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ABSTRACT

This study analyzes the statistical behavior of PM2.5 concentrations in Brasília using advanced probabilistic and time

series modeling to support air quality management and extreme event forecasting. The methods applied include Generalized

Extreme Value (GEV) distributions, Bayesian inference with Log-Normal distribution, ARIMAmodels, and quasi-Gaussian

approaches. Model performance was evaluated through statistical metrics such as RMSE, R², and the Approximation Index,

with parameter estimation improved using the Metropolis-Hastings algorithm. Results show that the GEV 1 model provides

a better fit for lower PM2.5 concentrations, while GEV 2 performs better at predicting extreme events. The log-logistic and

log-normal distributions also demonstrated good fit, capturing asymmetry and long-tail behavior typical of environmental

data. The ARIMAmodel identified seasonal patterns and supported short-term forecasts, though its predictive capacity

for extreme values was limited. Bayesian inference allowed robust estimation of parameter uncertainties and revealed

the non-negligible likelihood of severe pollution events. The study concludes that model selection should depend on the

forecasting objective: GEV for extremes, Log-Normal for general variability, and ARIMA for trends and seasonality. The
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use of MCMC sampling techniques significantly improved model robustness. These findings provide a comprehensive

framework for understanding air pollution dynamics and guiding public policy on air quality in urban environments.

Keywords: PM2.5; GEV; ARIMA; Bayesian Inference; Metropolis-Hastings

1. Introduction

Air pollution remains a significant environmental and

public health concern, particularly in urban areas, where

fine particulate matter (PM2.5) is a leading contributor to

degraded air quality and adverse health outcomes, including

respiratory diseases [1]. In Brasília, Brazil’s capital, PM2.5

concentrations are influenced by various factors such as ve-

hicle emissions, seasonal fires in the Cerrado, and local me-

teorological conditions [2]. Statistical modeling of PM2.5

variability is crucial not only for understanding its tempo-

ral and spatial distribution but also for guiding air pollution

control and mitigation strategies [3].

Among the various methods for environmental data

modeling, probability distribution functions (PDFs) have

proven effective in capturing the variability of pollutant con-

centrations. This study explores the use of the Log-Logistic,

Generalized Extreme Value (GEV), and Log-Normal distri-

butions for modeling and predicting PM2.5 concentrations in

Brasília. These distributions exhibit distinct statistical prop-

erties, offering varying levels of accuracy in representing

PM2.5 concentration data
[4,5].

Jimenez et al. [6] conducted a study in Mexico City to

model PM2.5 concentrations from 2010 to 2018, aiming to

identify the best-fitting probability distribution. They com-

pared distributions such as Gamma, Extreme Value, Gumbel,

and Weibull, while employing Bayesian inference for daily

maximum values. Parameters were estimated using Maxi-

mum Likelihood Estimation (MLE) and the Method of Mo-

ments, with model performance evaluated through metrics

such as Root Mean Squared Error (RMSE), Mean Squared

Error (MSE), Coefficient of Determination (R²), Approxi-

mation Index, and Prediction Accuracy. These metrics help

validate the quality of the distribution fits and the reliabil-

ity of predictions. The study also included a trend analysis

of PM2.5 concentrations, incorporating Bayesian inference

to model daily maximum values and identify potential pat-

terns or temporal changes. The results were compared with

official air quality data from Mexico City’s environmental

authorities to ensure alignment with real-world observations.

This validation process is vital for ensuring the accuracy and

reliability of predictions.

The comparison of different distributions and estima-

tion techniques allowed for the identification of the best mod-

els to represent PM2.5 variability. Bayesian inference, ap-

plied to Normal and Extreme Value distributions, highlighted

the importance of modeling not only the general variabil-

ity of the data but also rare and extreme high-concentration

events. Although the study did not specify which distribu-

tion provided the optimal fit for PM2.5 data, future research

could explore which model—Gamma, Extreme Value, Gum-

bel, Weibull, or Bayesian approaches—performs best based

on the evaluated metrics. Incorporating additional explana-

tory variables, such as meteorological factors, could further

enhance the robustness of PM2.5 modeling and forecasting.

This research follows a similar comprehensive ap-

proach to Jimenez et al. [6], combining traditional statistical

methods (MLE, Method of Moments) with Bayesian infer-

ence to model PM2.5 concentrations. The robust analysis of

various probability distributions, complemented by valida-

tion using official data, reinforces the reliability of the results

and contributes to a better understanding of air pollution

trends in Brasília. To assess the adequacy of the distributions

for modeling PM2.5 concentrations, statistical metrics such

as MSE, RMSE, Absolute Precision (AP), and Concordance

Index (AI) (Willmott et al. [7]) were used. These indicators

will guide the identification of the most appropriate distribu-

tion to represent PM2.5 variability in Brasília. This analysis

aims to support future studies on air quality dynamics in the

region and assist in the development of strategies to mitigate

air pollution in the Brazilian capital.

2. Materials and Methods

2.1. Study Area

Brasília is situated at 15.8° S, 47.9° W, with an av-

erage elevation of 1,172 meters above sea level. The city
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experiences a tropical high-altitude climate, marked by two

distinct seasons: a rainy season from October to April and

a dry season from May to September. The annual average

temperature ranges between 20 °C and 22 °C, with peak

temperatures reaching 29 °C to 31 °C during the warmer

months and minimum temperatures dropping to 12 °C to

14 °C during the cooler winter period. Relative humidity is

typically high during the rainy season but drops significantly

during the dry season, often falling below 30%.

The local topography is primarily flat, featuring

plateaus and gently undulating terrain. The natural veg-

etation of the region belongs to the Cerrado biome, one

of Brazil’s most biodiverse ecosystems, characterized by

grasses, shrubs, and small to medium-sized trees that are

adapted to nutrient-poor soils and extended dry periods

(Figure 1).

Figure 1. Location of the Federal District and Brasília in Brazil.

2.2. Data

The O3 concentration data used in this study were pro-

vided by the Environmental Information System Integrated

with Health (SISAM), managed by the Instituto Nacional de

Pesquisas Espaciais (INPE). These data, collected daily by

satellite in each municipality of the state, cover a 16-year

period from 2000 to 2018.

To assess trends in pollutant concentrations, the Mann-

Kendall (MK) test [8,9] was applied to identify any significant

increases or decreases. The MK statistic (S) for a time series

is computed as follows:

S =
∑n−1

k=1

∑n

i=k+1
sgn(xi − xk) (1)

Where xi and xk represent observations at points i and k,

respectively, and n denotes the total number of observations

in the series. The sign function (sgn(x)) is defined as:

sgn(x) =


1 if x > 0

0 if x = 0

−1 if x < 0

(2)

To ensure the reliability of the trend analysis in non-

random and serially correlated time series, modified MK

tests were applied using the variance correction methods

proposed by [10,11]. These methods adjust the variance by

calculating the effective sample size based on significant

serial correlations, thereby ensuring accurate trend detection.

Additionally, the Pettitt test [12], based on the Mann-

Whitney test, was used to identify significant change points

by splitting the data into two distinct samples and calculating

the Pettitt statistic U(t,n). The trend analysis was performed

across different temporal scales—daily, monthly, seasonal,

and annual—allowing for the capture of variations from mul-

tiple perspectives.

After the initial data analysis, several statistical meth-

ods were employed for modeling and analyzing PM2.5 con-

centrations, including autoregressive models, Bayesian in-

ference, and extreme value distributions. The methodology

followed these steps:

2.2.1. ARIMAModeling

An Integrated Autoregressive Moving Average

(ARIMA) model was used to capture temporal patterns

in the data. The model was estimated with various lag orders

and smoothing parameters, selecting ARIMA(10,0,5) based

on information criteria such as AIC and BIC. The model’s

fit was evaluated through residual analysis and QQ-plots.

2.2.2. Bayesian Inference with Log-Normal Dis-

tribution

To account for the positive skewness in the data,

Bayesian inference with a log-normal distribution was ap-

plied. The parameters were estimated using the Markov

Chain Monte Carlo (MCMC) method via Metropolis-

Hastings. This approach provided a more robust representa-
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tion of uncertainties in the parameters and facilitated more

reliable forecasts for future events.

2.2.3. Extreme Value Distributions - GEV and

Log-Logistic

To model extreme events, the Generalized Extreme

Value (GEV) and Log-Logistic distributions were fitted to

the data.

GEV1 demonstrated a better fit for lower PM2.5 con-

centrations, indicating an asymmetric distribution with a long

tail.

GEV2 was more suitable for predicting high pollutant

concentrations, reflecting the potential for extreme future

events.

Comparative Analysis of Models: The models were

compared using:

Residual analysis and QQ-plots to assess the adequacy

of the data fitting.

AIC and BIC criteria for model selection.

Cross-validation to test the predictive power of the

models.

The results revealed that combining traditional meth-

ods (ARIMA), Bayesian inference, and extreme distributions

provided more accurate modeling of PM2.5 concentrations,

capturing both regular patterns and extreme pollution events.

The performance of the adjusted distributions was eval-

uated using statistical metrics, including Mean Squared Er-

ror (MSE) and Root Mean Squared Error (RMSE) to assess

model accuracy, Absolute Precision (AP) to measure the

mean absolute deviation, and the Concordance Index (IA) to

evaluate how well the distributions aligned with the observed

data.

Based on this performance information, the distribu-

tion with the lowest error values (MSE and RMSE) and the

highest precision and concordance values (AP and IA) is

considered the most suitable for representing PM2.5 concen-

trations in Brasília.

3. Results

3.1. Descriptive Analysis

In Brazil, fires for land conversion are common during

the dry season, particularly in the months leading up to the

rainy season. The Midwest region of Brazil, where Brasília

is located, is a hotspot for fires [11–15]. These fires are likely to

contribute to the increase in pollutant concentrations during

this period. Table 1 summarizes the statistical properties

of the PM2.5 data, including the mean, standard deviation

(SD), and the maximum and minimum values of the Mann-

Kendall (MK) test across different time scales. The highest

PM2.5 concentrations were observed between August and

October, corresponding to the months with the greatest SD

in concentrations.

Table 1. Descriptive statistics of PM2.5 concentrations and p-values from the Mann-Kendall (MK) test for temporal trends at various

time scales in Brasília.

Months Average Place Maximum Minimum p-Values

Jan 11.55 15.49 54.90 0.53 0.99

Feb 12.35 6.82 76.30 0.73 0.16

Mar 15.04 9.82 102.28 0.00 0.07

Apr 13.06 5.68 38.10 1.48 0.07

May 14.18 9.53 71.95 1.43 0.89

Jun 11.16 7.50 59.65 1.78 0.04

Jul 15.02 23.71 422.40 2.05 0.01

Aug 17.67 23.13 308.53 1.85 0.06

Sep 27.69 29.63 315.35 3.00 0.16

Oct 20.57 14.61 125.68 1.70 0.87

Nov 13.61 7.17 107.70 1.78 0.99

Dec 13.19 7.99 153.55 2.08 0.11

Annual 0.14

Dry 0.97

daily 0.49

Legend: In bold, significant trends.
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Overall, no significant trends were identified for

PM2.5, although slight variations were observed (Figure

2), with an increase of 0.2436 µg/m³/year in June and a

decrease of 0.4875 µg/m³/year in July. Breakpoints in the

PM2.5 series were identified in June 2008 and July 2007.

PM2.5 can act as a medium for photochemical reactions,

facilitating the formation of O₃. PM2.5 can act as a medium

for photochemical reactions, facilitating the formation of O₃.

While SO₂, a primary pollutant from fossil fuel combustion,

does not directly contribute to O₃ formation andmay even in-

hibit its production, it can influence the chemical processes

that generate O₃, much like NOx. These relationships are

context-dependent and can vary based on local conditions,

emission sources, and specific atmospheric dynamics. As

such, air pollution control policies should prioritize reduc-

ing emissions during critical periods, such as fire seasons,

to mitigate peak pollutant concentrations. Statistical models

are crucial tools for monitoring and predicting these effects,

emphasizing the need for models that account for tempo-

ral and spatial variations in pollutant concentrations. This

approach is essential for effective air pollution mitigation

planning [16].

Figure 2. Concentrations of PM2.5 Daily Brasilia City 2000–2018.

3.1.1. Results of Probability Distribution Func-

tion Fitting Trend of PM2.5 Brasília Data

(2000–2021)

The Adjusted probability density functions (PDFs), as

shown in Figure 3a, include distributions such as General-

ized ExtremeValue (GEV),Weibull, and Exponential, among

others. The accompanying table provides statistical metrics

that enable an assessment of the fit’s quality. The graph

indicates that the tested distributions exhibit asymmetric

behavior with a right tail, suggesting that the data follows

a steeply sloping distribution. This pattern is commonly

observed in environmental variables such as wind speed, ex-

treme precipitation, and air pollutants. Also, the overlapping

of the curves implies that some distributions provide similar

fits. However, selecting the best distribution necessitates

evaluating statistical metrics such as the Akaike Information

Criterion (AIC), Bayesian Information Criterion (BIC), and

Root Mean Square Error (RMSE). The histogram of the em-

pirical distribution displays a sharp peak at low values and

a long tail, indicating that high-magnitude events are rare.

This pattern may be associated with extreme environmental

phenomena. Choosing the most suitable distribution can of-

fer valuable insights into environmental risks, the prediction

of extreme events, and the underlying physical processes.
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(a) (b)

Figure 3. (a) Adjustment of statistical distributions to the observed data. (b) Adjustment of statistical distributions to the cumulative

distribution function (CDF) of the observed data.

The adjustment of the cumulative distribution functions

(CDFs) is illustrated in Figure 3b, which presents the empiri-

cal CDF alongside the CDFsmodified to fit various statistical

distributions. The accompanying table includes statistical

metrics that assist in identifying the best fit for the data. The

cumulative distribution function increases steeply at low val-

ues, indicating that most of the data is concentrated within

this range. This observation highlights the strong asymmetry

of the distribution and the presence of a long tail on the right,

which is a common feature in environmental and hydrologi-

cal variables. The adjusted distributions closely follow the

empirical CDF, suggesting a good statistical fit. However,

minor differences can be observed in the tail region, where

extreme events occur with low frequency.

Choosing the most appropriate distribution directly af-

fects statistical forecasting and environmental modeling. A

proper fit improves the estimation of probabilities of rare

events, such as pollution spikes or extreme rainfall, aiding

in the formulation of environmental policies and risk man-

agement strategies.

Stationarity analysis refers to the constancy of the sta-

tistical characteristics of a time series, such as mean and

variance, over time. Tests such as the Dickey-Fuller are

commonly used to evaluate this property. If a time series

exhibits seasonal trends or significant variations, transfor-

mations such as differencing may be necessary to achieve

stationarity. The shape of the tails of distributions is criti-

cal to understanding the occurrence of extreme events. The

asymmetry on the left suggests a greater concentration of

low values, indicating a sloping distribution. Depending on

the type of adjusted distribution (such asWeibull or Gamma),

this factor can impact the modeling of rare events.

The high concentration of values close to zero is rele-

vant in several areas, such as air pollution and disease inci-

dence, where many events have low intensity or frequency.

To address this characteristic, logarithmic transformations or

adjustments based on specific distributions can be applied

that better capture this behavior.

3.1.2. Viewing the settings of 3 Functions: Lo-

gistic Log, GEV and Normal Log

Log Logistic

The histogram (Figure 4a) and the cumulative distri-

bution function (CDF) (Figure 4c) indicate a good fit of the

log-logistic distribution to the PM2.5 data, effectively captur-

ing the asymmetry and long right tail of the distribution. For

this distribution (Figure 4b), the model fitting yielded a shape

parameter σ = 0.3547 and a location parameter μ = 2.506. The

coefficient of determination (R² = 0.6215) suggests a moderate

fit, while the root mean square error (RMSE = 0.5300) points

to some discrepancy between observed and fitted values. The

approximation index (0.4569) further indicates that the model

may not be ideal for predicting extreme values. The QQ plot

(Figure 4d) reveals that the empirical and theoretical quantiles

of the log-logistic distribution are well aligned in the central

portion of the data but exhibit deviations at the extremes—

particularly in the upper tail—suggesting that extreme PM2.5

events may not be adequately represented by this model.
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(a) (b)

(c) (d)

(e)

Figure 4. (a) (Top left) Log-logistic distribution function fitted to PM2.5 concentration data. The histogram represents the observed

data, while the red curve displays the adjustment of the distribution. (b) (Top right) Adjustment of the log-logistic distribution to the

PM2.5 time series (2000–2018). The blue curve represents the modeling of the data over time. (c) (Center left) Comparison between the

empirical cumulative distribution function (CDF) of the PM2.5 data and the theoretical CDF of the log-logistic distribution. (d) (Center

right) QQ plot comparing the empirical quantiles of the PM2.5 distribution with the theoretical quantiles of the log-logistic distribution.

A good fit is indicated by the proximity of the points to the reference line. (e) (Bottom) PM2.5 concentrations modeled by the log-logistic

distribution between 2000 and 2018, presented on a logarithmic scale.
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Based on these results, the Log-Logistic distribution

stands out as a viable option for modeling environmental

variables with asymmetric behavior and a long tail, such as

PM2.5. However, the fit can be improved by considering

alternative distributions, such as Generalized Extreme Value

(GEV), which offers greater flexibility to model extreme

events. The analysis suggests that, despite the reasonable

adjustment, there is room for refinement that improves the

prediction and representation of critical PM2.5 concentra-

tions.

For the Generalized Extreme Value (GEV) distribution,

the histogram (Figure 5a) and the cumulative distribution

function (CDF) (Figure 5c) demonstrate a good fit to the

PM2.5 data, effectively capturing the asymmetry and the long

right tail. The model fitting (Figure 5b) produced a shape

parameter σ = 6.3956, a location parameter μ = 9.766, and

a form parameter k = 0.18007. The positive value of the

shape parameter (k > 0) indicates a heavy-tailed distribution,

suggesting the presence of extreme values in the data. The

coefficient of determination (R² = 0.6468) shows that the

GEV model explains approximately 65% of the data vari-

ability, which represents a moderate, though not exceptional,

fit. The root mean square error (RMSE = 0.5286) and the

mean squared error (MSE = 0.2794) indicate relatively low

error values, supporting the adequacy of the fit. However,

the approximation index (0.4569) and the prediction approx-

imation value (13.7673) suggest that the model may not be

optimal for accurately forecasting extreme PM2.5 events.

(a) (b)

(c) (d)

Figure 5. Cont.
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(e)

Figure 5. (a) Histogram and Adjusted Probability Density Function (PDF): Represents the distribution of the empirical data and the

adjusted curve of the GEV distribution. (b) Adjusted Cumulative Distribution Function (CDF): Displays the empirical CDF of the data

and the fit of the GEV distribution. (c) Empirical Probability Plot: Displays the empirical CDF adjusted to the GEV. (d) Quantile-Quantile

Plot (QQ-Plot): It compares the empirical quantiles with the theoretical quantiles of the GEV. A good fit is indicated by the proximity of

the points to the red line. (e) Adjusted Cumulative Density Function: Represents the accumulated density of the data adjusted to the GEV

distribution.

The QQ plot (Figure 5d) confirms the adequacy of

the fit, but large deviations in the upper quantiles may indi-

cate that the model does not represent the extreme values

well. Confirms the adequacy of the fit, but large deviations

in the upper quantiles may indicate that the model does not

represent the extreme values well.

Log-Normal distribution is commonly used to model

environmental variables, particularly pollutant concentra-

tions, as it effectively captures data asymmetry (right-

skewed distribution with a long tail), with a location pa-

rameter μ = 2.4556, and the scale parameter σ = 0.7322.

The histogram (Figure 6a) and CDF (Figure 6b) indicate

a good fit, capturing the asymmetry and long tail to the

right of the data. The coefficient of determination (R2 =

0.6689) indicates a moderate to good fit, suggesting that the

Log-Normal distribution explains approximately 67% of

the data variability, surpassing the performance of the Gen-

eralized Extreme Value (GEV) distribution (R2= 0.6468).

The RMSE = 0.5118, indicating a reasonable fit. The ap-

proximation index (0.4897) points out that the model also

may not be ideal for extreme values, with a prediction ap-

proximation of 13.6735. Additionally, the QQ-Plot (Figure

6c) provides insight into how well the model represents

upper and lower quantiles.

(a) (b)

Figure 6. Cont.
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(c) (d)

Figure 6. (a) Histogram and PDF: Displays the empirical distribution of the data alongside the fitted Log-Normal probability density

function. (b) Cumulative Distribution Function (CDF): Compares the empirical cumulative distribution with the fitted Log-Normal CDF.

(c) Quantile-Quantile Plot (QQ-Plot): Evaluates how well the empirical quantiles align with the theoretical quantiles of the Log-Normal

distribution. Significant deviations indicate potential model inadequacy. (d) Adjusted Cumulative Density Function: Illustrates the

cumulative density of the data adjusted to the Log-Normal distribution.

In probability theory, the tail of a distribution represents

extreme values, either high or low. A long-tailed distribu-

tion indicates that extreme events are more likely to occur

than in distributions with shorter tails, such as the Normal

distribution. Examples of long-tailed distributions include

the Log-Logistic and Generalized Extreme Value (GEV) dis-

tributions, which suggest a higher likelihood of observing

rare, extreme values (Table 2).

Table 2. Distribution Model Fitting Metrics (Log-Logistic, GEV and Log-Normal) for PM2.5 Concentrations.

PDF R² RMSE Approximation Index KS Test Chi-Square Test (p-Value)

Log-Logistic 0.6215 0.5300 0.4569 0.8831 0.0000

GEV 0.6468 0.5286 0.4696 0.8631 0.0000

Log-Normal 0.6689 0.5118 0.4897 0.8631 0.0000

In the case of air pollutant concentrations, these dis-

tributions often exhibit long-tailed behavior, indicating that

extreme pollution events are not uncommon. For instance,

modeling ozone concentrations in urban areas reveals that

peak values occur more frequently than a normal distribution

would predict. These peaks may result from factors such as

wildfires, industrial emissions, or specific meteorological

conditions [13–17].

Moreover, pollutant behavior is influenced by vari-

ous environmental and atmospheric factors, including wind

speed and direction, temperature and humidity, local topog-

raphy (such as mountains, valleys, and urban structures), and

atmospheric chemical reactions. These processes can lead to

localized pollution spikes, contributing to long tails in pol-

lutant distributions. Additionally, these pollution spikes can

have significant health impacts, particularly involving PM2.5,

ozone, and NO₂, which are linked to severe respiratory and

cardiovascular issues, chronic diseases, and premature mor-

tality [4,18–22].
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3.2. Modeling

3.2.1. ARIMA

Applying the ARIMAmodel and then smoothing the

data and removing higher outliers to improve model accuracy.

Figure 7 presents the time series of daily PM2.5 concentra-

tions from 2000 to 2018. The original series (blue) displays

significant daily variability, marked by abrupt peaks and

high-frequency fluctuations. In contrast, the smoothed se-

ries (red) highlights long-term trends and seasonal patterns,

offering a clearer view of the data’s underlying behavior.

Figure 7. PM2.5 Time Series (Original vs. Smoothed): Blue: Orig-

inal PM2.5 Series, Red: Smoothed PM2.5 Series.

The data indicates frequent fluctuations, likely due to

the influence of intermittent sources such as vehicle and in-

dustrial emissions, along with natural events like fires. The

null hypothesis has been rejected, suggesting that the time

series is likely stationary, as evidenced by the Augmented

Dickey-Fuller (ADF) test result of −27.68. Seasonal patterns

and trends are also evident, with smoothing techniques re-

vealing recurring cycles that suggest seasonal variations in

air pollution. Furthermore, it’s important to explore poten-

tial long-term trends through statistical tests to determine

whether PM2.5 concentrations have increased or decreased

over time. Hence, smoothing the original series, which con-

tains significant noise, is crucial to help identify structural

patterns more easily. Smoothing simplifies trend analysis,

supports predictive model development, and aids in detecting

anomalous events.

Several adjustments were tested to find the most suit-

able parameter configuration, as shown in Table 3, to better

align with the real-time series’ behavior. Among the ap-

plied parameters, the ARIMA (10,0,5) model emerged as

the best fit, incorporating 10 autoregressive (AR) terms, no

differencing terms, and 5 moving average (MA) terms. This

combination effectively captures both autocorrelation and

seasonality in the PM2.5 time series.

The results of the ADF test indicate that the time series

is stationary, with a p-value significantly lower than the com-

mon significance level of 0.05. The autoregressive (AR) and

moving average (MA) terms show statistically significant

values, although there are variations among the lag terms.

The AR(1), AR(2), AR(3), AR(4), AR(5), and AR(10) terms

exhibit strong significance. In contrast, theAR(8) andMA(4)

terms show marginal significance, suggesting that there is

room for further refinement. The estimated variance of the

model is 152.71, with a p-value close to zero, indicating that

it effectively captures the variability in the data (Table 3).

Table 3. Estimated Parameters and Statistical Significance of the ARIMAModel for PM2.5 Concentrations.

Term Value Standard Error Statistics t p-Value

Constant 1.52E−05 5.12E−05 0.297 0.766

AR(1) −0.592 14.03 −0.421 0.673

AR(2) −0.275 0.490 −0.561 0.574

AR(3) 0.2681 0.154 17.388 0.082

AR(4) 0.189 0.385 0.492 0.622

AR(5) 0.028 0.057 0.506 0.612

AR(6) 0.038 0.024 16.071 0.108

AR(7) 0.027 0.039 0.702 0.482

AR(8) −0.007 0.023 −0.317 0.750

AR(9) −0.001 0.028 −0.060 0.951

AR(10) −0.007 0.024 −0.326 0.743

MA(1) −0.831 14.03 −0.592 0.553

MA(2) −0.361 18.44 −0.196 0.844

MA(3) −0.446 0.664 −0.671 0.501

MA(4) 0.387 0.375 10.302 0.302

MA(5) 0.252 0.647 0.389 0.696

Variance 154.43 0.500 308.43 0
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The ARIMA(10,0,5) model seems well-suited for ana-

lyzing this time series. Further validation, including residual

analysis and comparison of model fit statistics (AIC, BIC),

will confirm the model’s ability to reliably predict future

PM2.5 concentrations. The autoregressive (AR) coefficients,

particularly AR(3), AR(4), AR(5), and AR(6), exhibit strong

significance with very low p-values, indicating that these

variables significantly influence the model’s predictions. The

moving average (MA) coefficients (1 to 5) are also notable,

as they have low p-values, suggesting that the moving aver-

age plays a crucial role in the model. The model’s variance

is 151.82, which has a very low p-value, confirming the

model’s effectiveness in capturing data variability.

Figure 8a and Figure 8b illustrate a comparison be-

tween actual PM2.5 concentrations (represented by the blue

line) and predictions from the ARIMAmodel (depicted by

the black dotted line). The red dashed lines represent the

lower and upper bounds of the confidence interval.

The variations in PM2.5 concentrations can be attributed

to external factors such as changes in weather conditions,

heavy vehicular traffic, industrial activities, or natural events

like fires. The notable fluctuations indicate a dynamic envi-

ronment, likely to be influenced by intermittent sources of

pollution. The actual PM2.5 time series shows significant

variations, especially at the beginning, with values ranging

between 12 and 22 µg/m3. This behavior suggests that air

pollution is subject to abrupt changes due to environmental

influences like variable weather, vehicle traffic, or local in-

dustrial activities.

The dotted red line in Figure 8b represents the model’s

prediction and suggests that PM2.5 concentrations stabilize

over time, showing more consistent values than the actual

data. In contrast, the actual PM2.5 concentrations exhibit

fluctuations around a steady average, reflecting the inherent

variability in air quality. While theARIMA forecast captures

this stability, there is a noticeable widening of the confidence

intervals as time progresses, indicating increasing uncertainty

in longer-term predictions.

(a) (b) (c)

Figure 8. (a) Time series of PM2.5 concentration (particulate matter with a diameter of less than 2.5 micrometers) in µg/m
3 over time.

(b) The actual data is represented by the blue line, while the model forecast is indicated by the dotted red line. (c) Comparison between

actual and forecasted PM2.5 values, including confidence intervals.

The model provides reasonably accurate short-term

forecasts, with confidence intervals indicating manageable

uncertainty. However, as the forecast extends into the future,

these intervals widen significantly, suggesting that long-term

predictions are less reliable. The model’s predictions do not

seem to adequately account for the peaks and valleys ob-

served in real data, likely due to the smoothing effect of the

modeling process, which may overlook extreme pollution

events. At the beginning of the data series, the actual PM2.5

concentrations show significant variability. This may reflect

the influence of external factors such as climate anomalies

or environmental events like wildfires or dust storms. The

ARIMAmodel may not fully capture these influences due

to its assumptions of linearity and stationarity in the data.

The growing uncertainty in the predictions could indicate

the model’s limitations in accounting for longer-term varia-

tions, especially if external factors, such as climate change

or human activities, are influencing the data in ways that the

model does not consider.

From a specific point in the series, the dotted red line

begins to represent the model’s prediction, indicating a grad-

ual stabilization of PM2.5 concentration around 16 µg/m3,
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with a slight increase over time. After the initial fluctua-

tions, the ARIMA model’s forecast stabilizes, suggesting

that the model smooths out early variability. However, this

stabilization may not fully capture real-world complexities,

particularly when sudden, short-term changes occur. The

static nature of the forecast could be due to the model’s ten-

dency to over-smooth the data, potentially missing transient

events that impact air quality. To enhance the model’s ability

to capture extreme events and improve prediction accuracy,

it is necessary to adjust the model parameters, incorporate ex-

ogenous variables, or integrate machine learning techniques.

This would account for seasonal or external factors influenc-

ing PM2.5 concentrations.

The observed stationary behavior of the series implies

that it maintains a consistent meaning and variance over

time, supporting the assumption of stationarity in ARIMA

models. The absence of significant trends or seasonal cycles

indicates that the time series behaves predictably within

certain limits. If the assessment in 2019 closely mirrors

the overall pattern of previous years, it further reinforces

the stationary nature of the data, suggesting that no abrupt

changes or external shocks significantly affected the series

during that period.

3.3. Bayesian inference with Log-Normal Dis-

tribution

For the analysis of the positive skewness of the data, as

can be observed in Figure 9a, most PM2.5 values remain low,

but significant spikes are observed at specific points (approx-

imately at values 80 and 95 on the X-axis). This suggests that

although the concentration of PM2.5 is predominantly low,

there are sporadic high-intensity events that affect pollution.

For this reason, the log-normal distribution is suitable for

modeling positive and asymmetric data. The results indicate

that while most PM2.5 values remain low (Figure 9b), there

is a significant probability of extreme events occurring, such

as sharp spikes in pollution.

(a) (b)

Figure 9. (a) Distribution of daily PM2.5 concentrations (µg/m
3), highlighting the positive asymmetry of the data. (b) Frequency

distribution of PM2.5 concentrations (µg/m
3), highlighting the predominance of low values and the probability of extreme events

occurring, represented by sharp peaks of pollution.

In the log-normal distribution (Figure 9b), spikes can

represent periods of intense pollution caused by factors such

as adverse weather conditions, increased industrial activity,

or wildfires. The concentration of PM2.5 does not follow

a linear pattern. The log-normal distribution suggests that

small increases occur more frequently, while large peaks are

rare but can occur. Predictions made with this approach can

be useful for public policies, as they indicate that, despite

long periods with low pollution, it is essential to maintain

constant monitoring to prevent environmental crises and re-

spond quickly to high-pollution events.

Figure 10 illustrates the distribution of the original

PM2.5 concentration values. A high density concentrated

around values close to zero is observed, indicating an asym-

metric distribution and the predominant presence of very low

or even null values. This behavior suggests a large dispersion
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in the data, which may indicate the need for transformation,

such as normalization, or the use of more appropriate distri-

butions, such as log-normal or Weibull, for more effective

modeling.

In addition, the predominance of low values may reflect

a censorship effect on the data, possibly due to the detection

limits of the sensors. This characteristic should be considered

when applying statistical methods or predictive models, and

it may be necessary to use techniques such as the removal of

outliers or transformations to improve the suitability of the

data to parametric methods.

Figure 10. Distribution of the original PM2.5 concentration values.

3.4. Comparative Analysis of Distributions

Three distributions were tested to model the observed

data: Log-Logistic, Generalized Extreme Value (GEV), and

Log-Normal. These distributions are indicated for asym-

metric data and are commonly used in environmental and

climatic phenomena, especially those with extreme values

and long tails.

All distributions have important characteristics for the

study case. Log-Normal Distributions assume that the log-

arithms of data follow a normal distribution, often used

for environmental variables with exponential growth. Log-

Logistic Distributions is Similar to Log-Normal but with

heavier tails, ideal for modeling frequent extreme events

in hydrology and precipitation. While, GEV (Generalized

Extreme Value) Distributions focus more on extreme events

in the upper tail, capable of Gumbel, Fréchet, or Weibull

behaviors for flexible modeling.

When adjusting the data to the tested distributions, it

was observed that the probability values obtained were sim-

ilar between the models, suggesting that they all provide a

good fit to the data. However, some important differences

deserve to be highlighted: The Log-Normal distribution cap-

tured the asymmetry of the data well, but may underestimate

the frequency of extreme values due to the less heavy tail

when compared to the Log-Logistic and GEV distributions;

The GEV, as it specializes in modeling extreme events, was

the most effective in capturing the occurrence of high values.

For forecasts involving extreme events, such as pollution

peaks or heavy rainfall, the GEV would be the most suitable

distribution.

The high value of σ = 4.42 in Log-Normal indicates

a large dispersion of the data. Compared to Log-Logistic,

which also has the flexibility to model dispersion, the ideal

choice depends on the adherence of the distribution to the tail

of the data. For overall data modeling, Log-Normal offers a

good fit, capturing well the asymmetry and central distribu-

tion of the observed values. For extreme event modeling, the

GEV is the best option, being specifically designed to cap-

ture very high values. Log-Logistic can be an intermediate

alternative, since it combines characteristics of the previous

distributions, being useful when the data has heavy tails, but

without necessarily involving rare extreme events.

3.4.1. Gaussian PDF adjustment

Figure 11a illustrates the application of the Gaussian

distribution function (normal) to the concentration of PM2.5

(fine particulate matter) between 2000 and 2018. The distri-

bution of PM2.5 data suggests that, although most measure-

ments focus on low values, there are rare episodes of severe

pollution. This pattern is useful for predicting trends and

guiding environmental policies to mitigate extreme pollution

events. The highest probability density is associated with

PM2.5 concentrations below 50 µg/m3, which indicates that

most of the data was collected at relatively low concentra-

tions. There are concentrations above 100 µg/m3, although

rare, with some values reaching up to 400 µg/m3, suggesting

exceptional episodes of high pollution. The distribution is

right-skewed, indicating rare pollution spikes. Low concen-

trations suggest improved air quality, but extreme events like

wildfires need attention.

The histogram of PM2.5 concentrations between 2000

and 2018 (Figure 11b), with an adjusted Gaussian proba-

bility density function (PDF) superimposed. Although the

Gaussian fit represents the core values well, it does not adapt

adequately to the tails, implying that alternative distributions

must be considered for more accurate modeling and fore-
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casting. Most samples have PM2.5 concentrations below 50

µg/m3, indicating that the air quality was within acceptable

standards for most of the period. There are some values

higher than 100 µg/m3, but rare, possibly related to specific

high-pollution events, such as fires or industrial emissions.

The histogram shows a right tail, suggesting positive skew-

ness and a poor fit with the Gaussian distribution. Alternative

distributions, like log-normal, may fit better.

(a) (b)

(c) (d)

Figure 11. (a) “Gaussian Distribution of PM2.5 Concentration between 2000 and 2018”. (b) Adjustment of Gaussian Distribution to

PM2.5 Concentrations (2000–2018)”. (c) Adjustment of the Cumulative Distribution Function (CDF) of PM2.5 Concentrations: Gaussian

vs. Empirical (2000–2018). (d) Prior (A Priori Distribution) – Represents the initial assumption about the distribution of maximum PM2

values, before the data is incorporated. -Posterior (Posterior Distribution) – Represents the adjusted distribution after the incorporation of

the observed data.

Empirical CDF (probably in light blue) based on ob-

served data and Adjusted Gaussian CDF (probably in red)

fitted to the data via a normal distribution can be observed

in Figure 11c. The presence of extreme values may indi-

cate sporadic episodes of high pollution, possibly associated

with fires or thermal inversions. Environmental policies

should focus not only on averting concentrations, but also

on mitigating these critical events, which can have severe

impacts on public health. The form of the CDF shows that

most concentrations of PM2.5 are concentrated at low val-

ues, with a rapid growth of the accumulated function up to

about 100 µg/m3. Above this threshold, the probabilities

stabilize, indicating that very high concentrations are rare

events. This suggests that the Gaussian distribution may be

adequate to represent the central variability of the data but

may underestimate extreme pollution events.

Figure 11d shows the Bayesian inference for the maxi-

mum values of PM2 concentration. in Brasília in the period

from 2000 to 2018, highlighting the a priori and a posteriori

distribution of extreme values. Where the priori distribu-

tion (dashed line) presents an initial assumption about the

maximum possible values and, the posteriori distribution

(continuous line) reflects the updating of this assumption

based on the observed data.
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The a priori distribution represents the initial assump-

tion about the maximum values of PM2.5 before incorpora-

tion of observational data. The posteriori distribution, ob-

tained after the Bayesian update, reflects the influence of real

data on the modeling of extremes. It is observed that the pos-

terior distribution presents a more accentuated displacement

and adjustment, indicating that the collected data signifi-

cantly modified the initial predictions about the maximum

concentrations.

Another relevant aspect is the presence of a long tail

in the posterior distribution, which suggests the existence

of sporadic extreme events, with concentrations higher than

400 µg/m3. These events can be associated with seasonal

factors, such as fires, thermal inversions, and periods of at-

mospheric stability that favor the accumulation of pollutants.

This pattern reinforces the need for continuous monitoring

and air pollution control policies, especially at critical times

of the year.

The histogram (Figure 12a) shows a higher frequency

of values between 100 and 300 µg/m3, with a sharp peak

around 250 µg/m3, indicating that most PM2.5 observations

are concentrated in this range. The presence of a tail on

the right suggests the occurrence of extreme events, with

elevated PM2.5 values, although less frequent. The brown

line, which represents the probability density function (PDF)

adjusted by the distribution of extreme values, shows that

statistical modeling adequately captures the asymmetry of

the distribution and the elevated PM2.5 values. High concen-

trations of PM2.5 may be related to fire events, thermal inver-

sion, and emissions from industrial and vehicular sources.

(a) (b)

(c) (d)

Figure 12. (a) Histogram of PM2.5 concentration (µg/m
3) in the period from 2000 to 2018, with the adjustment of a probability density

function (PDF) based on the distribution of extreme values (Extreme Value Distribution). (b) Statistical model adjustment to a distribution

of PM2.5 (µg/m
3) in the period 2000–2018. (c) Comparison between the empirical cumulative distribution function (CDF) and the

adjusted CDF of the Generalized Distribution of Extreme Values (GEV) for PM2.5 concentrations (µg/m
3) in Brasília in the period

2000–2018. The adjusted curve (red line) shows good adherence to the empirical data. (d) Adjusted Probability Distribution (PDF) of

PM2.5 Concentration in the period 2000–2018 using the Generalized Extreme Value Distribution (GEV). The adjustment suggests that

the data follows asymmetric behavior, with a longer tail on the right, indicating events of high PM2.5 concentration.
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The fit of a statistical model for PM2.5 concentrations

in the period 2000–2018 (Figure 12b), with the blue line

representing the observed data and the grey line the adjusted

GEVmodel. The value of r = 0.99, r = 0.99, r = 0.99 suggests

that the fit of the GEV model is excellent, indicating that

the adjusted distribution accurately describes the data, espe-

cially at the highest concentrations. The high value reveals

that the GEV model very accurately describes the highest

concentrations of PM2.5, which is essential for the predic-

tion of extreme events. The excellent fit suggests that the

GEV distribution can be used to predict extreme air pollution

events, which have major implications for environmental

policymaking and pollution mitigation actions.

The empirical cumulative distribution function (CDF)

(in black) with the CDF adjusted by the GEV distribution

(in red) (Figure 12c). The excellent grip between the two

corners indicates a high-quality fit. The curve shows a sharp

growth at first, indicating that most PM2.5 concentrations

are in lower ranges. Extreme concentrations, on the other

hand, are less frequent, which is in line with the observed

distribution. The almost complete overlap between the em-

pirical CDF and the CDF adjusted by the GEV distribution

suggests that the model describes the distribution of the data

very well.

Figure 13 shows the QQ plot for the GEV 1 distribu-

tion fitted to PM2.5 concentration data from 2000 to 2018.

The plot serves as a graphical diagnostic tool to assess the ad-

equacy of the statistical model in representing the empirical

data. In the central portion of the distribution (approximately

quantiles 10 to 50), the points lie relatively close to the 1:1

line, suggesting that the GEV 1 distribution provides a rea-

sonable fit for typical PM2.5 concentrations.

However, significant deviations are observed in the

upper quantiles (above quantile 60), where the points rise

steeply above the reference line. This behavior indicates

that the GEV 1 model underestimates extreme values, failing

to adequately capture high PM2.5 concentration events—an

essential concern for public health risk assessments and air

quality management strategies.

When compared to other distributions tested in the

study, the Log-Logistic distribution also showed a good fit

for the central values but displayed similar limitations in the

upper tail. The Log-Normal distribution, while achieving the

highest coefficient of determination (R2 = 0.6689), likewise

showed deviations in the extremes, as evidenced in its re-

spective QQ plot, indicating it may not be ideal for modeling

rare pollution events.

Figure 13. Quantile-Quantile (QQ) plot comparing the empirical

quantiles of daily PM2.5 concentrations in Brasília (2000–2018)

with the theoretical quantiles of the Generalized Extreme Value

distribution (GEV 1). The red dashed line represents the 1:1 refer-

ence line, indicating perfect agreement between the observed and

theoretical quantiles.

In contrast, the GEV 2 distribution, which was fit-

ted specifically to capture the behavior of extreme values,

showed superior performance in the upper tail of the distri-

bution. Its heavier tail provided a better representation of

high-concentration events, making it a more robust alterna-

tive for extreme value modeling.

Therefore, the QQ plot in Figure 13 highlights the im-

portance of selecting statistical models based on the intended

purpose of the analysis. While GEV 1 may be suitable for

describing the general behavior of PM2.5 data, distributions

like GEV 2 are more appropriate when the objective is to

predict or understand extreme pollution events.

The probability density function adjusted by the Gen-

eralized Extreme Value (GEV-2) distribution (Figure 14a)

for PM2.5 concentration data between 2000 and 2018. The

distribution shows a positive asymmetric shape, typical of

GEV, with a peak around 50–60 µg/m3, indicating the most

frequent concentration of PM2.5. After this point, the density

decays rapidly, but with a long tail, suggesting the pres-

ence of extreme events with high concentrations of PM2.5.

This behavior is indicative that, although most of the data is

concentrated in moderate concentrations, extreme pollution

events still occur with some frequency. The GEV model

83

GEV 2



Journal of Atmospheric Science Research | Volume 08 | Issue 03 | July 2025

cal goodness-of-fit tests. The long tail suggests the need for

specific strategies to mitigate extreme pollution events, such

as fires and weather conditions that favor the concentration

of pollutants.

(a) (b)

(c) (d)

Figure 14. (a) Adjusted Probability Density Function (PDF) of the Generalized Extreme Value (GEV-2) distribution for PM2.5

concentration in the period 2000–2018. (b) Quantile-Quantile (QQ) graph comparing the quantiles of the PM2.5 sample (2000–2018)

with the Generalized Extreme Value (GEV-2) distribution. (c) probability distribution (PDF) of PM2.5 concentrations for the period

2000–2018, adjusted for three different Gaussian distributions (Gauss 1, Gauss 2 and Gauss 3). (d) Probability density function (PDF)

adjusted for PM2.5 concentrations for the period 2000–2018, using Generalized Extreme Value (GEV) distributions. The curves represent

different fits: GEV (PM2.5) in blue, GEV 1 in red and GEV 2 in black.

The predominance of concentrations around 50–60

µg/m3 may indicate a chronically high level of pollution,

with implications for public health, since values above 25

µg/m3 are considered harmful to health, according to the

WHO. In addition, the presence of extreme events, repre-

sented by the long tail of the distribution, highlights the need

for public policies focused on air pollution control.

The QQ graph (Figure 14b) evaluates the adequacy

of the adjustment of the GEV-2 distribution to the PM2.5

concentration data. Although GEV-2 provides a reasonable

fit for most PM2.5 data, its limitation in modeling extreme

events suggests the need for refinement in the model or con-

sideration of other distributions. Modeling rare and extreme

events is essential to account for the variability of PM2.5 con-

centrations, and strategies to deal with these episodes should

be implemented. From quantile 50 onwards, a significant

deviation of the points from the reference line is observed,

indicating that the GEV-2 underestimates the extreme values

of PM2.5. This deviation is most evident in the upper tail,

where the sample quantiles grow sharply in relation to the

values predicted by the adjusted distribution. In the lower

and intermediate quantiles, the dots closely follow the refer-
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ence line (dashed), suggesting that the GEV-2 model has a

good fit for the data from the central part of the distribution,

i.e., for the most common concentrations of PM2.5.

The graph in Figure 14c compares three Gaussian dis-

tributions to model the PM2.5 data. Gauss 1 and Gauss 2 (red

and blue), both have a sharp peak around 50 µg/m3, which

indicates that this range concentrates most of the PM2.5 ob-

servations. Gauss 3 (black) presents a more pronounced

asymmetrical to the right, indicating the presence of extreme

events of high PM2.5 concentration, although with a lower

probability. The overlap between the Gauss 1 and Gauss 2

distributions suggests that both adequately model the main

part of the data distribution, especially for the most frequent

values. Gauss 3, with a long tail, represents a distribution that

can capture severe pollution events. The predominant con-

centration of PM2.5 around 50 µg/m
3 may indicate chronic

pollution, with possible impacts on public health. The long

tail of Gauss 3 reinforces the need to investigate and monitor

high-concentration events, such as fires or adverse weather

episodes.

The graph in Figure 14d compares the GEV distribu-

tion with Gaussian distributions for the PM2.5 data. The blue

distribution (GEV PM2.5) shows a very sharp peak around

50 µg/m3, indicating that most of the data is concentrated in

this value. The red distribution (GEV 1) follows a similar

pattern, but with a smoothing in the peak region. The black

distribution (GEV 2) has a more pronounced long tail, which

suggests that this model attempts to capture extreme events

of high PM2.5 concentration. This suggests that episodes of

intense pollution can be sporadic and are linked to specific at-

mospheric conditions, such as fires or thermal inversions. A

high concentration of PM2.5 around 50 µg/m
3 may indicate

a chronic air pollution problem.

The comparison of Bayesian Inference models using

Log-Normal and Generalized Extreme Value (GEV) distri-

butions revealed key differences in modeling PM2.5 concen-

trations. GEV 1 captured lower concentrations well but was

variable at higher levels. In contrast, GEV 2 provided a better

overall fit, particularly at higher concentrations, making it

more effective in modeling extreme pollution events and in-

dicating a greater likelihood of severe pollution in the future.

The discrepancy between these models becomes evident in

the QQ plots, where GEV 2 stands out in its ability to model

high-concentration events. However, it’s essential to note

that both GEVmodels act as predictors and don’t necessarily

offer an exact fit to the input data, underlining the importance

of complementary validation methods. Furthermore, these

observations align with results from the ARIMAmodel and

traditional Bayesian Inference, reinforcing the robustness of

the methods employed.

The findings from this analysis emphasize the signif-

icance of considering a variety of statistical approaches

for modeling air pollution. While GEV 2 serves as a ro-

bust predictor for extreme events, Log-Normal Bayesian

Inference remains effective for modeling the general data

structure. The incorporation of the Metropolis-Hastings

algorithm through MCMC represents a crucial step forward,

providing a more nuanced probabilistic approach to pre-

dict future PM2.5 patterns and extreme air pollution events.

Since GEV models are primarily used for predicting ex-

treme events, the next step in the analysis involves using

the Metropolis-Hastings algorithm, a key technique within

Bayesian Inference and for sampling from complex distri-

butions. This algorithm is a variant of the Markov Chain

Monte Carlo (MCMC) method, commonly used when the

target distribution cannot be directly sampled, such as with

GEV distributions and other density functions lacking an

explicit analytical form.

Figure 15a shows the distribution of the samples in

two distinct panels. The histogram (black bars) displays

the frequency of samples at different locations, and the red

line represents the probability density function (PDF). The

asymmetry of the distribution may indicate that the variable

analyzed presents extreme values or outliers in small regions.

The behavior of the PDF suggests that statistical models such

as the Weibull distribution, log-normal, or gamma may be

appropriate for fitting the data. The uniformity of the number

of samples per location in the second panel confirms that data

collection was homogeneous, avoiding significant sampling

bias. If the context is environmental, this distribution may

be associated with measurements of pollutants or climatic

variables with high spatial and temporal variability.
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(a) (b)

Figure 15. a-Sample distribution: (a) Probability density function (PDF) of the samples (red line) superimposed on the histogram (black

bars); (b) Autocorrelation function (AC) for different segments of the time series: (a) Autocorrelation of the first 100 samples; (b)

Autocorrelation of the last 100 samples.

The bottom panel shows that the distribution of the

samples seems uniform in terms of quantity at each loca-

tion. This pattern indicates that data collection was done

consistently across the study domain, ensuring a significant

number of sampling points. The uniformity of the number

of samples per location confirms that data collection was

homogeneous, avoiding significant sampling bias. If the

context is environmental, this distribution may be associated

with measurements of pollutants or climatic variables with

high spatial and temporal variability.

The autocorrelation function (AC) (Figure 15b) for

two subsets of data in a time series, highlighting the cor-

relation between different lags. The absence of significant

correlation suggests that the data may be approximately inde-

pendent in time, which may indicate a stochastic process with

no memory structure. For the top panel most autocorrelation

values are close to zero, indicating a significant absence of

correlation for different lags. For the bottom panel the pat-

tern is similar, with no clear temporal dependency structure.

CA values continue to be randomly distributed along lags,

with no indication of seasonal patterns or trends. This lack of

correlation may suggest that the phenomenon studied does

not have strong temporal dependence or that it was correctly

pre-processed to remove trends and seasonality. Also, the

lack of meaningful autocorrelation may indicate that meth-

ods based on autoregressive models (such as ARIMA) may

not be ideal, and the use of non-autoregressive approaches,

such as neural networks or machine learning-based models,

is preferable.

The results indicate that the GEV 1 model exhibits a

behavior similar to Bayesian inference with the Log-Normal

distribution, providing values close to zero and displaying

long tails in the PDF. This model fits better with PM2.5 data

at low concentrations but has high variability for high con-

centrations. This characteristic can be seen in the QQ chart.

On the other hand, the GEV 2 model performs better

when considering the full set of data, especially for higher

concentration values. This suggests that there is a higher

probability of future events having elevated PM2.5 concen-

trations. However, GEV 2 does not fit the initial sample

values as well, as both GEV models function as predictors.

These findings corroborate the results obtained with both

ARIMA and standard Bayesian Inference.

The next step will be the implementation of the

Metropolis-Hastings algorithm, one of the most widely used

methods in Bayesian inference and in the sampling of proba-

bility distributions. The method makes use of Markov Chain

Monte Carlo (MCMC), allowing the generation of samples

of complex distributions, especially when direct sampling is

not feasible.

3.5. Sampling Methodology: Metropolis-

Hastings Algorithm

The Metropolis-Hastings algorithm, part of the Monte

Carlo methods via Markov Chain Monte Carlo (MCMC),
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was used in this study to estimate the parameters of complex

probability distributions, especially the Generalized Extreme

Value (GEV) distribution. The choice of this algorithm is

justified by the fact that, in many cases, such as the GEV

distribution, it is not possible to directly sample from its

posterior distribution, as it lacks a simple analytical form.

The main advantage of the Metropolis-Hastings algo-

rithm is its ability to generate samples from complex distribu-

tions through aMarkov chain, allowing parameter estimation

in a Bayesian context even when the likelihood function is

intractable. In this study, the method was applied after for-

mulating the Bayesian model with Log-Normal and GEV

distributions, enabling robust sampling to predict extreme

PM2.5 concentrations.

The application of the algorithm aimed to:

• Increase the robustness of parameter estimates for the

GEV models, especially in the tails of the distribution

where extreme events occur;

• Incorporate uncertainty into the forecasts of critical pol-

lutant concentrations;

• Allow comparison between classically fitted distribu-

tions (MLE) and those estimated by Bayesian inference

with MCMC.

The results obtained with Metropolis-Hastings were

consistent with observed values and allowed a more faith-

ful representation of data asymmetry and dispersion. This

approach is especially relevant in environmental modeling,

where extreme events, although rare, have a significant im-

pact on public health and air quality control strategies.

The application of the Metropolis-Hastings algorithm

enabled the generation of samples from the posterior distribu-

tions of the parameters of the GEV and Log-Normal models,

allowing for more precise estimation of PM2.5 extremes in

Brasília between 2000 and 2018. Figure 15a shows the dis-

tribution of the generated samples, highlighting the positive

skewness typical of extreme environmental events.

Figure 15b presents the autocorrelation function (ACF)

for the first and last 100 values of the sample chain. The

low autocorrelation observed indicates good efficiency of the

Markov chain, signaling convergence and relative indepen-

dence among the samples. This confirms the quality of the

simulations carried out by the algorithm and the robustness

of the Bayesian inference achieved.

The comparison between the prior distribution (repre-

senting the initial knowledge about the parameters) and the

posterior distribution (after incorporating the observed data)

is illustrated in Figure 16a. The posterior curve shows a shift

relative to the prior, with greater probability concentration in

values associated with extreme episodes, such as wildfires

and thermal inversions, demonstrating the impact of real data

on the final estimate.

Figure 16b reinforces the good fit of the probability

density function (PDF) generated by the GEVmodel adjusted

via Metropolis-Hastings, which adequately captured the long

tail of the distribution, associated with elevated PM2.5 con-

centrations. This feature is essential for predicting rare and

potentially critical public health events.

Moreover, the use of the Bayesian approach with

MCMC sampling enabled the estimation of credible inter-

vals for the parameters, providing a more comprehensive

assessment of the uncertainty associated with the forecasts.

This represents an advance over classical maximum likeli-

hood approaches, which often underestimate variability in

heavy-tailed distributions.

When a distribution cannot be sampled directly—as in

the case of GEV, which does not have a simple analytical

form—the Metropolis-Hastings algorithm makes it possible

to generate samples that follow the desired distribution.

Figure 16a shows the Bayesian inference applied to

the modeling of extreme values of PM2.5 concentration in

Brasília between 2000 and 2018. The Bayesian approach

uses prior information (a priori distribution) to analyze max-

imum PM2.5 concentrations, leading to a posterior distribu-

tion that aligns with observed data. The a priori distribution

indicates that high PM2.5 values are rare, while the poste-

rior distribution adjusts slightly to fit extreme values better.

The blue curve illustrates the adjusted probability function

with a long tail, indicating that extremely high PM2.5 events,

though infrequent, are possible. This behavior is charac-

teristic of extreme value distributions like the Generalized

Extreme Value (GEV) or Pareto distribution. This long tail

underscores the importance of ongoing air quality monitor-

ing in Brasília, especially during dry seasons or wildfires.

Further research can explore how meteorological and human

factors affect maximum PM2.5 concentrations.

Probability density function (PDF) shown in Figure

16b, adjusted using the GEV distribution for PM2.5 concen-

87



Journal of Atmospheric Science Research | Volume 08 | Issue 03 | July 2025

trations (μg/m³) in the period 2000–2018. The PDF shows a

positive asymmetry (right tail), indicating that most PM2.5

concentrations are at low values, while extreme events of

high concentration are less frequent, but possible. The modal

value of the distribution (peak of the curve) occurs around

20–30 μg/m³, suggesting that this concentration range was

the most common during the analyzed period. The long tail

of the data shows that most PM2.5 values are low, but there

are occasional high spikes, likely from wildfires or weather

events. The Generalized Extreme Value (GEV) distribution

effectively models these extremes. While low to moderate

levels are generally good for air quality, the extreme spikes

are concerning, as high PM2.5 exposure can harm public

health.

(a) (b)

(c) (d)

Figure 16. (a) Bayesian inference for maximum PM2.5 concentration values in Brasília in the period 2000–2018. The figure shows the

priori (brown dashed line) and a posteriori (green dashed line) distributions, in addition to the adjusted probability distribution (blue line).

(b) Probability density function (PDF) adjusted using the GEV distribution for PM2.5 concentrations (µg/m
3) in the period 2000–2018.

(c) Comparison between the empirical Cumulative Distribution Function (CDF) and the CDF adjusted by the GEV distribution for PM2.5

concentrations (µg/m3) in the period 2000–2018 in Brasília. (d) Probability Density Function (PDF) adjusted for PM2.5 concentrations

in Brasília between 2000 and 2018, comparing different Gaussian distributions.

The CDF curve (Figure 16c) exhibits rapid growth at

low concentrations of PM2.5, indicating that most values are

concentrated in this range. The curve stabilizes for higher

concentrations, which reflects the low frequency of extreme

events. The CDF shows the cumulative probability of find-

ing PM2.5 values below a given threshold. For example, if

the curve reaches 0.9 around 50 μg/m³, this indicates that

90% of the observations were below this value. Asymmetry

in the tail suggests that there are some unusually high con-

centrations, which, while rare, can have significant impacts

on air quality and public health. The proximity between em-

pirical and adjusted CDF reinforces the adequacy of the GEV

distribution to model the variability of PM2.5 concentrations.

In Figure 16d 3 different representation lines can be

observed, PDFGauss as a blue line, PDFGauss 1 as a red line,

and Gauss 2 PDF as black line. The graph shows that the dis-
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tribution of PM₂.₅ is asymmetric on the right, with a long tail

that extends to high concentration values (above 300 μg/m³).

This indicates the presence of extreme air pollution events,

possibly related to fires or industrial and vehicular emissions.

The adjustment of the distributions suggests that the concen-

tration of PM₂.₅ can be well represented by a combination of

Gaussian distributions, possibly reflecting different emission

regimes. The predominance of lower concentrations, but with

the presence of extreme events, indicates that air pollution

in Brasília may be associated with both continuous sources

(traffic, industry) and sporadic and seasonal events (fires).

The Gauss 1 PDF curve (red) shows a steeper peak and

closely follows the empirical distribution for lower concen-

trations (between 0 and 100 μg/m³). The Gauss PDF curve

(blue) also follows the trend of the empirical distribution,

but with a less precise fit at the lower concentrations. The

Gauss 2 PDF curve (black) represents a second Gaussian

distribution, which better captures the tail of the distribu-

tion, i.e., the extreme values. The occurrence of extreme

events suggests the need for continuous monitoring of air

quality and preventive measures to mitigate episodes of high

pollution, especially during the dry season.

Figure 17 shows the probability density functions

(PDF) adjusted with the Generalized Extreme Value (GEV)

distribution for PM2.5 concentrations in the period from 2000

to 2018. The curves indicate an asymmetric distribution to

the right, with a long tail, suggesting the occurrence of ex-

treme events, i.e., high concentrations of PM2.5 that appear

with low frequency.

Figure 17. Probability density functions (PDF) adjusted using the

Generalized Extreme Value (GEV) distribution for PM2.5 concen-

tration in the period 2000–2018. The curves represent different fits:

PDF GEV for the PM2.5 data (blue), PDF GEV 1 (red) and PDF

GEV 2 (black).

The blue curve, representing the GEV fit for PM2.5

data, shows a sharp peak at lower concentrations, which is

consistent with the prevalence of reduced values observed

in the original distribution. On the other hand, the red curve

(PDF GEV 1) shows a similar behavior, but with a less pro-

nounced peak. The black curve (PDF GEV 2) demonstrates

a more pronounced elongation in the tail, indicating that this

adjustment can more accurately represent extreme values.

The differences observed between the adjustments may

reflect variations in the adequacy of the GEV distribution, de-

pending on the parameterization used. The choice of the most

appropriate model should be supported by statistical metrics,

such as the Kolmogorov-Smirnov test, the AIC (Akaike In-

formation Criterion) or the BIC (Bayesian Information Cri-

terion), which allow the evaluation of which PDF best fits

the PM2.5 data.

In addition, the presence of extreme values reinforces

the importance of investigating possible meteorological or

anthropogenic factors associated with episodes of high PM2

concentration 5. This includes phenomena such as fires, ther-

mal inversions, and seasonal emission patterns, which can

play a crucial role in the occurrence of these extreme events.

The application of the improved methodology gener-

ated results consistent with previous analyses. The GEV 1

model presented the best fit for the data at low concentrations

of PM2.5, with well-distributed probabilities close to zero, a

behavior that is reinforced by the Gaussian fit, also suggesting

a good fit of the model for this concentration range.

On the other hand, the GEV 2 model, although it did

not present the best global fit, demonstrated a higher prob-

ability for high PM2.5 concentrations in future events. The

presence of long tails in both GEV distributions indicates a

higher probability of extreme events, which reinforces the

need for models that take this characteristic into account in

air quality forecasts.

To validate these results, three complementary statisti-

cal approaches were used:

ARIMAmodels, which analyze the time dependence

of the series and suggest cyclical and trend patterns.

Bayesian inference with Log-Normal distribution,

which captures the positive asymmetry of the data and allows

for robust probabilistic estimates.

Methodology based on almost all Gaussian behavior,

applied as a reference to evaluating the distribution of data.
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The results indicate that the distribution of PM2.5 con-

centrations does not follow purely Gaussian behavior, justify-

ing the need for more advanced statistical models to capture

its variability and predict air pollution episodes with greater

accuracy.

These findings provide a solid scientific basis for the de-

velopment of sustainable urban and rural policies, especially

as it relates to air quality monitoring and public health in-

terventions. By identifying the probability distributions that

best model PM2.5 concentrations, it is possible to improve en-

vironmental monitoring systems, allowing for more accurate

detection of air pollution variations and trends. This infor-

mation is crucial for the formulation of effective emission

control strategies and for the implementation of preventive

measures that protect the health of the population. In addi-

tion, the validation of models with official data reinforces

the reliability of forecasts, helping public managers to make

informed decisions and prioritize actions aimed at improving

air quality and reducing the risks associated with exposure

to fine particulate matter.

The adjusted statistical models—particularly the Gen-

eralized Extreme Value (GEV-2)—proved to be powerful

tools not only for analyzing the distribution of PM₂.₅ con-

centrations but also for predicting extreme pollution events.

The robustness of the Bayesian inference, supported by the

Metropolis-Hastings algorithm, improved the accuracy of

estimates and the representation of uncertainties.

These models provide important support for public

policy formulation by allowing the identification of criti-

cal periods with a higher risk of pollution peaks, such as

the dry season [23,24]. The analysis showed that extreme val-

ues of PM₂.₅ are not rare and tend to occur under specific

atmospheric and seasonal conditions [25,26]. Thus, the imple-

mentation of targeted mitigation strategies can be guided by

the outputs of these models.

We emphasize the public health impacts associated with

elevated PM₂,₅ levels, including respiratory and cardiovas-

cular risks [1,27]. The study also highlights the importance

of continuous air quality monitoring, especially during the

dry season, when fire incidence and atmospheric stagnation

increase pollutant concentrations [28].

Therefore, the integration of extreme value theory, time

series models, and Bayesian inference creates a robust frame-

work for understanding, forecasting, and managing air pol-

lution risks in urban areas. Future studies may expand this

approach by incorporating exogenous variables and machine

learning techniques to further refine environmental forecast-

ing.

4. Conclusions

Statistical analysis of PM2.5 concentrations demon-

strated that the distribution of the data is asymmetric and

highly variable, justifying the use of advanced statistical

models for more accurate predictions. The results indicate

that the GEV 1model is more suitable for low concentrations,

while GEV 2 is more effective for predicting extreme events,

suggesting that pollution peaks may occur more frequently

than predicted by conventional distributions.

Validation of the models using ARIMA, Bayesian In-

ference with Log-Normal distribution and quasi-Gaussian

modeling reinforced the robustness of the approach and the

need for long-tailed distributions to adequately capture the

behavior of air pollution. Furthermore, the findings suggest

that extreme air pollution events are more frequent than a

Gaussian distribution would indicate, highlighting the impor-

tance of specialized models for environmental predictions.

The choice of the statistical model should be guided by

the specific objective of the prediction: Bayesian Inference

with Log-Normal is useful for characterizing the general

behavior of concentrations; ARIMA allows identifying sea-

sonal patterns and trends; and GEV models are essential

for predicting extreme events. The inclusion of sampling

techniques, such as the Metropolis-Hastings algorithm, can

improve the accuracy of estimates and contribute to more

effective air quality planning.

For future studies, it is recommended to incorporate

meteorological variables and emission sources to improve

predictions. In addition, the combination of statistical meth-

ods and machine learning can offer a more comprehensive

approach tomodeling air pollution and support public policies

aimed at mitigating environmental and public health impacts.
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