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ABSTRACT
Climate change resilience in Malawi faces an institutional gap because most institutions often fail to prioritize 

risk data when dealing with climate extremes such as floods. This unfortunate gap forces many Malawians to fend for 
themselves during times of climate extremes. This situation is also heightened by a few studies that utilize Time Series 
Analysis (TSA) and Deep Learning Models (DLM) to predict climate extremes for decision-making processes. There-
fore, this study focused on flood risk prediction and assessment in six selected districts of Malawi: Chikwawa, Blantyre, 
Phalombe, Zomba, Rumphi, and Karonga. Traditional Time Series Models (ARIMA) and Semantic Convolution Deep 
Learning Analysis were used for this purpose. Data were retrieved from the database of the US National Aeronautics 
and Space Administration (NASA). The results revealed frequent and significant precipitation peaks in Blantyre and 
Chikwawa, particularly during the rainy season, suggesting that the areas are at a higher risk of flooding, with a high 
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1.	 Introduction

Climate change (CC) has induced the occurrence 
and magnitude of floods across the globe [1], and it is mak-
ing it hard for vulnerable countries in the global south to 
break the cycle of risk/vulnerability. In Malawi, the loss 
and damage from the impacts of climate change are un-
precedented in sectors of agriculture, water, sanitation and 
hygiene (WASH), infrastructure, and livelihoods [2]. Yet, 
Malawi has a contribution of less than 0.01% cumula-
tive global carbon,  the country is extremely vulnerable to 
climate change extremes.  Therefore, projecting climate 
extremes such as floods alongside climate change resil-
ience is an important strategic option with which research 
can provide data needed for resilience building, including 
minimizing loss and damage to climate extreme events in 
Malawi and other vulnerable regions. It is also an approach 
that may help to address the institutional gaps, which often 
fail to prioritize proactive interventions aimed at building 
the resilience of communities to climate change events. 
While many factors may exist, significantly, climate 
change in Malawi matters due to three interrelated fac-
tors. The first one is the physical position of the country. 
The physical position makes many parts of Malawi prone 
to natural hazards with varying degrees of risk and vul-
nerability [3]. For example, Malawi is ranked with a high 
vulnerability (0.542) with a low readiness to respond to 
climate change impacts [4]. This higher vulnerability makes 
the majority of Malawians live below the national poverty 
line and experience acute food insecurity. The second fac-
tor is that most Malawians depend on natural resources 
(i.e., farming, fishing, forest products, wildlife) as a source 
of livelihood for survival, which are heavily affected by 
climate change events. The third factor is the high risk of 
transboundary hazards. Malawi faces numerous climate 

extremes resulting from transboundary hazards, including 
those from neighbouring countries such as Mozambique 
and Tanzania. These factors suggest that climate extremes, 
in this context, necessitate an analysis of floods to deter-
mine their trends, frequency, and seasonality for effective 
preparedness, mitigation, and response mechanisms. 

The Malawi Government (GOM), in collabora-
tion with the Civil Society Organisation, and Local and 
International Organisations, has envisioned the adoption 
of various strategies aimed at strengthening the resilience 
and adaptation of communities to climate risks.  Climate 
Risk Reduction Frameworks, Policies, and Acts have been 
developed to assist the implementation of climate change 
adaptation and resilience measures. The National Climate 
Change Policy (2016) has been developed to promote cli-
mate change adaptation, mitigation, technology transfer, 
and capacity building for sustainable livelihoods through 
Green Economy measures for Malawi. Efforts such as 
enhancement of capacity building and strengthening regu-
latory frameworks have been made to address climate 
extreme challenges. Collaboration between government 
authorities, climate change experts, urban planners, engi-
neers, and community stakeholders has been strengthened 
and promoted for an effective response to climate change 
adaptation. Regardless of all these efforts, the majority 
of Malawians, precisely in rural communities and urban 
informal settlements, are victims of climate risks [5–7]. The 
National Disaster Recovery Framework (NDRF) Policies, 
which were developed in 2015, emphasize a decentraliza-
tion approach (from village to national level) and com-
munity participation in mitigating climate risks.  However, 
for all these approaches to be effective, there is a need to 
understand climate change risk because this provides a 
basis for understanding the interaction between hazard and 
vulnerability.  It is argued that while it is not easy to stop 

probability of infrastructural damage and economic losses. Karonga and Phalombe revealed cyclical trends with promi-
nent spikes in rainfall. In contrast, Rumphi and Zomba exhibit less pronounced trends, though there are still significant 
fluctuations in rainfall patterns, suggesting an increasing likelihood of flood risk in future climate extremes. This study 
situates its policy implications by emphasizing that residents, institutions, government, partners, and NGOs need to take 
a problem-focused approach towards climate resilience planning, including updating flood risk maps, designing flood 
protection infrastructure, and preparing emergency response plans tailored to the specific needs of each district in Ma-
lawi.
Keywords: Vulnerability Assessment; Floods; Climate Change; Lilongwe City; Karonga; Malawi
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hazards, the vulnerability of people to climate change is 
manageable [8].

Flood risks under climate change in Malawi offer in-
sight into at least three valuable topics. Firstly, in Malawi, 
an institutional gap in community disaster and climate 
risk reduction (DCRR) has left communities to fend for 
themselves, which means communities have been forced 
to innovate resilience and adaptive solutions without insti-
tutional support. This unfortunate gap offers an opportu-
nity to assess flood risks to provide data that can support 
climate change resilience building, as well as decision-
making processes.  Secondly, as a relatively rural country, 
Malawi is an excellent case for studying climate change 
resilience because of its fragile economic systems in terms 
of the price of food, alternative sources of income, etc. 
The economic linkages between urban and rural areas are 
essential to understanding the capacity of communities to 
recover after a disaster influenced by climate extremes. 
As sites of economic opportunity, urban areas commonly 
received the economically vulnerable seeking new sources 
of income. This economic motive dominates to such a de-
gree that individuals accept living in areas vulnerable to 
disaster and climate change risks. While relocation of peo-
ple living in vulnerable areas has been the dominant gov-
ernment-endorsed adaptation approach, relatively little is 
known about how communities respond to this approach. 
Therefore, the need to identify initiatives that may serve as 
alternatives to the relocation of vulnerable communities or 
ease the costs caused by relocation is required. This need 
can be achieved by linking climate change trajectories 
and climate extremes that consider the application of TSA 
and DLM in risk assessments.  Lastly, without nationally 
enforced construction standards, the resilient construction 
of housing has been a challenge in Malawi. Despite these 
challenges, communities continue to build and rebuild in 
disaster-prone areas. The question remains whether there 
are any scientific initiatives that seek to manage disaster 
and climate change risks in Malawi. If there are such initia-
tives, this research has contributed to identifying strategies 
that can be adopted to minimize the unique climate change 
risks associated with flooding through the application of 
TSA and DLM.

The foregoing discussion points to a need to start 
encompassing time series and deep learning models when 

dealing with these climate extremes. However, while stud-
ies conducted in Malawi have attempted to quantify and 
analyze climate change extremes in the aspects of expo-
sure, susceptibility, and resilience [3,5–7], the application of 
TSA and DLM to predict flood risks has been neglected. 
Moreover, studies focusing on flood risk assessment under 
climate change resilience have been dominated by either 
socio-economic surveys or GIS tools, lacking the attributes 
of machine learning tools capable of stimulating various 
environmental parameters. Studies that incorporate TSA 
and DLM provide data that can assist in strengthening in-
stitutional capacity and support decision-making processes 
regarding climate change risks because of their contrasts 
with traditional flood risk assessments as GIS and remote 
sensing-based studies. For example, Ngongondo et al. car-
ried out a study on the evaluation of integrated impacts 
of climate and land use change on the river regime in the 
Wamkulumadzi River basin in Malawi [9]. This study as-
sessed how the CC and LUC affect the flow regime of 
Wamkulumadzi. The study used both remotely sensed im-
agery using a supervised image classification system and 
the Soil Water Assessment Tool (SWAT).  The study used 
images from 1984 to 2015 on part of understand land use 
changes and gauged data from the same years to under-
stand the hydro climatology. The results of the supervised 
classification of Landsat images from the years 1989, 
1999, and 2015 demonstrated a lot of land use changes in 
the Wamkulumadzi catchment. The results showed that 
agricultural land had covered 30.66% in 1989 but had de-
creased to 7.62% in 1999 before increasing to 15.14% [9]. It 
further revealed that urban areas increased rapidly between 
1989 and 1999, followed by a slight decrease in 2015. 
What is not clear from this analysis is whether the changes 
in land use were due to flooding, because the occurrence of 
flooding was not predicted using TSA and DLM.

TSA and DLM provide data that can be used to iden-
tify flood-prone areas, including predicting and forecast-
ing flood occurrence, intensity, and trends. Knowledge of 
these parameters is critical for understanding mitigation 
and adaptation measures that can strengthen the resilience 
of communities to climate change extremes. Sankaranay-
anan carried out a study in India on flood and drought 
risk assessment using TSA and MLD [10]. The study found 
that most of the systems employed an artificial neural net-
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work (ANN) with a single hidden layer for the prediction 
of floods using parameters such as rainfall, temperature, 
water flow, water level, and humidity. In this study, it was 
argued that flood risk assessment using such parameters 
allows for the proper formulation of flood risk control 
measures. Similarly, Jamshed et al. carried out a study in 
Pakistan, specifically by assessing the vulnerability and 
capacity of flood-affected communities in Punjab, Paki-
stan, in the Districts of Jhang and Muzaffargarh using time 
series analysis [11]. The study found that the vulnerability 
of immovable assets (infrastructure, houses, water quality, 
etc.) has increased or remained constant, and for certain as-
sets lack of physical infrastructure reduces the capacity to 
cope and adapt to climate extremes. In Malawi, a study by 
Mulumphwa was carried out to model and forecast Lake 
Malawi water level fluctuations using stochastic models as 
part of machine learning [12]. This study found that the fore-
cast for Lake Malawi water levels showed a drop in water 
levels by 0.15 masl as compared to the mean water levels 
recorded in the previous years. The study pointed out that 
there would be negative implications for the use of Lake 
Malawi and the Shire River that flows out of it for irriga-
tion, pumping of water for domestic use, and hydroelectric 
power generation, among others. Atashi et al. carried out a 
study in the United States of America (USA), specifically 
by forecasting water level using deep learning and time-
series analyses [13]. The study found that the deep learning 
method, the LSTM method, achieved better results and 
was more accurate for the prediction performance than the 
SARIMA and RF methods. SARIMA is effective at mod-
eling linear data, whereas the other statistical machine-
learning models are superior at modeling nonlinear data. 
These findings suggest that the application of TSA and 
DLM is crucial to provide data for management and moni-
toring climate extremes.  

Other hydrological studies have used artificial neu-
ral networks (ANN) in flood modelling [14]. ANN helps to 
solve problems of uncertainty in inputs and produce out-
puts from incomplete data [15]. This method uses rainfall 
and run-off parameters as the input and output [14]. Howev-
er, this method can take other factors to assess the causes 
of floods [16]. It has been noted that studies that used ANN 
in flood risk analysis might predict similar values by using 
hydrological data records [17]. However, while ANN has the 

potential to be applied in flood risk estimation, it is part of 
deep learning models, which have been understudied in 
Malawi. This study therefore used TSA and DLM methods 
to conduct a flood risk assessment to explain the variability 
of flood risk in six districts of Malawi.

2.	 Materials and Methods

2.1.	 Study Area

This Study was carried out in six districts of Malawi 
(Figure 1). Malawi has over 50% of its population living 
below the national poverty line, and about 15% of its pop-
ulation experiencing acute food insecurity [18]. The country 
has contributed less than 0.01% of cumulative global car-
bon dioxide emissions associated with human activities, 
but is extremely vulnerable to climate impacts. This is 
partly because Malawi’s economy is heavily reliant on the 
agriculture sector, which employs up to 80% of the popu-
lation [19]. Around 90% of people live in rural areas and are 
mostly reliant on rain-fed and smallholder farming, which 
is vulnerable to changes in rainfall patterns and extreme 
weather. 

In Malawi, floods are the most frequent natural haz-
ards, causing devastating impacts in both rural and urban 
areas. Between 2015 and 2023, about four major floods 
induced by extreme tropical cyclones have affected com-
munities. The most destructive were floods of 11-13 March 
2023, influenced by tropical cyclone Freddy (TCF), which 
was developed in the Western Indian Ocean and moved 
eastwards [20]. The TCF caused multiple flash floods and 
landslides, which killed about 679 people, injured 2178 
people, displaced 563,602 people, and about 511 people 
were reported missing, including causing several other 
damages and losses in sectors such as agriculture, infra-
structure, food security, and health [20]. The response to this 
catastrophe, including the previous floods, was tailored 
more to rescue and relief operations [21]. While these are 
critical to save lives and to provide immediate relief and 
short-term support, they cannot provide long-term solu-
tions for addressing current and future climate change im-
pacts.  As such, the need to use TSA and DLM can provide 
practical indicators for programming current and future 
flood mitigation measures that consider long-term climate 
change resilience measures.
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2.2.	 Study Approach

This study adopted a quantitative analysis approach 
using two-phase methods for predicting flood risk. The 
first method involved using Time Series Analysis (TSA) 
(Figure 2). TSA is used as a descriptive analysis of the 
time series data to understand trends, seasonality, and 
autocorrelation of the subject under investigation [22]. It 
also uses modeling through traditional time series models 
(ARIMA) to establish trends and identify any underlying 
patterns in flood risk and vulnerability over time. The sec-
ond involved using Deep Learning Models (DLMs). DLM 
applied semantic convolution analysis to capture long-term 
land cover and land use and convolutional neural networks 
with LSTMs.

Journal of Atmospheric Science Research | Volume 8 | Issue 2 | Month 2025
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Figure 2. Methodology Flow Chart.

Figure 1. Map of Malawi with Six Selected Districts.
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The deep learning model was developed using Py-
thon, with key libraries including TensorFlow/Keras for 
model construction and training, pandas for data preproc-
essing, and scikit-learn for scaling, splitting, and perfor-
mance evaluation. The data were partitioned into training 
(80%) and testing (20%) sets using a randomized split to 
ensure independent model evaluation. Within the train-
ing data, 20% was further reserved as a validation set to 
monitor training progress and mitigate overfitting through 
internal validation during each epoch. Model performance 
was assessed using standard classification metrics—accu-
racy, precision, recall, F1 score, and Matthew’s correlation 
coefficient (MCC)—to provide a robust evaluation of the 
model’s effectiveness in predicting flood events.

2.2.1.	 Vulnerability Assessment 

Wisner et al. indicate that vulnerability involves a 
combination of underlying factors that determine the de-
gree to which life, livelihoods, property, and other assets 
are put at risk by a discrete, identifiable event in nature 
and society [23]. Iloka maintains that vulnerability is the 
combination of numerous factors that determine the level 
of risk to people’s lives and livelihoods [24]. Ndanusa et al. 
highlight that assessment of flood vulnerability has not 
been holistically conducted. Studies have assessed flood 
vulnerability either using physical or social components 
[25]. Therefore, this study indicates that the physical, social, 
economic, and environmental factors in which an indi-
vidual, a household, or a community lives can increase (or 
decrease) the degree to which life, livelihoods, property, 
and assets are put at risk. Hence, any flood risk predic-
tion needs to take into account flood vulnerability assess-
ment for proper resilience planning. Mwalwimba et al., 
in a study of flood vulnerability assessment in rural and 
urban informal settlements in Malawi observed that the 
determinants of households’ flood vulnerability are place 
of settlement, low-risk knowledge, communication acces-
sibility, lack of early warning systems, and limited access 
to income of household heads [7]. The study further found 
that the vulnerability of households to floods in rural and 
urban informal settlements is high because of proximity 
to catchments and limited communication due to a lack of 
advanced flood risk prediction.  Msasa et al. conducted a 
study to assess the physical vulnerability of buildings to 

floods in low-income areas of Biwi and Kawale 1 in Li-
longwe City [26]. The study focused on building exposure 
and vulnerability and the effectiveness of household pro-
tection measures. The study found that exposure factors 
variably influenced the physical vulnerability of individual 
building types, and that building typology and floodwa-
ter depth were important factors. Elias et al. conducted 
a study with a focus on valuating the flood vulnerability 
of Bahir Dar City, Ethiopia [27], using an indicator-based 
method that considered physical, social, and economic 
factors. GIS-based tools were used to create vulnerability 
maps that showed the spatial distribution of flood risk and 
priority areas for intervention. The study revealed that the 
city is highly vulnerable to flooding due to heavy rainfalls, 
insufficient infrastructure, and poor maintenance. All these 
studies attest that flood vulnerability assessment is an im-
portant component in flood risk prediction for resilience 
planning. Therefore, this study used the flood vulnerability 
data to assess potential changes in flood risks.

2.3.	 Data Collection

This study involved, first, the collection of precipita-
tion data. Historical precipitation data for the regions of 
Blantyre, Karonga, Chikwawa, Phalombe, Rumphi, and 
Zomba were collected. The data collected were records of 
rainfall intensity and frequency, essential for identifying 
trends and seasonal patterns.  Second-order autocorrelation 
plots for precipitation values were generated to examine 
how precipitation values at different time lags correlate 
with past values. This helped in identifying recurring sea-
sonal patterns and improving flood prediction accuracy. 
Third, flood vulnerability data across the six districts were 
analyzed. This includes past flood events, their frequency, 
and intensity. Forecast data indicating future flood vulner-
ability was also used to assess potential changes in flood 
risk. Further, Deep Learning Model Performance Metrics. 
Performance metrics of a deep learning model used for 
flood prediction were reviewed. Metrics included accuracy, 
precision, recall, F1 score, and the Matthews correlation 
coefficient (MCC), which are critical for evaluating the 
model’s effectiveness in predicting flood events. Google 
Earth Engine was used for supervised machine learning 
to make a classification of land use land cover (LULC) 
to produce maps for each district. The NOAA Optimum 



43

Journal of Atmospheric Science Research | Volume 08 | Issue 02 | April 2025

Interpolation Sea Surface Temperature (SST) V2.1 data-
set (NOAA/CDR/OISST/V2_1) was selected as the data 
source for sea surface temperature. The data offered daily 
global SST values on a 0.25° grid from satellite, ship, and 
buoy observations. The temporal scope of the data spanned 
from January 1990 to December 2024, with data aggregat-
ed to monthly means to enhance clarity and manageability.

2.4.	 Data Analysis

Five levels were performed to analyze the data. The 
first level utilized Precipitation Trend Analysis (PTA), 
which involved undertaking the following steps: Firstly, 
data visualization. This used a graphical representation of 
precipitation trends over time for each district. This visu-
alization highlighted seasonal fluctuations and identified 
periods of increased flood risk. Secondly, trend identifica-
tion. In this, patterns of precipitation in terms of significant 
peaks and increasing trends were analyzed to assess their 
impact on flood risk. The second level used Autocorrela-
tion Analysis by employing autocorrelation plots and pat-
tern analysis. Autocorrelation plots were generated to ex-
amine how current precipitation values are related to past 
values over different time lags. Significant spikes in plots 
were used to indicate recurring seasonal patterns. Pattern 
Analysis was used to determine the periodicity of precipi-
tation and its implications for predicting flood events. The 
third level involved flood vulnerability assessment (FVA) 
using historical data and forecast analysis. On the one 
hand, historical flood vulnerability data were examined to 
identify variability in flood risk across different years and 
regions. On the other hand, forecast analysis analyzed fu-
ture flood vulnerability to understand potential changes in 
flood risks. This involved comparing historical data with 
forecasted trends to assess future flood risks. The fourth 
level used model performance evaluation by applying both 
metric calculation and model reliability. The deep learning 
model’s performance metrics, including accuracy, preci-
sion, recall, F1 score, and MCC, were calculated to evalu-
ate its effectiveness in predicting flood events. Reliability 
assessment was assessed based on its ability to correctly 
classify flood events and its overall predictive accuracy. 
The last level applied statistical and analytical tools.  Tools 
such as R and Python were used for statistical analysis and 
generating autocorrelation plots. These tools facilitated 

the examination of data trends and patterns. Deep learning 
frameworks like TensorFlow or PyTorch were employed 
for developing and evaluating the deep learning model. 
These frameworks provided the infrastructure for training, 
validating, and testing the model. Data Visualization Tools: 
Software such as Matplotlib and ggplot was used to create 
visual representations of precipitation trends, autocorrela-
tion plots, and flood vulnerability data. These visualiza-
tions helped in interpreting complex data and identifying 
key patterns. In data processing, daily SST imagery was 
filtered by time and region, monthly averages were com-
puted, and the regional mean SST was extracted using 
reduce Region () with a 25 km resolution. These monthly 
values were stored as a time series in a Feature Collection. 
For visualization, a line chart was created using GEEs in 
Chart Feature, depicting SST trends over time.

2.5.	 Limitations of the Study

Though the application of deep learning models has 
promising performance, several limitations are likely to be 
encountered. To begin with, the input data may lack suf-
ficient spatial and temporal granularity, potentially over-
looking local-scale or short-duration flood events. Addi-
tionally, encoding location as categorical variables may not 
fully capture the geospatial relationships between regions, 
which may exhibit results that are not spatially localized 
for effective risk management. The model’s generalizabil-
ity is constrained by the scope and representativeness of 
the training data, raising concerns about performance on 
unseen or extreme climatic conditions. For future work, 
efforts should focus on integrating real-time data streams 
(e.g., satellite rainfall estimates, river gauge sensors), 
enhancing geospatial modeling through techniques like 
convolutional or graph neural networks, and implementing 
early warning systems for operational use. Incorporating 
climate projections and broader environmental variables 
could further strengthen the model’s predictive power and 
applicability in dynamic flood risk management contexts.

3.	 Results and Discussion

3.1.	 Trends and Seasonality

The results (Figure 3) offer a detailed view of precip-
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itation trends across several locations in Malawi, including 
Blantyre, Karonga, Chikwawa, Phalombe, Rumphi, and 
Zomba. Each district displays distinct patterns in rainfall 
over time, with noticeable seasonal fluctuations that are 
crucial for understanding and predicting flood risks. 

In Blantyre and Chikwawa, the data reveal frequent 
and significant peaks in precipitation, particularly dur-
ing the rainy season, suggesting that these areas are at a 
higher risk of flooding. The higher risk of flooding is also 
an indicator of the explicit potential probability of more 
households being affected by floods. This further implies 
that more infrastructure (such as bridges, schools, power 
supply transmission and distribution networks, and liveli-
hoods) and livelihoods (crops, businesses, and other as-
sets) are at risk and vulnerable to floods. This outcome 
confirms the findings that most physical infrastructures, 
roads (0.443), houses (0.551), and bridges (0.708) have 
higher risk/vulnerability to floods in Malawi [5]. There is 
also an observable increase in the intensity or frequency of 
these peaks in recent years, potentially indicating the im-
pact of climate change, which could heighten flood risks in 

these regions. These results support the fact that flooding 
in Blantyre District is a frequent and known hazard that 
requires measures to build the resilience of communities 
to mitigate its risks. This proposition is an indication that 
the vulnerability of Blantyre District to flooding due to 
its position and topographical characteristics makes most 
residents prone to floods [28]. These identified factors in the 
assessed areas further point to the need to focus on place-
based oriented risk reduction measures because each place 
displays its distinctive features, leading to flood risk and 
vulnerability under the changing climate. Similarly, Karon-
ga and Phalombe show cyclical trends with prominent 
spikes in rainfall, underscoring the likelihood of seasonal 
flooding in these areas as well. These spikes suggest that 
these regions are vulnerable during specific months when 
precipitation levels reach their highest. These results also 
suggest a higher probability of flood hazard in future cli-
mate extreme scenarios. Therefore, if measures to build the 
resilience of communities are not properly done, the conse-
quential outcome would be more damage to infrastructure 
and economic losses within the society. 

In contrast, Rumphi and Zomba exhibit less pro-
nounced trends, though there are still significant fluctua-
tions in rainfall. While these regions might not experience 

flooding as frequently as the others, the variability in their 
precipitation data indicates that they remain susceptible 
during years with particularly intense rainfall. The cy-

Figure 3. Graph of Trends and Seasonality.
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clical nature of these trends suggests a strong seasonal 
component to the weather patterns in these locations. This 
seasonality can be instrumental in predicting floods, es-
pecially if the timing of these peaks aligns with historical 
flood events. Additionally, any observed increase in the 
frequency or intensity of these peaks in recent years may 
point to changing climate patterns, necessitating updates to 
flood prediction models to accommodate potential increas-
es in flood risk. Understanding these precipitation patterns 
is essential for effective flood management and planning 
in Malawi. By identifying high-risk periods and regions, 
resources can be allocated more efficiently to mitigate the 
impacts of flooding. Continuous monitoring and updates 
to predictive models are crucial to account for the evolv-
ing climate patterns and their potential effect on flood fre-
quency and severity. Moreover, this information can help 
to make warning systems targeted, focused, and inclusive 
to deal with climate risks.

3.2.	 ACF and PACF

For rainfall data, the plots (Figure 4) suggest that 
rainfall patterns exhibit temporal dependencies, where cur-
rent rainfall levels are influenced by recent rainfall events 
(as indicated by significant autocorrelation at lower lags 
in the ACF plot). The PACF plot suggests that these de-
pendencies are strongest at specific lags, implying that past 
rainfall data can be used to predict future rainfall levels. 

This further has implications for flood risk, as persistent 
or high-intensity rainfall over consecutive periods can 
increase the likelihood of flooding. Understanding these 
patterns can help improve rainfall forecasting and flood 
preparedness, allowing for more effective early warning 
systems and resource planning.

3.3.	 Autocorrelation

The autocorrelation plots for precipitation values 
across six locations in Malawi—Blantyre, Karonga, Chik-
wawa (Lower Shire), Phalombe, Rumphi, and Zomba—
illustrate distinct patterns in how precipitation values cor-
relate with past values over time (lags) (Figure 5). In each 
location, the significant spikes in autocorrelation at specific 
lags suggest recurring seasonal patterns in precipitation. 
The presence of positive and negative correlations at vari-
ous lags across all locations implies that precipitation tends 
to be periodic, with certain time intervals showing higher 
predictability based on past values. These patterns are 
critical for flood prediction, as understanding the temporal 
structure of rainfall in these areas can enhance the accura-
cy of predictive warnings to be more effective. This infor-
mation could be important to shift away from the business-
as-usual basis for dealing with climate risks in Malawi. 
Similarly, the information provides a basis for the need to 
prioritize climate risk assessment as a matter of build back 
better for potentially affected sectors.

Figure 4. Graph of ACF and PACF.
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3.4.	 Trends and Underlying Patterns in Flood 
Vulnerability Over Time

Figure 6 presents the flood vulnerability over time 
across six districts in Malawi: Blantyre, Karonga, Lower 
Shire, Phalombe, Rumphi, and Zomba. The black bars rep-
resent historical data, while the red dashed lines indicate 
forecasts for future flood vulnerability. The consistent pat-
tern of vulnerability across all districts shows variability in 
flood risk, with certain years exhibiting higher vulnerabil-

ity levels. The forecasted data suggests that flood vulner-
ability is expected to continue, with fluctuations that may 
reflect seasonal patterns or other contributing factors. This 
time series analysis highlights the ongoing risk of flood-
ing in these districts, emphasizing the need for continued 
monitoring and proactive flood management strategies to 
mitigate future impacts. The predictive trends can inform 
policymakers and emergency response teams to allocate 
resources effectively and prepare for potential flood events.

Figure 5. Graph of Autocorrelation.

Figure 6. Trends and Underlying Patterns in Flood Vulnerability Over Time.
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3.5.	 DNN Performance Metrics

Different machine learning algorithms, such as deep 
neural networks, are employed to compute the prediction 
accuracy to predict the pre-processed dataset. The predic-
tion accuracy results and related metrics for each algorithm 
are given in Table 1.

Table 1. DNN Performance Metrics.

Detailed accuracy terms Value

Accuracy 99.83%

Precision 1.00

Recall 1.00

F1 Score 1.00

MCC 1.00

The performance metrics for the deep learning model 
applied to flood prediction in flood-prone areas of Malawi 
indicate exceptional accuracy. With an overall accuracy of 
99.83%, the model demonstrates near-perfect classifica-
tion of flood events. The precision, recall, and F1 score all 
being 1.00 suggest that the model is not only precise in its 
predictions (with no false positives) but also highly sensi-
tive, accurately identifying all true flood occurrences (with 
no false negatives). The Matthews correlation coefficient 
(MCC) of 1.00 further supports the model’s robustness, 
indicating a perfect correlation between the predicted and 

actual outcomes. These results suggest that the model is 
highly reliable for flood prediction in the targeted regions.

3.6.	 Sea Surface Temperature (SST) in the 
Indian Ocean

Figure 7 shows the monthly Sea Surface Tempera-
ture (SST) trends in the Indian Ocean from 1990 to 2024. 
The results reveal a clear upward trend in SST over time, 
as indicated by the red regression line. The increasing 
SST—rising by approximately 0.0062°C per month—
suggests gradual ocean warming. This trend is critical 
because warmer sea surface temperatures contribute to the 
formation and intensification of tropical cyclones. As the 
Indian Ocean continues to warm, it creates more favorable 
conditions for cyclones to develop, become stronger, and 
travel further. For Malawi, this implies a heightened risk of 
experiencing more frequent and intense cyclones originat-
ing from the Indian Ocean, potentially leading to increased 
climate extremes such as flooding and strong winds. These 
extremes are likely to increase infrastructural damage and 
disruption to livelihoods, especially in vulnerable districts 
of the Southern part of Malawi. This underscores the im-
portance of strengthening climate adaptation and disaster 
preparedness strategies in Malawi.

Figure 7. Graph of Sea Surface Temperature Trends in the Indian Ocean.
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4.	 Study Implications for Policy and 
Practice in Malawi

Based on the findings of this study, it is important to 
indicate that strategic directions need to be suggested to 
influence policy and practice to narrow down the institu-
tional gap in disaster and climate risks in Malawi. The first 
implication of this study in policy and practice is the sug-
gestion that residents and institutions, government, part-
ners, and NGOs need to take a problem-focused approach 
to deal with climate risks. This approach is immediate 
and cost-effective to prevent or reduce climate risks. The 
problem-focused coping could be implemented at the indi-
vidual, household, community, district, and national levels. 
The measures could include changing the farming systems, 
crop diversification, developing construction standards, 
evacuation to safer places, adjusting behaviours to current 
situations, etc. The problem-focused coping is not capital-
intensive; it requires undertaking measures that are feasible 
within one’s risks. The second implication is that Gov-
ernment of Malawi in collaboration with partners should 
embark on developing long term protective behaviours to 
climate extremes to build community resilience: The pro-
tective behaviours should focus on both structural (mate-
rial) methods of protection, such as a barrier, zooning, land 
use planning, human occupancy, relocation/resettlement, 
adaptive capacity and non-structural methods, such as rais-
ing awareness of risk, developing early warning systems, 
and disaster preparedness training and education should 
be intensified, but in medium- and long-term approaches. 
The protective behaviour is largely capital-intensive and 
therefore requires more planning, investment, and commit-
ment of various integrated government sectors, partners, 
and institutions. The third implication is that government 
institutions like the Department of Climate Change and 
Meteorological Services (DCCMS) should strengthen 
knowledge dissemination. This can further improve the 
verification of the effectiveness of early warning systems 
provided to communities through forecast information. It 
would be further used as a preparedness and response tool 
for the communities to better develop their coping mecha-
nisms to impending disasters. Lastly, the findings imply the 
need for the government of Malawi to develop construc-
tion standards, supported by a land sealing policy, both in 

rural and urban areas. Malawi lacks a nationally enforced 
construction standard, and the lack of this policy has led to 
human occupancy along the river channels, including seal-
ing the land with interlocking, which locks the soil, and 
encourages high run-off, resulting in short lag time with 
high probability of flooding in most of the catchments.

5.	 Conclusions 

This study focused on flood risk assessment for cli-
mate change resilience in Malawi using time series and 
deep learning. These two methods provide a comprehen-
sive analysis of precipitation trends, autocorrelation pat-
terns, and flood vulnerability to provide a solid foundation 
for understanding and predicting flood risks in six districts 
of Malawi.  The observed results of increasing precipita-
tion intensity and frequency offer an insight into enhancing 
climate models to better understand and explore scenarios 
with varying potential impacts on flood frequency and se-
verity in the area. While the current deep learning model 
demonstrates exceptional accuracy, ongoing advancements 
in machine learning techniques to predict flood risks. This 
also points to the potential of exploring measures of build-
ing climate resilience. Real-Time Data Integration: Incor-
porating real-time weather and hydrological data into pre-
dictive models can improve the timeliness and accuracy of 
flood forecasts. Future research should explore the integra-
tion of real-time monitoring systems to provide dynamic 
updates and early warnings. Broader Geographic Scope: 
Extending the analysis to include additional regions within 
Malawi or neighbouring countries could offer a more com-
prehensive understanding of regional flood patterns and 
risks. This expanded scope can help in identifying cross-
border flood risks and facilitate regional cooperation in 
flood management. Socioeconomic Impact Studies: Inves-
tigating the socioeconomic impacts of flooding, including 
effects on communities, infrastructure, and economies, can 
provide valuable insights for developing targeted flood 
mitigation strategies. Future research should assess how 
different flood risk levels affect various aspects of society 
and inform policies accordingly.

In line with the aim of this study, it is imperative to 
indicate that information embedded in the findings could 
be used to develop and implement proactive flood risk 
management strategies, including updating flood risk maps, 
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designing flood protection infrastructure, and preparing 
emergency response plans tailored to the specific needs of 
each district in Malawi.  The study further provides data 
needed for professionals associated with disaster and cli-
mate change risk management who are at the forefront of 
addressing flood risks with limited understanding of risks 
and vulnerabilities. More specifically, the information may 
help to strengthen flood monitoring systems by investing in 
and enhancing in flood monitoring infrastructure across the 
identified flood-prone areas, including upgrading weather 
stations, river gauges, and other monitoring tools to ensure 
timely and accurate data collection to build resilience of 
communities to climate extremes Relatedly, the informa-
tion should foster implementation of proactive flood risk 
management strategies by utilize the predictive insights 
gained from this study to develop and implement proactive 
flood management strategies. In this case, this should in-
volve updating flood risk maps, designing flood protection 
infrastructure, and preparing emergency response plans 
tailored to the specific needs of each district, including 
strengthening institutional capacity to deal with flood risks. 
Finally, this study provides information that should guide 
flood prediction to ensure that there is a regular update 
with the latest data and advancements in machine learning. 
Continuous improvement and validation of these models 
are essential for maintaining their accuracy and reliability. 
Similarly, institutions and stakeholders should utilize this 
information to promote community awareness and prepar-
edness through conducting public awareness campaigns 
and educational programs to inform communities about 
flood risks and preparedness measures. This should also 
facilitate engaging local populations in flood risk manage-
ment to enhance resilience and response capabilities in the 
life cycle of disaster risk management. Finally, the find-
ings point to the notion that the government should aim to 
allocate resources based on detailed risk assessments and 
predictive forecasts to prioritize investments in high-risk 
areas and ensure that resources are distributed effectively 
to mitigate potential impacts of climate extremes.
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