad-
ditionally, a Poisson’s ratio of 0.2 was assumed.

A convergence study (verification process) of the dis-
cretization parameters of the load–displacement solution 
was performed to determine the finite element mesh of 
the beams by varying the number of layers (10, 20, and 
40 layers) of the cross section, the number of elements for 
the length of the beams (12, 24, 36, and 48 elements), the 
initial load step (0.5, 1.0, and 2.0 kN), and the tolerance of 
the iterative process (10–3, 10–4, and 10–6). Therefore, the 
investigation recommended for the simulation of the three 
beams were a discretization of 20 layers and 36 elements, 
an initial load step of 1 kN and tolerance of 10–6. 

Table 1. Iterative process of obtaining a solution

Pre-cracking phase (D = 0) Post-cracking phase (D > 0)

1. Calculation of the stiffness matrix;
2. The load is updated from the load increment 

  =  , (30)

where  is the global stiffness matrix of the structure, a function of both the geometry of the
beam and the mechanical properties of the materials, and is given by the assembly of elements, as
shown in Equation (31);  is the global vector of loads, containing the equivalent nodal loads
acting on the structure; and  is the vector of nodal displacements, obtained by solving the
system of Equations (30).

 = 1
  , (31)

where NE is the number of finite elements defined in the beam discretization; and  is the
stiffness matrix of the beam element, which is given by
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. (32)

During the process of applying loads on the structural element, the matrix  can be
different even for elements of the same length  because the cracking process of the concrete or
the yielding of the reinforcement causes the damage variable to assume different values along the
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental application of external loads was
performed to obtain an initial (predicted) solution, followed by an iterative Newton–Raphson
using force or displacement control process. Table 1 summarizes the flowchart of the program.

Table 1. Iterative process of obtaining a solution

Pre-cracking phase (D = 0) Post-cracking phase (D > 0)

1. Calculation of the stiffness matrix;

2. The load is updated from the load increment  ;

3. Solve the system of Equation (30);

4. Return to step 1;

1. Calculation of the stiffness matrix in relation to the
last equilibrium configuration using displacements,
strains, stresses, and the updated damage variable;

2. Update load from load increment  F ;

3. Solve the system of Equation (30);

4. Check convergence through the unbalanced force
(external forces minus internal forces);

5. If there is no convergence, the stiffness of the
structure must be updated and then the increment of the
nodal displacements  must be calculated through the
unbalance force. Subsequently, the displacements
(  +  ) and the damage variable are updated.
Finally, the unbalanced force is updated and the
convergence is verified (external force minus internal

;
3. Solve the system of Equation (30);
4. Return to step 1;

1. Calculation of the stiffness matrix in relation to the last equilibrium 
configuration using displacements, strains, stresses, and the updated damage 
variable;
2. Update load from load increment 

  =  , (30)

where  is the global stiffness matrix of the structure, a function of both the geometry of the
beam and the mechanical properties of the materials, and is given by the assembly of elements, as
shown in Equation (31);  is the global vector of loads, containing the equivalent nodal loads
acting on the structure; and  is the vector of nodal displacements, obtained by solving the
system of Equations (30).

 = 1
  , (31)

where NE is the number of finite elements defined in the beam discretization; and  is the
stiffness matrix of the beam element, which is given by

 =
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During the process of applying loads on the structural element, the matrix  can be
different even for elements of the same length  because the cracking process of the concrete or
the yielding of the reinforcement causes the damage variable to assume different values along the
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental application of external loads was
performed to obtain an initial (predicted) solution, followed by an iterative Newton–Raphson
using force or displacement control process. Table 1 summarizes the flowchart of the program.

Table 1. Iterative process of obtaining a solution

Pre-cracking phase (D = 0) Post-cracking phase (D > 0)

1. Calculation of the stiffness matrix;

2. The load is updated from the load increment  ;

3. Solve the system of Equation (30);

4. Return to step 1;

1. Calculation of the stiffness matrix in relation to the
last equilibrium configuration using displacements,
strains, stresses, and the updated damage variable;

2. Update load from load increment  F ;

3. Solve the system of Equation (30);

4. Check convergence through the unbalanced force
(external forces minus internal forces);

5. If there is no convergence, the stiffness of the
structure must be updated and then the increment of the
nodal displacements  must be calculated through the
unbalance force. Subsequently, the displacements
(  +  ) and the damage variable are updated.
Finally, the unbalanced force is updated and the
convergence is verified (external force minus internal

;
3. Solve the system of Equation (30);
4. Check convergence through the unbalanced force (external forces minus 
internal forces);
5. If there is no convergence, the stiffness of the structure must be updated 
and then the increment of the nodal displacements 

  =  , (30)

where  is the global stiffness matrix of the structure, a function of both the geometry of the
beam and the mechanical properties of the materials, and is given by the assembly of elements, as
shown in Equation (31);  is the global vector of loads, containing the equivalent nodal loads
acting on the structure; and  is the vector of nodal displacements, obtained by solving the
system of Equations (30).

 = 1
  , (31)

where NE is the number of finite elements defined in the beam discretization; and  is the
stiffness matrix of the beam element, which is given by
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During the process of applying loads on the structural element, the matrix  can be
different even for elements of the same length  because the cracking process of the concrete or
the yielding of the reinforcement causes the damage variable to assume different values along the
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental application of external loads was
performed to obtain an initial (predicted) solution, followed by an iterative Newton–Raphson
using force or displacement control process. Table 1 summarizes the flowchart of the program.

Table 1. Iterative process of obtaining a solution

Pre-cracking phase (D = 0) Post-cracking phase (D > 0)

1. Calculation of the stiffness matrix;

2. The load is updated from the load increment  ;

3. Solve the system of Equation (30);

4. Return to step 1;

1. Calculation of the stiffness matrix in relation to the
last equilibrium configuration using displacements,
strains, stresses, and the updated damage variable;

2. Update load from load increment  F ;

3. Solve the system of Equation (30);

4. Check convergence through the unbalanced force
(external forces minus internal forces);

5. If there is no convergence, the stiffness of the
structure must be updated and then the increment of the
nodal displacements  must be calculated through the
unbalance force. Subsequently, the displacements
(  +  ) and the damage variable are updated.
Finally, the unbalanced force is updated and the
convergence is verified (external force minus internal

must be calculated 
through the unbalance force. Subsequently, the displacements (

  =  , (30)

where  is the global stiffness matrix of the structure, a function of both the geometry of the
beam and the mechanical properties of the materials, and is given by the assembly of elements, as
shown in Equation (31);  is the global vector of loads, containing the equivalent nodal loads
acting on the structure; and  is the vector of nodal displacements, obtained by solving the
system of Equations (30).

 = 1
  , (31)

where NE is the number of finite elements defined in the beam discretization; and  is the
stiffness matrix of the beam element, which is given by
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. (32)

During the process of applying loads on the structural element, the matrix  can be
different even for elements of the same length  because the cracking process of the concrete or
the yielding of the reinforcement causes the damage variable to assume different values along the
length or height of the beam.

2.4.2 Nonlinear Analysis

To reach the final equilibrium solution, incremental application of external loads was
performed to obtain an initial (predicted) solution, followed by an iterative Newton–Raphson
using force or displacement control process. Table 1 summarizes the flowchart of the program.

Table 1. Iterative process of obtaining a solution

Pre-cracking phase (D = 0) Post-cracking phase (D > 0)

1. Calculation of the stiffness matrix;

2. The load is updated from the load increment  ;

3. Solve the system of Equation (30);

4. Return to step 1;

1. Calculation of the stiffness matrix in relation to the
last equilibrium configuration using displacements,
strains, stresses, and the updated damage variable;

2. Update load from load increment  F ;

3. Solve the system of Equation (30);

4. Check convergence through the unbalanced force
(external forces minus internal forces);

5. If there is no convergence, the stiffness of the
structure must be updated and then the increment of the
nodal displacements  must be calculated through the
unbalance force. Subsequently, the displacements
(  +  ) and the damage variable are updated.
Finally, the unbalanced force is updated and the
convergence is verified (external force minus internal

) and 
the damage variable are updated. Finally, the unbalanced force is updated and 
the convergence is verified (external force minus internal force). Repeat this 
process until the solution converges to that charge level.
6. After convergence, go back to step 1.
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3. Results and Discussion

For the three types of beams, Figures 3~5 show the 
force–displacement curves obtained experimentally by 
Álvares [15] and the respective numerical results obtained 
from the proposed model. The experimentally acquired 
force–displacement curves exhibited the typical behavior 
of reinforced concrete beams subjected to bending failure, 
along with the identification of three stages (Figure 3). In 
Stage I, the concrete was undamaged, and the stiffness of 
the EII beams was because of the combined action of con-
crete and steel. The cracking of concrete indicates the end 
of this stage. The cracking load is defined by the tensile 
strength of the concrete.

In stage II, the curve initially exhibits nonlinear be-
havior that is characterized by the appearance of multiple 
cracks on the lower face of the beam. Gradually, stress 
is transferred to the steel bars, which provide the tensile 
strength of the beam. As the load increases, a second lin-
ear section is formed whose slope represents the stiffness 
EIII of the cracked beam and is defined primarily by the 
reinforcement rate. However, the cracked concrete can 
contribute to the stiffness in a phenomenon called the ten-
sion-stiffening effect [18]. 

Stage III begins with a further reduction in the stiffness 
and a trend to stabilize the force until the beam fails. The 
reinforcement rate of the beam affects the force and dis-
placements that define the beginning and end of stage III, 
which can lead to three types of failure associated with 
deformations in steel and concrete at the instant of beam 
collapse. 

For stages I and II, a good approximation between the 
experimental load–displacement curves and the curves 
obtained using the proposed model, wherein the damage 
model is associated with the classical theory of laminates, 
can be confirmed by comparing the numerical results with 

the experimental results. However, the experimental curve 
presents an ultimate displacement during the beam test 
that is smaller than that predicted by the numerical result. 
This is because the load control used in the experiment 
halts the test when the maximum load is reached. 

In the numerical model, taking the limits of deforma-
tion presented in Figure 6 as a reference, the beam failure 
was established by monitoring the strains in the most com-
pressed concrete layer and in the most stressed steel layer. 
The ultimate limit states of a reinforced concrete beam 
can be established when the strain in the concrete reaches 
a value = 0.35% because of compression failure, and/
or by tensile failure when the strain in the steel reaches a 
value = 1.00% caused by crushing the compressed sec-
tion. Balanced beams fail because of crushing of the com-
pressed region; however, the strain in the steel is equal to 
or less than the yield strain . When the beam cross-sec-
tion and reinforcement ratio are optimally designed, fail-
ure occurs simultaneously in the top compressed layer and 
the most tensioned reinforcement section.

The proposed numerical model allows for the moni-
toring of the strains of the materials of the beam and the 
identification of the failure mechanism, as shown in Figure 
7. In the over-reinforced beam, failure occurs by crushing 
the compressed region. This beam has the highest failure 
load, of the order of 73 kN, but a lower total displacement 
than the other beams analyzed. For the under-reinforced 
beam, the maximum load obtained was 81% lower than 
the load observed for the over-reinforced beam, and the 
deformation was 1.2 times greater. The optimized beam 
presents a load 46% less than the load observed for the 
over-reinforced beam, but with a deformation 1.3 times 
greater. In addition, this beam presents the best use of ma-
terials, which contributes to the reduction of energy con-
sumption and non-renewable materials, thereby increasing 
the sustainability of the structures.

Figure 2. Experimental setup [15]: a) four-point bending test; b) under-reinforced beam; c) optimized beam; d) over-rein-
forced beam.
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Figure 3. Flexural behavior of under-reinforced beam

Figure 4. Flexural behavior of optimized beam

Figure 5. Flexural behavior of over-reinforced beam

The results obtained by the numerical model indicated 
a variation in the stress–strain behavior of each beam, 
as shown in Figure 8. For under-reinforced beams, the 

compressive stresses did not reach the peak stress but the 
stress–strain behavior was observed in the nonlinear re-
gime at failure, thus indicating the appearance of damage 
to the stiffness of the concrete. As the strains in the rein-
forcement reached their maximum value, the neutral axis 
approached the upper surface of the beam section. For the 
other beams, the concrete had reached its ultimate strain, 
and the beam’s neutral axis was close to the centroid of 
the cross-section.

Figure 6. Strain limits for steel and concrete in the beam 
cross section

Figure 7. Theoretical identification of limiting strains of 
steel and concrete

Evidently, the proposed model for the behavior of ten-
sioned concrete considers the contribution of cracking 
concrete (below the neutral axis), in contrast to design 
codes for reinforced concrete structures, even though the 
tensile stress value is low when comparing the stresses in 
the reinforcement and even in the compressed concrete. 
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The variation in the stress–strain behavior is a function 
of the evolution of the damage parameter. As established 
by Equation (3), when the deformations exceed the limit 
value, , there is a gradual reduction in the stiffness 
of the beam owing to cracking of the concrete. Figure 9 
shows the variation in the damage parameter (1-Dc) for 
the three types of beams investigated, with the increase in 
the vertical displacement of the beam. Initially, the value 
of (1-Dc) was equal to unity because there was no damage 
to the compressed concrete. With increasing displacement, 
a reduction in this parameter was verified; however, it was 
affected by the reinforcement ratio of the beam. At failure, 
compression damage of approximately 60% was observed 
for under-reinforced beams, and the damage was approxi-
mately 80% for the optimized and over-reinforced beams. 

Figure 9. Variation in the damage parameter with increase 
in the vertical displacement of the beams.

4. Limitations of the Study

The model used in this study, within the scope of static 
loading, ignores shear and geometric nonlinearity effects. 
Furthermore, the Mazars damage model is elastic and is 
not appropriate for situations of cyclic loadings, which is 
not the case in the present study. However, the order of 

magnitude of the maximum transverse displacement of 
the beam with respect to the height is small, thus justify-
ing the geometric linear analysis. The failure modes of the 
beams did not include shear failures.

5. Conclusions

The proposed model combines the classic theory of 
laminates and the Mazars damage model. By using FEM, 
it was able to evaluate the flexural behavior of reinforced 
concrete beams up to the failure of these elements for 
different rates of flexural using numerical simulation of 
the reinforced concrete beams under four-point bend tests. 
This was possible because the strategy of incorporating in 
the finite elements, the lamination of the transverse sec-
tion, and the physical nonlinearity of the materials by con-
tinuous damage mechanics allowed the following of the 
stress and strain state of each layer of material, whether 
concrete (with its progressive cracking) or the reinforce-
ment (even in the yielding). 

Therefore, despite the relative simplicity of the pro-
posed model, its potential to predict the behavior of rein-
forced concrete beams under bending was demonstrated, 
thereby allowing a precise identification of deformations 
and rupture criteria. The numerical model allowed the 
identification of the failure form of each type of rein-
forced concrete beam analyzed, through the prediction 
of the neutral line variation and the determination of the 
stress-strain behavior. In this way, the model can be used 
to predict the behavior of structural elements subjected to 
bending and lead to optimized designs, with greater safety 
and lower cost.
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Overloads of vehicle may cause damage to bridge structures, and how to 
assess the safety influence of heavy vehicles crossing the prototype bridge 
is one of the challenges. In this report, using a large amount of monitored 
data collected from the structural health monitoring system (SHMS) in 
service of the prototype bridge, of which the bridge type is large-span 
continuous rigid frame bridge, and adopting FEM simulation technique, 
we suggested a dynamic reliability assessment method in the report to 
assess the safety impact of heavy vehicles on the prototype bridge during 
operation. In the first place, by using the health monitored strain data, of 
which the selected monitored data time range is before the opening of 
traffic, the quasi dynamic reliability around the embedded sensor with 
no traffic load effects is obtained; then, with FEM technology, the FEM 
simulation model of one main span of the prototype bridge is built by using 
ANSYS software and then the dynamic reliability when the heavy vehicles 
crossing the prototype bridge corresponding to the middle-span web plate 
is comprehensively analyzed and discussed. At last, assuming that the main 
beam stress state change is in the stage of approximately linear elasticity 
under heavy vehicle loads impact, the authors got the impact level of heavy 
vehicles effects on the dynamic reliability of the prototype bridge. Based 
on a large number of field measured data, the dynamic reliability value 
calculated by our proposed methodology is more accurate. The method 
suggested in the paper can do good for not only the traffic management but 
also the damage analysis of bridges. 
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Dynamic reliability evaluation
SHM
Finite element simulation technology
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1. Introduction 

Heavy vehicle in many countries, especially in devel-
oping countries, is a widespread problem resulting in early 
damage of the bridge and brings in huge economic losses. 
Here, we take China as an example. By 2020, China’s 
total expressway mileage is up to 161,000 km. Due to the 
reforms and opening up as well as the deepening of Chi-
na’s market economy, the states have heavily increased 
investment in infrastructure, bringing the transportation 
sector to a new stage. However, a variety of problems, 
such as increase in traffic, loads due to heavy-duty vehi-
cles, increasing speed of the vehicles as well as increased 
carrying capacity, presents the transport sector with 
“high-volume, heavy and channel traffic” challenges. The 
increasing heavy trucks cause a cumulative growth in 
the standard axle load and lead to serious damage of the 
roads and bridges. Urban roads and bridges carrying these 
heavy transport regularly induce the bridge structures 
and its components to withstand large dynamic load and 
frequent load times. Although the stress level is far below 
the ultimate strength or yield limit of materials used in the 
bridges such as steel, concrete etc., it often causes sudden 
and unexpected destruction.

As for the impact of overweight vehicles on bridge 
safety, many scholars around the world have conducted 
extensive research. Kirkegaard P H et al. [1] considered 
the vehicle load dynamic amplification on minor highway 
bridges for evaluating the safety of the bridge structure 
load carrying capacity. Zhao Yu et al. [2] elaborate the 
evaluation steps, checking principles, checking methods 
and traffic management measures of the overweight ve-
hicles passing through the bridge deck, which provides 
the way for evaluating the overweight vehicles passing 
through the bridge. Chang Hao et al. [3] take reinforcement 
measures seriously, of which the aim is to cooperate with 
overweight vehicles crossing the bridge, and resolutely 
put an end to all kinds of major accidents to ensure the 
smooth flow of the road. Jiang H et al. [4] established a 
bridge model with finite element software and the process 
that heavy vehicle pass through the bridge was simulated, 
and finally the safety margin of the bridge was evaluated 
on the basis of bearing capacity analysis. Na H S et al. [5] 
identified the dynamic characteristics with vehicle-impact 
loading and analyzed the behaviors of U-channel segmen-
tal concrete bridge (UCB) system. Yu Xiaofei [6] presents 
the harm of heavy vehicles to bridges, and puts forward 
relevant requirements for the problems needing attention 

in the management of heavy vehicles crossing bridges. 
Hu B X et al. [7] built a model of the random dense vehi-
cle load of bridge structures and obtained three different 
degree dense vehicle loads by using the simulated mod-
el. Li Y H et al. [8] suggested a method for analyzing the 
probability of heavy vehicles with adopting the monitored 
strain data from a structural health monitoring system of 
a bridge. Tao Fuxian and Du shanpeng [9] introduce the 
evaluation method and checking calculation points of the 
bearing capacity of the bridge structure, and give the ba-
sis for the carrying capacity of the bridge structure under 
the overweight load, and introduce several engineering 
technology and management measures when the over-
weight vehicles cross the bridge. Wang K and Liu J [10] put 
forward the safety evaluation conclusion on the basis of 
bridge status and finite element calculation which ensured 
the overweight vehicle to cross hollow plate girder bridge 
safety. Liu Jing and Cao Xintao [11] check the bearing ca-
pacity of the bridge, and put forward the corresponding 
bridge management measures, so as to reduce the harm 
of overweight vehicles to the highway bridge and im-
prove the bearing capacity of the bridge. W. Han et al. [12]  
presented a methodology for assessing the safety of pre-
stressed concrete box-beam bridges with considering 
customized transport vehicle load effects. As for large 
number of bridge collapse accidents due to heavy truck. 
Zhu Songye et al. [13] suggested a vehicle-bridge coupled 
vibration model of a rigid-frame bridge for evaluating 
bridge structure safety under practical traffic loads effects. 
Evgeny A. Lugovtsev [14] implemented programs with an 
experimental and analytical method for assessing the tech-
nical condition of road bridges for reliability, and revealed 
the features, conditions of application, positive and nega-
tive aspects of each version of the program. 

In short, researchers in the word wide still lack data to 
assist doing safety impact assessment of heavy vehicle 
load effects for bridge structures. The present study lacks 
effective support from field measured data. Consequently, 
by using large amount of strain monitoring data and AN-
SYS software, a method is suggested to assess the safety 
impact of heavy vehicle on the prototype bridge in this 
paper. Based on large amount of in-situ measured data, the 
calculated value got by our suggested method is closer to 
the bridge structure actual situation. We firstly suggested a 
calculation method for the dynamic reliability calculation 
of the abnormal load of a type overweight vehicle, and the 
method can also be extended to do security evaluation for 

https://www.researchgate.net/scientific-contributions/Evgeny-A-Lugovtsev-2205126375
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other abnormal loads. The method is very useful for of the 
bridge traffic management, and hence can effectively re-
duce the damage of bridge structures under heavy vehicle 
load effects. 

2. Brief Introduction of the Prototype Bridge 

2.1 Structural Health Monitoring System of the 
Prototype Bridge

The superstructure of the prototype bridge main beam 
is a continuous box-beam system with a total of eight 
main piers and 7 main spans. The first span is 145.4 m 
long and the sixth span is 87 m long, and the 4 center 
spans are all 144 m long. The cross section of box gird-
er is a single-box and single-chamber. The width of box 
girder top plate is 12.5 and the base plate width of is 6.8 m. 
The bridge deck transverse slope is 2.0% and the bridge 
deck longitudinal slope is 0.15%. The heights of the main 
beam cross sections change from 8 m to 2.8 m according 
to 1.6 order power parabola from the supporting base to 
the mid-span. The thickness of the main beam base plate 
varies from 1 m to 0.32 m and thickness of the main beam 
web plate varies 0.9 m to 0.45 m. The main beam is fully 
prestressed concrete structure with vertical, horizontal and 
longitudinal prestressed arrangement, and the prestressed 
tendons are 15 15.24mmΦ j  steel strand with the strength: 

1860MPa=b
yR , 2 12.7 mmΦ j  steel strand with the strength: 

1395MPa=b
yR  and high strength rebar respectively. 
The monitoring points of the SHM in each cross sec-

tion of the main beam locate near piers, in mid-span and 
in 1/4 span, with total 20 sections. Among them, there are 
8 cantilever end sections, 8 L/4 span sections, and 4 L/2 
span sections. The strain variety sensor material object 
(JMZX-215 type) is shown in Figure 1, which is string 
type strain gauge. The section locations can be seen in 
Figure 2. The sensor embedded locations in each section 
can be seen in Figure 3 with unique given numbers. With 
the given name of cross section and number, a sensor in 
the SHMS can be located in the girder uniquely, such as a 
sensor is named 3-4MID-1, which means that it locates in 
the top plate center of the mid-span cross-section between 
pier 3# and pier 4#. The sensors manufacturer is CHANG-
SHA KINGMACH HIGHTECHNICS CO., LTD [15]. With 
the given name of cross section and number, a sensor in 
the SHMS can be located in the girder uniquely. The sen-

sor measuring time interval is 1 hour. The strain gauge 
parameters are shown in Table 1. The health monitoring 
system is still operating normally at present, and a large 
amount of strain monitored data have been obtained.

Table 1. Parameters of the strain gauge

Name Range Sensitivity Gauge length Remarks

Intelligent 
digital
vibrating strain 
gauge

±1500 µε 1 µε 157 mm
Strain gauge 
embedded in 
concrete

Figure 1. Picture of the JMZX-215 strain gauge 

Figure 2. Cross section locations of the embedded sensors 
of SHMS

Figure 3. Position of the embedded sensors in half-span 
of the prototype bridge

2.2 The Acquired Strain Data of the Bridge 
SHMS

In this article, the data acquired from the sensors 
3G1H-1, 3-4MID-1, 4Z9H-1 and 3-4MID-2 are used by 
us as examples to display the outline of the monitoring 
data, and the chosen time range is from March 2006 to 
April 2010. The pre-processed method that how to trans-
form the initial data into strain data can be seen in the 
papers [16,17]. Figure 4 shows the profile of the original data 
after several pre-processed steps. 
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Figure 4. The graph of the monitored data after pre-pro-
cessed steps

3. Main Idea of Calculation of Initial Quasi 
Dynamic Reliability 

3.1 The Fundamental Theory of First Order Sec-
ond Moment Method 

In this article, the first order second moment method is 
adopted to calculate structural members’ safety index β ,  
and its reliability index β  calculation expression can be 
written as follows:

1 2 2 1/2( ) ( ) / ( )β µ µ σ σ−= −Φ = − +f R S R SP   (1)

where  is the inverse function of the standard normal 
distribution; µR  and µS  are the mean of the resistance 
and load effects respectively; σ R  and σ S  are the standard 
deviation of the resistance and load effects respectively. 
The concrete strength probability distribution function ba-
sically obey Gaussian distribution and can be taken as the 
probability density function of the resistance . 

3.2 The Definition of Quasi Dynamic Reliability

As the concrete compressive and tensile strength pa-
rameters are measured by testing machine at a certain 
strain rate, then, the concrete compressive and tensile 
strength are called by the name of quasi dynamic com-
pressive strength and quasi dynamic tensile strength. The 
mean and standard deviation values of the concrete quasi 
dynamic compressive and tensile strength respectively 
with 28 days curing are shown in Table 2. 

Table 2. The quasi dynamic parameters of concrete com-
pressive and tensile strength used in the prototype bridge

Strength
Mean (units: 
MPa)

Standard deviation (units: 
MPa)

compressive 55.12 6.063

tensile 3.2783 0.361

In the meanwhile, as the load effects σ S  (acquired by 

SHM) includes the quasi dynamic load effects, such as 
temperature load effect, vehicle load effects etc., so, we 
name the safety index the initial quasi dynamic reliability 

qβ . 

3.3 The Calculation of the Initial Quasi Dynamic 
Reliability qβ

As for the prestress loss and concrete shrinkage and 
creep etc., the load effects σ S  distribution gradually close 
to concrete tensile strength distribution with time, there-
fore, we calculate the initial quasi dynamic reliability qβ  
by using the quasi dynamic tensile strength distribution as 
the the resistance σ R . The method of quasi dynamic load 
effects σ S  transferred from the monitored data and initial 
quasi dynamic reliability qβ  calculation step both can be 
seen in the papers [18,19]. Figure 5 illustrates the quasi dy-
namic load effects σ S  distribution. In the report, the data 
collected from the sensor 2-3MID-2, which is embedded 
in the mid-span web plate between the main pier 2# and 
main pier 3#, are taken as examples, and the selected time 
range is from March 2006 to October 2006. During March 
2006 to October 2006, the bridge has just begun to enter 
into service, which reflects the quasi dynamic reliability 
state of the bridge at the beginning of operation. Based on 
Equation (1), the initial quasi dynamic reliability qβ  value 
is got, seen in Table 3. Since the selected monitored data 
time range is before the opening of traffic, and so the traf-
fic load effect is not included in the monitored data. 
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Figure 5. The graph of quasi dynamic load effects σ S  
distribution and Gaussian distribution fitting

Table 3. The initial quasi dynamic reliability qβ  value in 
mid-span web plate between main pier#2 and main pier#3

Sensor number 2-3MID-2

The initial quasi dynamic reliability qβ  value 10.7903
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4. The Building of Simulation Model for 
Heavy Vehicle Passing through the Bridge 

4.1 Building of the FEM Model

In order to obtain the dynamic load effects induced by 
heavy vehicles, FEM technology is used to simulate heavy 
vehicles passing through the bridge. Here, the sub-model 
technology will be used to learn the local responses in the 
bridge [20,21], which helps to simplify the analysis model 
and get enough analysis accuracy. A FEM sub-model of 
the prototype bridge is set up including the girder between 
the main pier 2# and the main pier 3# (shown in Figure 6). 
In this model, a 3D element (solid 45 element) with the 
shortest length 0.25 m is used to simulate concrete, and 
there are 37,388 elements and 57600 nodes in the sub-
mode. The boundary condition of the FEM model is set as 
consolidation. 

Figure 6. Schematic and mesh mode of FEM sub-model

4.2 Calibration of the Reliability of the Simula-
tion Model

For the sake of checking the reliability of the FEM 
model, we have done a calibration work on a loading 
capacity test of the bridge before the bridge came into 
service. On the test, utmost ten QC-20 main vehicles (a 
truck loading model with the weight 300 kN defined in 
a Chinese Specification JTG D60-04 [22]) were used, and 
they were divided into four loading levels: 900 kN, 1500 
kN, 2400 kN, 3000 kN. At present, we have only the static 
loading test data for the calibration of the FEM model. 
Figure 7 shows the loading distribution of each loading 
level, where first loading level included trucks with “①” 
and second loading level included trucks with “①” and  
“②”, and so on. Figure 8 illustrates the comparison be-
tween the measured results and FEM results at the posi-
tion sensor 2-3MID-2 located, and the two results have 
a good agreement, and the errors between numerical and 
tested strains of the four data points shown in Figure 8 are 
18.4%, 4.92%, 14.6%, 7.9%, which means that the built 
FEM model is reliable. 

4.3 The Simulation Process

In this paper, the key is to design a reasonable load 
in FEM model to represent the heavy vehicle. Here we 
introduce one kind of vehicle loads with four kinds of 
speeds: A QC-20 heavy truck with about double standard 
load. The alxe load distribution is shown in Figure 9, and 
such load will “move” along the span with speed 10 m/s,  
20 m/s to learn the response strength around the sensor 
2-3MID-2 at the mid-span.

Figure 7. Loading Scheme of the loading capacity test

Figure 8. Comparison between the simulated data and the 
monitored data (Corresponding to the sensor 2-3MID-2)

  

Figure 9. Load’s distribution of QC-20 heavy vehicle and 
moving diagram
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Vehicle loads also have impact effect on bridges. 
Hwang and Nowak [22] developed models for trucks, road 
surface (roughness) and the bridge, which dealt with the 
analysis of dynamic loads in bridges, and found that the 
simulated deflections indicate that the dynamic compo-
nent is not correlated with the static component, and also 
found that the dynamic loads are lower for heavier truck 
and the dynamic loads for two trucks are lower than for 
single trucks. According to a Chinese Specification JTG  
D60-04 [23], the impact coefficient of vehicle load takes 
the value 0.081. By considering the four vehicle loading 
effects and the dynamic properties, Stress values generat-
ed under vehicles passing through the girder in the above 
case, at the sensor 2-3MID-2 position, can be seen in 
Figure 10. After we got the stress data, we then do normal 
distribution statistical analysis, which can be seen from 
Figure 10, and we can find that the stress data are basical-
ly normally distributed. Therefore, we deal with the stress 
statistical data with Gaussian distribution fitting, seen in 
Figure 10. 
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Figure 10. Gaussian distribution fitting of the stress distri-
bution statistics

5. Results and Discussion

5.1 Some Properties of Normal Distribution

The normal distribution has some very important char-
acteristics, such as: if 2~ ( , )X XX N µ σ  and 2~ ( , )Y YY N µ σ  
are statistically independent normal random variables, and 
also the sum of them satisfies the normal distribution, and 
can be written as the following formula:

2 2~ ( , )X Y X YX Y N µ µ σ σ+ + +  (2)

5.2 Formula Derivation of Heavy Vehicle Load 
Effects Impact on Bridge Structure Reliability

According to the stress-strain characteristics of high-
strength concrete specified in the standard “code for de-

sign of concrete structures” [24], we assume that the main 
beam stress state change is in the stage of approximately 
linear elasticity under heavy vehicle loads impact in this 
article. Hence, the heavy vehicle load effects and the quasi 
load effects transformed from the monitored data are sta-
tistically independent random variables, through formulas 
(1) and (2), and the initial quasi dynamic reliability cal-
culation formula with considering the influence of heavy 
vehicle loads can be derived as follows:

2 2 2

( )R M qc
qc

R M qc

µ µ µ
β

σ σ σ

− +
=

+ +
  (3)

where, qcβ  is the initial quasi dynamic dynamic reliability 
index considering heavy vehicle effects; µR  is the mean 
of the resistance, and Mµ  is the mean of quasi load effects 
transformed from the SHM; σ R  is the standard deviation 
of the resistance, and Mσ  is the standard deviation of the 
quasi load effects transformed from the SHM; qcµ  is the 
mean of heavy vehicle effects, and qcσ  is the standard de-
viation of the heavy vehicle effects. 

By Gaussian distribution fitting of the stress distribu-
tion statistics, seen in Figure 10, the values of qcµ  and qcσ  
were obtained, and can been seen in Table 4. 

Table 4. The values of qcµ  and qcσ  corresponding to the 
sensor 2-3MID-2 embedded in mid-span web plate

Speed 10m/s 20m/s

qcµ  (MPa) 0.238 0.238

2
qc

σ  (MPa) 0.0797 0.0801

With the data in Table 1 and Table 3, we calculated the 
dynamic reliability index values qcβ  with the Equation (3), 
and then we got the values which are shown in Table 5. 

Table 5. The values qcβ  corresponding to the sensor 
2-3MID-2 position embedded in mid-span web plate 

Speed 10m/s 20m/s

qcβ 10.354 10.640

By comprehensive analysis of the data shown in Table 
2 and Table 4, the impact level of heavy vehicle loads on 
dynamic reliability of the prototype bridge is obtained, 
and in the paper we name it qcβ∆ , of which the values can 
be seen in Table 6.

Table 6. The values qcβ∆  caused by heavy vehicle loads

Speed 10m/s 20m/s

qcβ∆ 0.437 0.151

It can be seen from Figure 9 that the variation range of 
the stress induced by heavy vehicle is about 1 MPa in the 
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mid-span web plate of the prototype bridge, and it is in a 
safe state, because the change range is in the bearing ca-
pacity limit and the pressure safety reserve of the concrete 
materials during the bridge in the early stage of service. 
According to the above results, under a heavy vehicle in-
tensity influence，the range of variation of the quasi dy-
namic reliability qcβ∆  is about 0.15-0.44 in the mid-span 
web plate corresponding to the sensor 2-3MID-2 position, 
of which the meaning is that heavy vehicle load effects 
have limited impact on bridge safety. 

6. Conclusions

As for the difficulties of safety evaluation of load ef-
fects of the heavy vehicle for bridges, combine with the 
large amount of monitored strain data acquired from the 
SHMS of the prototype bridge and simulation technology, 
a evaluation method is put forward for assessing the dy-
namic reliability of this type bridge under heavy vehicle 
load effects influence in this paper, and the main conclu-
sions are:

1) Assuming that the main beam stress state change is 
in the stage of approximately linear elasticity under heavy 
vehicle loads impact, a methodology is presented for the 
calculation of dynamic reliability of the prototype bridge 
with considering heavy vehicle load effects, and we found 
that the heavy vehicle load effects have limited impact 
on bridge safety. Also, we found that the range of stress 
change induced by heavy vehicle is small. 

2) The statistical analysis of the simulated a type heavy 
vehicle load effects indicates that they basically obey 
Gaussian distribution, and hence we can use the first order 
second moment method to assess the heavy vehicle load 
effects safety influence on bridge structures.

3) The next research project should pay key attention to 
the bridge aging, the bridge material strength degradation, 
shrinkage and creep of concrete etc., and then study the 
reliability of bridge structures taking into account heavy 
vehicle load effects. When the prototype bridge served for 
a long time, conducting the analysis whether the safety 
reserve of the bridge meets the heavy vehicle load effects 
safety requirements or not is quite necessary. In the mean-
while, the next step research plan should also focus on 
finding out the difference between this study’s quasi-result 
and the actual result. 

The means suggested in the paper can provide basis 
and direction for the safety evaluating of bridge structures 
encountering other abnormal events. 
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The approach that contributes to the development of eco-materials in 
construction is the use of mineral powders, which can improve mechani-
cal properties and reduce cement consumption. This article aims to study 
the effect of substitution by mass of cement with mineral powders on the 
physicomechanical properties and microstructure of sand concretes. The 
used mineral powders are A: the limestone, B: the natural pozzolan, C: the 
hydraulic lime, D: (1/3 limestone + 1/3 natural pozzolan + 1/3 hydraulic 
lime), and E: (1/2 natural pozzolan + 1/2 hydraulic lime). The studied 
percentages are 5%, 10% and 15%, in both separated and combined states. 
The studied properties are workability, compressive strength, the elastic-
ity modulus in compression, shrinkage and microstructure analysis. The 
objective is to target the optimal percentage of the substitution of cement 
with mineral powders, which ensures the best compromise between the 
main properties of the studied sand concretes. The obtained results show 
that the optimal percentage is in favor of the substitution of cement by 10% 
D (1/3 limestone, 1/3 natural pozzolan and 1/3 hydraulic lime). Even the 
15% of mineral powder D, presented similar performances compared to 
the sand concrete (without mineral powders). Finally, in the context of the 
development of eco-materials, it should be noted that the 10% D and 15% 
D (1/3 limestone, 1/3 natural pozzolan and 1/3 hydraulic lime) contribute to 
decrease the use of cement and consequently to reduce of CO2 emissions.

Keywords:
Eco-materials
Sand concretes
Cements
Mineral powders
Physico-mechanical properties
Microstructure

1. Introduction
Cement manufacturing is an energy-intensive process, 

about 12%-15% of the total energy consumption of a 
country [1]. The cement industry has always been among 
the largest sources of CO2 emissions [2]. It represents 
about 7% of total CO2 emissions worldwide [3]. The CO2 

emission released into the atmosphere is about 900 kg for 
every ton of cement produced [2], which has a negative 
effect on the environment. That is why the main require-
ments of sustainable development in construction are re-
ducing energy consumption, gas emissions, and even the 
use of water. 

https://ojs.bilpublishing.com/index.php/jaeser
mailto:b.belhadj@lagh-univ.dz
https://doi.org/10.30564/jaeser.v5i4.5248
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Moreover, the use of eco-materials development in 
construction is an environmentally and sustainable ap-
proach that can contribute to lessening the impact of en-
vironmental degradation (limiting the greenhouse effect, 
saving natural resources, health and comfort) [4]. Indeed, 
it is virtually impossible to imagine a world without con-
crete. However, we have to improve its environmental 
impact through the sustainable use of local resources [5].

In this context, the partial substitution of cement for 
mineral powders can improve the mechanical properties 
and durability of concretes, while reducing cement con-
sumption, which helps to simply and economically solve 
some environmental problems [6]. Practically, the use of 
mineral powders in cementitious composites may present 
three fields of interest.

The first one is the search for new types of cement [7,8]. 
Actually, new types of cement, whose mechanical proper-
ties meet the needs of cement masonry and architectural 
engineering, were prepared from ground limestone pow-
der, blast furnace slag, steel slag and gypsum [9]. The sec-
ond one is the partial substitution of some components of 
the clinker with other components having hydraulic and/
or pozzolanic properties such as, limestone, blast furnace 
slag and pozzolan for mortar limestone [10,11]. The third one 
is the partial substitution of artificial Portland cement or 
Portland cement compound by other mineral powders. In 
this context, Itim et al. used limestone, pozzolan separated 
with different percentages [12]; Burgos-Montes et al. sub-
stituted a part of cement by limestone, fly ash and silica 
fume [13]; Dif et al. used combined natural volcanic pow-
ders: pozzolan and perlite [14]; Zaitri et al. used dune sand 
powder and limestone [15,16]; Deepankar used silica fume, 
and metakaolin [17]. 

Sand concrete is back in force, due to its specific prop-
erties that brought some technical solutions to problems, 
sometimes, poorly resolved by traditional concrete [18]. 
Sand concrete is a material intended for the building’s 
structure and architectural elements. It should also be 
noted that one of the preferred applications of sand con-
cretes in the construction field is the prefabrication of ar-
chitectural elements, intended to remain apparent, i.e., the 
various architectural effects, such as shape, finish, color, 
texture and excellent quality make an essential contribu-
tion to the design of façades.

This article aims to study the effect of substitution (by 
mass) of cement by mineral powders on the physicomechan-
ical properties and microstructure of sand concretes. The 
used mineral powders are, A: the limestone, B: the natural 
pozzolan, C: the hydraulic lime, D: (1/3 limestone + 1/3 
natural pozzolan + 1/3 hydraulic lime) and E: (1/2 natural 
pozzolan + 1/2 hydraulic lime). The studied properties are 

workability, compressive strength, the elasticity modulus 
in compression, shrinkage and microstructure analysis. 
The objective is to target the optimal percentage of the 
proposed substitution of cement by mineral powders, 
which ensures the best compromise between the main 
properties of the studied sand concretes. Furthermore, it 
reduces the use of cement and thus contributes to the re-
duction of CO2 emissions.

2. Materials and Methods

2.1 Materials Used

Both types of sand were used: a local dune sand (DS: 
0/63 mm) that covers a very large part of southern Algeria 
and an alluvial sand (AS: 0/5 mm) that was extracted from 
the M’zi river crossing the Laghouat region. The sands 
were used in admixture under a weight ratio determined by 
correcting the granulometric curve of alluvial sand, in its 
fine part, by adding dune sand. Bederina et al. studied the 
mixture of the same sands (alluvial sand and dune sand) 
and found that the optimum compacity can be obtained 
with the report AS/DS = 1.7 [19]. Even, Nécira et al. also 
studied the optimization of a mixture of sands and found 
that, in the case of alluvial and dune sands, the proportions: 
(60% of alluvial sand + 40% of dune sand) which are very 
close to the previous report, seems to be the best combina-
tion [20,21]. These types of sand are essentially siliceous [22]. 
Table 1 includes all their physical properties. 

Table 1. Physical characteristics of the used sands.

Characteristics
Dune 
sand

Alluvial 
sand

Sand 
mixture

Apparent density (kg/m3) 1501 1662 1622

Specific density (kg/m3) 2587 2425 2485

Fineness modulus 1.98 2.89 2.81

Compactness (%) 0.5754 0.6677 0.6715

Visual Sand Equivalent (%) 90.7 93.5 93.2

Sand Equivalent with piston (%) 81.4 82.2 80.3

For sustainable building solutions, Portland limestone 
cement type is usually used (of type CPJ-CEM II/A-L 
42.5 R). This cement provides similar performances to 
those obtained with conventional Portland cement. The 
results of both chemical and physical analyses of the used 
cement are shown in Tables 2 and 3. 

The choice of mineral powders used in this study was 
inspired from the literature and is essentially based on 
economic and environmental considerations. These min-
eral powders are a limestone, which is generally consid-
ered as inert filler, a natural pozzolan (active filler) and a 
hydraulic lime (active filler). The physical properties are 
mentioned in Table 4. 
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The limestone fillers are obtained by wet sieving meth-
od (through a sieve of 80 µm) of crushing waste available 
in a local quarry located on the northern edge of Laghouat 
city (Algeria). These fillers are intended to supplement 
the grading curve of the sand in its fine part, which is 
highly recommended, as fillers, for sand concrete. These 
fillers contain the following elements: Calcium Carbonate 
(CaCO3), Silica (SiO2) and Calcium Oxide (CaO) [23].

The natural pozzolan is of volcanic origin. It was ex-
tracted from Bouhamidi deposit located south of the city 
of Beni Saf in Algeria. This is an effusive volcanic rock 
composition, especially, siliceous Feldspar. This pozzolan 
is provided as a crushed rock pumice slag type with a 
grain diameter ranging from 5 mm to10 mm. We first con-
ducted its drying at 105 °C to remove any possible mois-
ture and facilitate its grinding in a Los Angeles-type mill 
and then sieved it through a sieve of 80 µm. The conser-
vation takes place in a sealed container. The natural poz-
zolan contains the following elements: aluminum oxide 
(Al2O3), calcium oxide (CaO), magnesium oxide (MgO) 
and dioxide sulfur (SO2) 

[23]. 
The lime used is a hydraulic lime brought from the 

Saida plant (SNMC Company - Algeria). It was subjected 
to sieving through an 80 μm sieve in order to obtain the 
same size as that of limestone and pozzolan. Hydraulic 
lime contains the following elements: Calcium Carbonate 
(CaCO3) and Calcium Hydroxide (Ca(OH)2) 

[23]. 
To improve the performance characteristics of the sand 

concretes, the use of the adjuvant is essential. The used 
adjuvant is of MEDAPLAST type SP40; it is in accord-
ance with the EN934-2 standard.

2.2 Elaboration of Studied Sand Concretes

The basic composition of the sand concrete (without 
mineral powders), taken as a reference for our study, is 

inspired from the work of Belhadj [24]. This composition is 
shown in Table 5 [24,25]. Let us note that, according to the 
specifications, the Portland limestone cement contains an 
initial mineral powder which is the limestone whose pro-
portion ranges from 6% to 20%. Clinker ranges from 80% 
to 94%. The different mineral powders considered in this 
study are:

- Mineral powders A: 5%, 10% and 15% of limestone;
- Mineral powders B: 5%, 10% and 15% of natural 

pozzolan;
- Mineral powders C: 5%, 10% and 15% of hydraulic lime;
- Mineral powders D: 5%, 10% and 15% of (1/3 lime-

stone + 1/3 natural pozzolan + 1/3 hydraulic lime);
- Mineral powders E: 5%, 10% and 15% of (1/2 natural 

pozzolan + 1/2 hydraulic lime). 
The different percentages of substitution used are 5%, 

10% and 15% for each type of mineral powder: A, B, C, 
D and E. The mineral powders are substituted for cement 
in mass percentages. The water / (cement + % powders) is 
set to 0.6 for all compositions tested (Table 5). This value, 
corresponding to a slump of 9 cm with the Abrams cone, 
ensures good workability for the basic composition of 
sand concrete (without mineral powders) made with Port-
land limestone cement.

To better homogenize the mixture, which contributes to 
a better quality of sand concrete and therefore the proper 
control of the various properties of the finished product, 
the following procedure was adopted. First a dry mixing 
of cement and mineral powders for one minute at low 
speed was made [26]. Then, the alluvial-sand dune and 
limestone fillers are added, in a dry mixture performed for 
three minutes at a low speed [22,26]. Finally, the mixing wa-
ter is added gradually to the mixture without breaking the 
kneading in order to ensure the good homogenization of 
the mixture for three other minutes at a low speed [22,26].

Table 2. Chemical analysis of the used cement (%).

SiO2 CaO MgO Al2O3 Fe2O3 SO3 K2O Cl Na2O Free CaO Loss Ins.

16.93 62.23 1.03 5.26 2.82 2.89 0.65 0.02 0.04 1.782 7.83 1.61

Table 3. Physical analysis of the used cement.

Properties Percentage

Blaine 444.9 (m2/kg)

Specific density 3030 (kg/m3)

Apparent density 1032 (kg/m3)

Table 4. Physical properties of mineral powders.

Physical properties Limestone Pozzolan Lime

Blaine (m2/kg) 280 388 650

Specific density (kg/m3) 2700 2850 2750

Apparent density (kg/m3) 1530 1005 666
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After mixing, the material is poured into molds:  
(40 × 40 × 160 mm3) for the shrinkage tests and (70 ×  
70 × 280 mm3) for the mechanical tests. The specimens 
are demoulded after 24 hours and the samples are kept, 
until the day of the test, in the same room, where the in-
door climatic conditions of the laboratory room are closer 
to the weather conditions, namely at a temperature of  
(20 °C ± 5 °C), and relative humidity of (50% ± 10%). 

2.3 Experimental Techniques

The study of the consistency of the sand concrete was 
made by the slump test with the Abrams cone according 
to the NF P18-451 standard. The compressive strength 
was determined using a universal press of type “Controls”, 
in accordance with the standard (EN196-1). The compres-
sion test was performed on cubes of (70 × 70 mm2). The 
modulus of elasticity in compression was determined by 
a Shimadzu type press at a ramp rate equal to 500 N/s, in 
accordance with the standard NBN EN 1015-11. 

The shrinkage was measured using an instrument of a 
controls type prismatic sample (40 × 40 × 160 mm3). This 
instrument is equipped with a comparator for performing 
measurements with an accuracy of less or equal to 0.005 
mm; the test is described by the standard (NF P 15-433) [27].

Infrared analysis was carried out by a Shimadzu IR 

spectrometry Prestige-2. This technique is very interesting 
and allows the identification of functional groups from 
their vibrational properties within a cementitious material 
after hydration. Infrared radiation excites vibration modes 
(bond stretching or bending) that characterize the chem-
ical bonds and the different species coexisting in the hy-
drated products after adding minerals. The analyzed sam-
ples were previously ground and mixed with potassium 
bromide (KBr) at 2 mg of sample to 190 mg of KBr. The 
whole mixture is placed in a cylindrical mold between two 
metal pads and then subjected to a pressure of 8 tons in a 
press with a piston and a pump. The obtained pellets were 
analyzed by transmission. 

The X-ray analysis by diffraction was performed using 
a PHILIPS X’Pert diffractometer type on samples of con-
crete, ground and screened to an 80 µm screen. 

3. Results

The interpretation of results focuses, first of all, on the 
study of the effect of the substitution of cement by mineral 
powders on the physicomechanical properties of the stud-
ied sand concretes, i.e., workability, compressive strength 
and shrinkage. Then, on their microstructure, let us note 
that the study of the influence of mineral powders on the 
microstructure was limited to only the sand concrete con-

Table 5. The studied compositions of the sand concretes.

Composition A B C D E

Cement (kg/m3)

297.5: 85%
315.0: 90%
332.5: 95%
350.0: 100%

297.5: 85%
315.0: 90%
332.5: 95%
350.0: 100%

297.5: 85%
315.0: 90%
332.5: 95%
350.0:100%

297.5: 85%
315.0: 90%
332.5: 95%
350.0: 100%

297.5: 85%
315.0: 90%
332.5: 95%
350.0: 100%

Limestone powder
(kg/m3)

52.5: 15%
35.0: 10%
17.5: 5%
00.0: 0%

-
-
-
-

-
-
-
-

17.5: (1/3)15%
10.83: (1/3)10%
5.83: (1/3)5%
-

00.0
00.0
00.0
00.0

Pozzolan powder
(kg/m3)

-
-
-
-

52.5: 15%
35.0: 10%
17.5: 5%
00.0: 0%

-
-
-
-

17.5: (1/3)15%
10.83: (1/3)10%
5.83: (1/3)5%
-

26.25:(1/2)15%
17.5:(1/2)10%
8.75:(1/2)5%
-

Lime powder
(kg/m3)

-
-
-
-

-
-
-
-

52.5: 15%
35.0: 10%
17.5: 5%
00.0: 0%

17.5: (1/3)15%
10.83: (1/3)10%
5.83: (1/3)5%
-

26.25: (1/2)15%
17.5: (1/2)10%
8.75: (1/2)5%
-

(DS) + (AS)
Dune Sand + alluvial Sand
(kg/m3)

1316 

Limestone filler (kg/m3) 135 

Water
(l/m3)

210 

Superplasticizer (%) (based on 
the weight of cement)

2 
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taining the mineral powder D.

3.1 Workability

Figure 1 shows the effect of mineral powders on the 
workability of the studied concretes. When the percent-
age of the mineral powder A increases in the cement, the 
workability of the studied sand concrete begins to increase 
starting from a mineral powder proportion equal to 10%. 
The consistency of sand concrete is highly plastic for min-
eral powder proportions of 10% and 15%. This increase in 
workability can be explained by the weak Blaine surface 
of the limestone filler (280 m2/kg) compared to that of the 
cement (444.9 m2/kg). Indeed, other parameters can also 
affect the workability like the form of the filler grains, the 
ration water/bender, etc.
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Figure 1. Workability of the studied sand concretes.

When the mineral powders percentage of B or D, increas-
es in cement, the workability of the compositions tested is 
almost similar to that of the basic composition of sand con-
crete (without mineral powders), with a slump value of 9 cm. 
In the case of mineral powder B, this can be explained by the 
Blaine surface of pozzolan (388 m2/kg) which is barely less 
than that of the cement (444.9 m2/kg). In the case of mineral 
powder D, this can be explained by the Blaine surface of the 
powder (439.33 m2/kg) which is very close to that of the ce-
ment. Let us note that the Blaine surface of the mineral pow-
der D is taken as the average of the three fillers (limestone, 
pozzolan and lime).

When the percentage of the mineral powders C and 
E increases in the cement, the workability of the corre-
sponding sand concretes decreases between 5% and 15% 
of mineral powders. Let us note that the composition 
containing the mineral powder C (lime approximate) gave 
the lowest slump values compared to the other mineral 
powders (slump value ≤ 4 cm). The lowest value was re-

corded with 15% of mineral powder C. This weak worka-
bility may be explained by the Blaine surface of the lime 
(650 m2/kg) which is higher than that of the cement, for 
different powder percentages. With mineral powder E, 
the workability also decreases, but in this case this can be 
explained by the presence of pozzolan in the mineral pow-
der.

Finally, it should be noted that, as far as workability, 
mineral powders B and D seem to be the most interesting.

3.2 Compressive Strength

The compressive strength generally projects an overall 
picture of the quality of concrete; it is the key element in 
the design of concrete structures. According to Figure 2, 
all the studied sand concretes containing 5% of mineral 
powders gave compressive strength values greater than 
that of the basic composition of sand concrete (without 
mineral powders), except in the case of mineral powder A. 
The optimum mineral powder percentages of A and C are 
very close to those of the literature for mortars which are 
4% and 5% respectively [12,13], but for the mineral powder 
percentage of B is about 10% to 20% [12]. On the other 
hand, the results of the compressive strength of the sand 
concrete for the different percentages of lime are slightly 
better compared to mortars with cement-lime at 28 days, 
which the experimental campaign ranges from 0.4 MPa to 
13 MPa [28], but significantly better at 90 days.
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Figure 2. Compressive strength of studied sand concretes 
at 90 days.

According to Figure 2, all the sand concretes studied 
with 5% mineral powders gave compressive strength val-
ues greater than those of the sand concretes with 10% and 
15%. The mineral powder D is better for a mineral pow-
der percentage of 5%, 10% and 15%. The compressive 
strength of the composition containing 15% of mineral 
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powder E is slightly higher than that of the composition 
containing 15% of mineral powder D. Therefore, we can 
opt for the mineral powder D values since, with this pow-
der, the consistency of the sand concrete is more interest-
ing.

Figure 3 shows, for the four types of selected sand con-
cretes, the compressive strength recorded at 28 days and at 
90 days. A higher percentage of mineral powder D (15%) 
increases the difference in compressive strength between 
28 days and 90 days.
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Figure 3. Compressive strength of studied sand concretes 
with mineral powders D.

Generally, there is always a relationship between 
compressive strength and density, in the case of building 
materials [29]. For this study, a relationship between the 
compressive strength at 28 days and the density has been 
found; the latter follows a polynomial equation of type:

Y = a + b.x + c.x2 with a correlation coefficient R2 = 
0.711 as shown in Figure 4. Where “Y” represents the 
compressive strength and “x” represents the density. In 
summary, mineral powder D has an interest in compres-
sive strength compared to the other types of mineral pow-
ders, more particularly the composition containing 10% 
of mineral powder D. It should also be noted that even the 
composition containing 15% of mineral powder D has a 
compressive strength similar to that of the basic composi-
tion of sand concrete (without mineral powders).

3.3 Elasticity Modulus in Compression

The tests of the elasticity modulus in compression are 
made for two compositions of sand concretes, namely 
the basic composition (without mineral powders) and the 
composition of sand concrete with 10% of mineral pow-
ders D (optimal percentage of the substitution of cement 
by mineral powders ). These tests were carried out on 

prisms having a section (40 × 40 mm2). The results of the 
elasticity modulus in compression are mentioned in Table 
6. The elasticity modulus in compression for the sand con-
crete with 10% of mineral powders D was improved by 
about + 8.35% compared to the basic composition of sand 
concrete (without mineral powders).

Figure 4. Relationship between the compressive strength 
at 28 days and the density. 

Table 6. Elasticity modulus in compression.

Sand concrete type
Elasticity modulus in 
compression (MPa)

Contrainte 
maximale 
(MPa)

Sand concrete: 
without mineral powders

387.36 5.63615

Sand concrete: 
with 10% mineral 
powders D

419.73 5.63679

The study shows the displacement as a function of the 
maximum compressive stress in the elastic part of the 
studied concretes. For a maximum compressive stress of 
5.63615 MPa in the elastic zone, it was recorded a dis-
placement of 0.94862 mm for the composition of sand 
concrete without mineral powders as shown in Figure 5. 
Nevertheless, for a maximum compressive strength of 
5.63679 MPa in the elastic zone, it was recorded a dis-
placement of 0.86408 mm for the composition of the sand 
concrete with 10% of mineral powder D as shown in Fig-
ure 6. The variation of the displacement with respect to 
the compressive strength shows the advantage of the com-
position with 10% of powder D, compared to the compo-
sition of sand concrete (without mineral powders), with 
a reduction of 0.08454 mm (i.e. － 8.91%). For example, 
Figure 5 and Figure 6 show the results of the elastic mod-
ulus in compression test which shows the maximum com-
pressive stress in the elastic part.
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Figure 5. Displacement versus maximum compressive 
stress (sand concrete without mineral powders).

3.4 Choice of Optimal Percentage

In order to choose the optimal percentage, the best 
three percentages, i.e., 5%, 10% and 15% of mineral pow-
der D, were selected. These three percentages presented 
the best compromise between the studied properties, 
whose values are shown in Table 7. In order to deepen the 
study of these compositions, tests of shrinkage have been 
made. Figure 7 shows the development of their shrinkage 
as a function of age (between 0 and 28 days). It is clear 
that the sand concretes with mineral powder D present 
higher shrinkage at 28 days compared to the sand concrete 

without powders. The shrinkage tends to stabilize after 21 
days. This increase in shrinkage is in agreement with that 
observed by Itim et al. [12].

Figure 6. Displacement versus maximum compressive 
stress (sand concrete with mineral powders).

In these three compositions, it was found that the op-
timum composition that constitutes the best compromise 
between the properties studied, i.e., workability, com-
pressive strength and shrinkage, is that containing 5% of 
mineral powder D. The composition of sand concrete con-
taining 10% of mineral powder D is approaching that 5% 
of mineral powder D. So for economic and environmental 
considerations, we opt for the formulation of 10% D. 

Table 7. Physico-mechanical properties and shrinkage of the studied sand concretes.

Studied sand concrete Type
Density
(kg/m3)

Compressive strength at 90 
days (MPa)

Shrinkage
 at 90 days
(mm/m)

Sand concrete without mineral powders.
Improvement (%)

1992.57 ± 11.32
19.70 ± 0.55
00%

0.529 ± 0.022
00%

Sand concrete with 05% mineral powder D 
(limestone + pozzolan + lime).
Improvement (%)

2076.98 ± 22.91
21.66 ± 0.30

+ 9.94%

0.681 ± 0.020

+ 28.73%

Sand concrete with 10% mineral powder D 
(limestone + pozzolan + lime).
Improvement (%)

2041.53 ± 19.36
21.58 ± 0.23

+ 9.54%

0.720 ± 0.034

+ 36.10%

Sand concrete with 15% mineral powder D 
(limestone + pozzolan + lime).
Improvement (%)

2026.29 ± 15.51
19.76 ± 0.66

- 0.30%

0.685 ± 0.033

+ 29.48%
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Figure 7. Shrinkage of studied sand concretes at 28 days.

3.5 Microstructure Analysis

3.5.1 Infrared Spectrometric Analysis in Fourier 
Transform (FTIR)

The spectrum obtained after the analysis of Sample 1 
(without mineral powders) and Sample 2 (with 10% of 
mineral powder D) is shown in Figure 8. The reduced 
peak at 3641 cm-1 in sample 1 is due to the O-H stretching 
vibration of portlandite [30,31]. The disappeared calcium 
hydroxide reacted with the siliceous and aluminous com-
pounds and those of pozzolan cement to form hydrated 
calcium silicates and aluminates. First, C-S-H hydrate 
(calcium silicate hydrate), resulting from the dominant 
C3S component, is responsible for most of the mechanical 
properties of the cured material due to its binding power. 
Many bands of the Si-O-Si (918 cm-1, 925 cm-1, 935 cm-1) 
anhydrous C3S don’t show the formation of calcium sili-
cate hydrates. This hydrate is spotted, on the one hand to 
1005 cm-1 which explains the change in the environment of 
the chemical bond of Si-O (C3S that hydrates in C-S-H) [30],  
and secondly by the O-H stretching vibration of bonds 
water molecules constituting the hydrated phase C-S-H 
3450 cm-1 [32]. The calcium silicate hydrates (C-S-H) are 
the main bond phases for several concretes [33]. Calcium 
silicate hydrate (C-S-H), the most important Portland ce-
ment hydration product, determines the mechanical prop-
erties and durability of cementitious materials [34].

We also observed bands located in 711 cm-1, 873 cm-1,  
2513 cm-1, 1797 cm-1, 2875 cm-1 and 2983 cm-1 which 
correspond to the C-O group of calcite in the two samples 
(1 and 2). Indeed, in sample 2, the reduced band intensi-

ties at 711 cm-1 and 873 cm-1 [35], correspond to the calcite 
and suggest that calcite participates in hydration reactions 
in the presence of calcium aluminates to form hydrated 
calcium carboaluminates. Also, between 1006 cm-1 and  
1200 cm-1, we have a mixture of hydrated aluminates: 
C4AH13 of 1083 cm-1 and C3AH6 of 1150 cm-1. 

Figure 8. Spectrum of the studied sand concretes—Sam-
ple 1: without mineral powders and Sample 2: with 10% 

mineral powder D.

C3AH6 is a phase much more stable and is obtained 
by changing intermediate phases such as C4AH13 phase, 
according to the conditions and environment of hydration 
of C3A. The coexistence of these very stable phases with 
other silicate phases contributes to the improvement of 
the mechanical properties of sample 2 (sand concrete with 
10% of mineral powders D), contrary to sample 1 (sand 
concrete without mineral powders).

3.5.2 X-ray Chemical Analysis by Diffraction

According to the diffractogram of the sand concrete 
without mineral powders (Figure 9) and the diffractogram 
of sand concrete with 10% mineral powders D (Figure 
10), it was found that the concrete with mineral pow-
ders led to the development of calcium silicate hydrates 
(C-S-H) and hence improved the mechanical properties of 
the material. This is explained by:

1) The increase in the intensity of the quartz of about 
1500 to 3000, can be explained by the presence of natural 
pozzolan which is rich in silica.

2) The decrease in the intensity of the calcite of about 
1500-800.

3) The decrease in the intensity of portlandite, because 
of the probable presence of hydraulic lime.
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Figure 9. X-ray diffractogram analysis of the sand con-
crete without mineral powders.

Figure 10. X-ray diffractogram analysis of the sand con-
crete with mineral powders.

4. Discussion

The advantage of the results of the compressive 
strength at 28 days and at 90 days is in favor of the sand 
concretes with mineral powder (D) for 5%, 10% and 15% 
compared to the sand concretes with 5%, 10% and 15% 
of the mineral powders (A, B and C) used separated. This 
observation confirms the advantage of several types of re-
search on the use of both mineral powders [14-16,36], and the 
use of three mineral powders [10,37]. For example, the test 
results showed that the addition of limestone filler, blast 
furnace slag, and natural pozzolan, incorporated simulta-
neously in cement improves the mechanical behavior of 
limestone mortars [37].

Furthermore, from the results of the effect of mineral 
powders on the physicomechanical properties and the 
microstructure analysis, we can conclude that the use of 
10% of powder D has an advantageous effect on the de-
velopment of the chemical reactions of the sand concrete, 
which are confirmed by the cross interpretation of the 
results relating to the Fourier transform infrared spectrom-
etry (FTIR) analysis and the analysis by X-ray diffraction. 

These two techniques have shown the development of 
calcium silicate hydrates (C-S-H). Moreover the coex-
istence of these very stable phases with the other silicate 
phases, contributes to the improvement of the mechanical 
properties of sand concrete with 10% of mineral powder D, 
contrary to sand concrete without mineral powders. 

Finally, the advantage of this approach is for environ-
mental considerations: reduction of the use of cement and 
significantly reduced CO2 emissions, and technical con-
siderations: improvement of the mechanical performance 
and durability of the studied concretes or mortars.

5. Conclusions

In order to study the effect of substitution (by mass) 
of cement by mineral powders on the physicomechanical 
properties and microstructure of sand concretes, differ-
ent mineral powders have been studied, such as A: the 
limestone, B: the natural pozzolan, C: the hydraulic lime, 
D: (1/3 limestone + 1/3 pozzolan + 1/3 lime) and E: (1/2 
pozzolan + 1/2 lime), with 5%, 10% and 15%, in both 
separated and combined states. Considering the obtained 
results, the following conclusions can be drawn:

• The mineral powder D is better for a mineral powder 
of 5%, 10% and 15% compared to other mineral powders. 

• The composition of sand concrete containing 10% of 
mineral powder D is approaching 5% of mineral powder 
D. So for economic and environmental considerations, we 
opt for the formulation of 10% mineral powder D.

• The 15% of mineral powder D presented similar per-
formances compared to the sand concrete (without miner-
al powders).

• The elasticity modulus in compression for the sand 
concrete with 10% of mineral powders D was improved 
by about + 8.35% compared to the sand concrete (without 
mineral powders).

• The Microstructure analysis showed the coexistence 
of very stable phases with other silicate phases contributes 
to the improvement of the mechanical properties of sand 
concrete with 10% of mineral powders D compared to 
sand concrete without mineral powders.

• In the economical and environmental aspect, the pow-
der D (limestone, natural pozzolan and hydraulic lime), 
gave the optimal percentage, especially with the propor-
tion of 10%, which can help to reduce CO2 emissions and 
therefore against global warming.

• In the technical aspect, the microstructure study 
showed the beneficial effect of 10% mineral powders D 
compared to the sand concrete without mineral powders 
on the development of hydration reactions, leading thus to 
the improvement of its mechanical strength. 

• Its mechanical properties allow it to be considered 
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a good eco-material development in construction, which 
can be used in both structural elements and architectural 
elements.
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Due to the increase in the global urban population and 
the continuous improvement of requirements, urban in-
frastructure construction is developing rapidly. Various 
underground pipelines and channels are increasing and 
the demand is increasing. As a trenchless technology, pipe 
jacking construction technology has been widely used 
in pipeline laying and underpass construction, especially 
in complex urban environments and cross-river regions, 
which has great advantages [1]. However, the pipe jacking 
machine may be resisted by underground obstacles in the 
construction process due to various reasons, such as the 

lack of reasonable planning of underground space de-
velopment in the early stage, different structure forms of 
underground excavation support and foundation, complex 
geological conditions and etc. The underground obstacles 
include the foundation structures of existing buildings, 
support structures of underground excavation, abandoned 
structures, existing pipelines and solitary rocks. The pipe 
jacking machine crossing the stratum with obstacles will 
bring great risks, which will be a great challenge for the 
practice of pipe jacking engineering. The construction 
technology of pipe jacking through underground obstacles 
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still needs further investigation.
The development of mechanical equipment and con-

struction method of pipe jacking method mainly draws 
on the application experience of the shield method in the 
early period. Common shield tunneling machines and 
pipe jacking machines are usually only applicable to stra-
ta with little change in mechanical properties and do not 
have the function to remove obstacles in strata. For a slur-
ry-balanced shield machine, a small crusher is equipped 
to ensure the smooth excavation of the mud suction pump, 
which can break small stones. When obstacles, such as 
reinforced concrete piles, underground diaphragm walls, 
or large solitary stones, are encountered on the tunnel 
or pipeline line, common shield tunneling machines and 
pipe jacking machines cannot pass through directly. In 
this case, adjusting the line position to avoid obstacles 
and structures is an economical and safe method. When 
the line cannot avoid obstacles, treatments such as remov-
ing existing structures, pulling piles on the ground, and 
removing obstacles after digging shafts could be used to 
remove the obstacles in advance. Subsequently, the pipe 
jacking machine could be jacked through this region. 
With the continuous improvement of the shield tunne-
ling machine and pipe jacking machine technology, the 
cutting performance of the shield tunneling machine and 
pipe jacking machine has been continuously improved. 
Cases of direct-cutting obstacles have appeared in the past 
decade, such as the Shenzhen North Ring Line, Shanghai 
Metro Line 10, Suzhou Metro Line 2, etc. [2]. The men-
tioned cases are all practices of the shield method directly 
cutting underground obstacles. However, the cases of pipe 
jacking method are rare. Direct cutting of reinforced con-
crete structure has great wear to the cutter head. A large 
number of studies have made beneficial improvements 
to the performance of the shield cutter head, mainly by 
improving the configuration and performance of different 
types of cutters. For a pipe jacking tunnel, its diameter is 
often smaller than a shield tunnel, it is less difficult to di-
rectly cut obstacles.

Among the types of underground obstacles, the an-
chor cable structure is the most difficult one to deal with. 
Anchor cable is a kind of anchorage technology, which 
is often used as the support structure of underground ex-
cavation with a pile or diaphragm wall. The anchor cable 
structure is composed of grout and steel strand, which has 
a high tensile strength of 1860 MPa. Therefore, if the pipe 
jacking machine cuts the anchor cable structure directly, 
the cutter head could be wound due to the high toughness 
of the steel strand, which could cause damage to the pipe 

jacking machine. At present, the common crossing meth-
od is to remove the existing anchor cable structure and 
then perform the pipe jacking method. When the space 
requirement is satisfied, the anchor cable can be directly 
pulled out at one end. However, this method has two dis-
advantages: 1) When the pull-out force is insufficient, the 
anchor cable cannot be pulled out (in this case, the casing 
follow-up method can be used to reduce the friction resist-
ance between the anchor cable and the ground); 2) Cor-
rosion of anchor cable structure causes the anchor tendon 
to break. Therefore, the method of directly pulling out the 
anchor cable is often unable to complete the removal of 
the anchor cable structure. In addition, a rotary drilling rig 
can be used to drill and remove the anchor cables. The ro-
tary drilling rig has a high torsion force. Through torsion 
and winding, the steel strand could be taken out of the 
ground. However, this method needs a large workspace 
and has a rotary drilling workload. In addition, the anchor 
cable structure can be broken manually by excavating the 
existing anchor cable area. However, in the process of ex-
cavation, the construction of excavation support structures 
is the most difficulty of this method. Because of the ex-
istence of a steel strand, the water stop system of the sup-
porting structure can not be continuous, resulting in water-
proofing failure. Based on this, combining the steel-sheet 
piles and jet grouting piles for waterproofing and sup-
porting excavation methods for crossing the anchor-cable 
area is proposed [3]. Through the occlusion of steel sheet 
piles and high-pressure jet grouting piles, waterproofing 
can be ensured in the process of excavation construction. 
The mentioned methods have been successfully applied in 
many case histories. When the surrounding environment 
is complex, the surrounding strata are often reinforced by 
grouting.

To sum up, some solutions to pipe jacking through dif-
ferent underground obstacles have been proposed. How-
ever, there is still great room for further improvement. 
Especially for the case of pipe jacking through the stratum 
of anchor cable structure, the construction technology is 
still complicated for professional persons. Therefore, more 
efforts are required to improve the mechanical properties 
of pipe jacking machines and study the obstacle removal 
methods.
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