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ABSTRACT

This study analyzes the statistical behavior of PMs 5 concentrations in Brasilia using advanced probabilistic and time
series modeling to support air quality management and extreme event forecasting. The methods applied include Generalized
Extreme Value (GEV) distributions, Bayesian inference with Log-Normal distribution, ARIMA models, and quasi-Gaussian
approaches. Model performance was evaluated through statistical metrics such as RMSE, R?, and the Approximation Index,
with parameter estimation improved using the Metropolis-Hastings algorithm. Results show that the GEV 1 model provides
a better fit for lower PMs 5 concentrations, while GEV 2 performs better at predicting extreme events. The log-logistic and
log-normal distributions also demonstrated good fit, capturing asymmetry and long-tail behavior typical of environmental
data. The ARIMA model identified seasonal patterns and supported short-term forecasts, though its predictive capacity
for extreme values was limited. Bayesian inference allowed robust estimation of parameter uncertainties and revealed
the non-negligible likelihood of severe pollution events. The study concludes that model selection should depend on the

forecasting objective: GEV for extremes, Log-Normal for general variability, and ARIMA for trends and seasonality. The
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use of MCMC sampling techniques significantly improved model robustness. These findings provide a comprehensive

framework for understanding air pollution dynamics and guiding public policy on air quality in urban environments.
Keywords: PMs 5; GEV; ARIMA; Bayesian Inference; Metropolis-Hastings

1. Introduction

Air pollution remains a significant environmental and
public health concern, particularly in urban areas, where
fine particulate matter (PMs 5) is a leading contributor to
degraded air quality and adverse health outcomes, including
respiratory diseases!'l. In Brasilia, Brazil’s capital, PMj 5
concentrations are influenced by various factors such as ve-
hicle emissions, seasonal fires in the Cerrado, and local me-

teorological conditions!?).

Statistical modeling of PMs 5
variability is crucial not only for understanding its tempo-
ral and spatial distribution but also for guiding air pollution
control and mitigation strategies[3].

Among the various methods for environmental data
modeling, probability distribution functions (PDFs) have
proven effective in capturing the variability of pollutant con-
centrations. This study explores the use of the Log-Logistic,
Generalized Extreme Value (GEV), and Log-Normal distri-
butions for modeling and predicting PM5 5 concentrations in
Brasilia. These distributions exhibit distinct statistical prop-
erties, offering varying levels of accuracy in representing
PM, 5 concentration data*>].

Jimenez et al.[% conducted a study in Mexico City to
model PM; 5 concentrations from 2010 to 2018, aiming to
identify the best-fitting probability distribution. They com-
pared distributions such as Gamma, Extreme Value, Gumbel,
and Weibull, while employing Bayesian inference for daily
maximum values. Parameters were estimated using Maxi-
mum Likelihood Estimation (MLE) and the Method of Mo-
ments, with model performance evaluated through metrics
such as Root Mean Squared Error (RMSE), Mean Squared
Error (MSE), Coefficient of Determination (R?), Approxi-
mation Index, and Prediction Accuracy. These metrics help
validate the quality of the distribution fits and the reliabil-
ity of predictions. The study also included a trend analysis
of PMj 5 concentrations, incorporating Bayesian inference
to model daily maximum values and identify potential pat-
terns or temporal changes. The results were compared with

official air quality data from Mexico City’s environmental

authorities to ensure alignment with real-world observations.
This validation process is vital for ensuring the accuracy and
reliability of predictions.

The comparison of different distributions and estima-
tion techniques allowed for the identification of the best mod-
els to represent PMs, 5 variability. Bayesian inference, ap-
plied to Normal and Extreme Value distributions, highlighted
the importance of modeling not only the general variabil-
ity of the data but also rare and extreme high-concentration
events. Although the study did not specify which distribu-
tion provided the optimal fit for PMs 5 data, future research
could explore which model—Gamma, Extreme Value, Gum-
bel, Weibull, or Bayesian approaches—performs best based
on the evaluated metrics. Incorporating additional explana-
tory variables, such as meteorological factors, could further
enhance the robustness of PM; 5 modeling and forecasting.

This research follows a similar comprehensive ap-
proach to Jimenez et al.[%], combining traditional statistical
methods (MLE, Method of Moments) with Bayesian infer-
ence to model PMs 5 concentrations. The robust analysis of
various probability distributions, complemented by valida-
tion using official data, reinforces the reliability of the results
and contributes to a better understanding of air pollution
trends in Brasilia. To assess the adequacy of the distributions
for modeling PMs, 5 concentrations, statistical metrics such
as MSE, RMSE, Absolute Precision (AP), and Concordance
Index (AI) (Willmott et al.[”) were used. These indicators
will guide the identification of the most appropriate distribu-
tion to represent PMs 5 variability in Brasilia. This analysis
aims to support future studies on air quality dynamics in the
region and assist in the development of strategies to mitigate
air pollution in the Brazilian capital.

2. Materials and Methods
2.1. Study Area

Brasilia is situated at 15.8° S, 47.9° W, with an av-

erage elevation of 1,172 meters above sea level. The city
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experiences a tropical high-altitude climate, marked by two
distinct seasons: a rainy season from October to April and
a dry season from May to September. The annual average
temperature ranges between 20 °C and 22 °C, with peak
temperatures reaching 29 °C to 31 °C during the warmer
months and minimum temperatures dropping to 12 °C to
14 °C during the cooler winter period. Relative humidity is
typically high during the rainy season but drops significantly
during the dry season, often falling below 30%.

The local topography is primarily flat, featuring
plateaus and gently undulating terrain. The natural veg-
etation of the region belongs to the Cerrado biome, one
of Brazil’s most biodiverse ecosystems, characterized by
grasses, shrubs, and small to medium-sized trees that are
adapted to nutrient-poor soils and extended dry periods
(Figure 1).

Ma

Aracaju

Ciudad del Curitiba eaflet |

Figure 1. Location of the Federal District and Brasilia in Brazil.

2.2. Data

The O3 concentration data used in this study were pro-
vided by the Environmental Information System Integrated
with Health (SISAM), managed by the Instituto Nacional de
Pesquisas Espaciais (INPE). These data, collected daily by
satellite in each municipality of the state, cover a 16-year
period from 2000 to 2018.

To assess trends in pollutant concentrations, the Mann-
Kendall (MK) test!®*1 was applied to identify any significant

increases or decreases. The MK statistic (S) for a time series

is computed as follows:

5= Z:: Z:‘zk_H sgn(X; — Xi)

Where x; and x represent observations at points i and k,

(M

respectively, and n denotes the total number of observations
in the series. The sign function (sgn(x)) is defined as:

ifx >0

1
sgn(x) =40 ifx=0 2

-1 ifx<0

To ensure the reliability of the trend analysis in non-
random and serially correlated time series, modified MK
tests were applied using the variance correction methods
proposed by!!%!1l These methods adjust the variance by
calculating the effective sample size based on significant
serial correlations, thereby ensuring accurate trend detection.

Additionally, the Pettitt test!!?], based on the Mann-
Whitney test, was used to identify significant change points
by splitting the data into two distinct samples and calculating
the Pettitt statistic U(t,n). The trend analysis was performed
across different temporal scales—daily, monthly, seasonal,
and annual—allowing for the capture of variations from mul-
tiple perspectives.

After the initial data analysis, several statistical meth-
ods were employed for modeling and analyzing PMs 5 con-
centrations, including autoregressive models, Bayesian in-
ference, and extreme value distributions. The methodology
followed these steps:

2.2.1. ARIMA Modeling

An Integrated Autoregressive Moving Average
(ARIMA) model was used to capture temporal patterns
in the data. The model was estimated with various lag orders
and smoothing parameters, selecting ARIMA(10,0,5) based
on information criteria such as AIC and BIC. The model’s

fit was evaluated through residual analysis and QQ-plots.

2.2.2. Bayesian Inference with Log-Normal Dis-
tribution

To account for the positive skewness in the data,
Bayesian inference with a log-normal distribution was ap-
plied. The parameters were estimated using the Markov
Chain Monte Carlo (MCMC) method via Metropolis-

Hastings. This approach provided a more robust representa-
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tion of uncertainties in the parameters and facilitated more

reliable forecasts for future events.

2.2.3. Extreme Value Distributions - GEV and
Log-Logistic

To model extreme events, the Generalized Extreme
Value (GEV) and Log-Logistic distributions were fitted to
the data.

GEV1 demonstrated a better fit for lower PMs 5 con-
centrations, indicating an asymmetric distribution with a long
tail.

GEV2 was more suitable for predicting high pollutant
concentrations, reflecting the potential for extreme future
events.

Comparative Analysis of Models: The models were
compared using:

Residual analysis and QQ-plots to assess the adequacy
of the data fitting.

AIC and BIC criteria for model selection.

Cross-validation to test the predictive power of the
models.

The results revealed that combining traditional meth-
ods (ARIMA), Bayesian inference, and extreme distributions
provided more accurate modeling of PMs 5 concentrations,
capturing both regular patterns and extreme pollution events.

The performance of the adjusted distributions was eval-

uated using statistical metrics, including Mean Squared Er-

ror (MSE) and Root Mean Squared Error (RMSE) to assess
model accuracy, Absolute Precision (AP) to measure the
mean absolute deviation, and the Concordance Index (IA) to
evaluate how well the distributions aligned with the observed
data.

Based on this performance information, the distribu-
tion with the lowest error values (MSE and RMSE) and the
highest precision and concordance values (AP and IA) is
considered the most suitable for representing PMs 5 concen-

trations in Brasilia.

3. Results

3.1. Descriptive Analysis

In Brazil, fires for land conversion are common during
the dry season, particularly in the months leading up to the
rainy season. The Midwest region of Brazil, where Brasilia
is located, is a hotspot for fires[!'~15]. These fires are likely to
contribute to the increase in pollutant concentrations during
this period. Table 1 summarizes the statistical properties
of the PMy, 5 data, including the mean, standard deviation
(SD), and the maximum and minimum values of the Mann-
Kendall (MK) test across different time scales. The highest
PM, 5 concentrations were observed between August and
October, corresponding to the months with the greatest SD
in concentrations.

Table 1. Descriptive statistics of PM2 5 concentrations and p-values from the Mann-Kendall (MK) test for temporal trends at various

time scales in Brasilia.

Months Average Place Maximum Minimum Pp-Values
Jan 11.55 15.49 54.90 0.53 0.99
Feb 12.35 6.82 76.30 0.73 0.16
Mar 15.04 9.82 102.28 0.00 0.07
Apr 13.06 5.68 38.10 1.48 0.07
May 14.18 9.53 71.95 1.43 0.89
Jun 11.16 7.50 59.65 1.78 0.04
Jul 15.02 23.71 422.40 2.05 0.01
Aug 17.67 23.13 308.53 1.85 0.06
Sep 27.69 29.63 31535 3.00 0.16
Oct 20.57 14.61 125.68 1.70 0.87
Nov 13.61 7.17 107.70 1.78 0.99
Dec 13.19 7.99 153.55 2.08 0.11
Annual 0.14
Dry 0.97
daily 0.49

Legend: In bold, significant trends.
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Overall, no significant trends were identified for
PM, 5, although slight variations were observed (Figure
2), with an increase of 0.2436 ug/m?3/year in June and a
decrease of 0.4875 pg/m®/year in July. Breakpoints in the
PMs 5 series were identified in June 2008 and July 2007.
PMs 5 can act as a medium for photochemical reactions,
facilitating the formation of Os. PMs 5 can act as a medium
for photochemical reactions, facilitating the formation of Os.
While SO., a primary pollutant from fossil fuel combustion,
does not directly contribute to Os formation and may even in-

hibit its production, it can influence the chemical processes

PM2.5 concentration in ugr/m3 2000-2018 Brasilia

that generate Os, much like NOx. These relationships are
context-dependent and can vary based on local conditions,
emission sources, and specific atmospheric dynamics. As
such, air pollution control policies should prioritize reduc-
ing emissions during critical periods, such as fire seasons,
to mitigate peak pollutant concentrations. Statistical models
are crucial tools for monitoring and predicting these effects,
emphasizing the need for models that account for tempo-
ral and spatial variations in pollutant concentrations. This
approach is essential for effective air pollution mitigation
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Figure 2. Concentrations of PMj 5 Daily Brasilia City 2000-2018.

3.1.1. Results of Probability Distribution Func-
tion Fitting Trend of PM, 5 Brasilia Data
(2000-2021)

The Adjusted probability density functions (PDFs), as
shown in Figure 3a, include distributions such as General-
ized Extreme Value (GEV), Weibull, and Exponential, among
others. The accompanying table provides statistical metrics
that enable an assessment of the fit’s quality. The graph
indicates that the tested distributions exhibit asymmetric
behavior with a right tail, suggesting that the data follows
a steeply sloping distribution. This pattern is commonly

observed in environmental variables such as wind speed, ex-

treme precipitation, and air pollutants. Also, the overlapping
of the curves implies that some distributions provide similar
fits. However, selecting the best distribution necessitates
evaluating statistical metrics such as the Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC), and
Root Mean Square Error (RMSE). The histogram of the em-
pirical distribution displays a sharp peak at low values and
a long tail, indicating that high-magnitude events are rare.
This pattern may be associated with extreme environmental
phenomena. Choosing the most suitable distribution can of-
fer valuable insights into environmental risks, the prediction

of extreme events, and the underlying physical processes.
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Figure 3. (a) Adjustment of statistical distributions to the observed data. (b) Adjustment of statistical distributions to the cumulative

distribution function (CDF) of the observed data.

The adjustment of the cumulative distribution functions
(CDFs) is illustrated in Figure 3b, which presents the empiri-
cal CDF alongside the CDFs modified to fit various statistical
distributions. The accompanying table includes statistical
metrics that assist in identifying the best fit for the data. The
cumulative distribution function increases steeply at low val-
ues, indicating that most of the data is concentrated within
this range. This observation highlights the strong asymmetry
of the distribution and the presence of a long tail on the right,
which is a common feature in environmental and hydrologi-
cal variables. The adjusted distributions closely follow the
empirical CDF, suggesting a good statistical fit. However,
minor differences can be observed in the tail region, where
extreme events occur with low frequency.

Choosing the most appropriate distribution directly af-
fects statistical forecasting and environmental modeling. A
proper fit improves the estimation of probabilities of rare
events, such as pollution spikes or extreme rainfall, aiding
in the formulation of environmental policies and risk man-
agement strategies.

Stationarity analysis refers to the constancy of the sta-
tistical characteristics of a time series, such as mean and
variance, over time. Tests such as the Dickey-Fuller are
commonly used to evaluate this property. If a time series
exhibits seasonal trends or significant variations, transfor-
mations such as differencing may be necessary to achieve
stationarity. The shape of the tails of distributions is criti-
cal to understanding the occurrence of extreme events. The

asymmetry on the left suggests a greater concentration of

low values, indicating a sloping distribution. Depending on
the type of adjusted distribution (such as Weibull or Gamma),
this factor can impact the modeling of rare events.

The high concentration of values close to zero is rele-
vant in several areas, such as air pollution and disease inci-
dence, where many events have low intensity or frequency.
To address this characteristic, logarithmic transformations or
adjustments based on specific distributions can be applied
that better capture this behavior.

3.1.2. Viewing the settings of 3 Functions: Lo-
gistic Log, GEV and Normal Log

Log Logistic

The histogram (Figure 4a) and the cumulative distri-
bution function (CDF) (Figure 4c¢) indicate a good fit of the
log-logistic distribution to the PMs 5 data, effectively captur-
ing the asymmetry and long right tail of the distribution. For
this distribution (Figure 4b), the model fitting yielded a shape
parameter ¢ = 0.3547 and a location parameter L =2.506. The
coefficient of determination (R?=0.6215) suggests a moderate
fit, while the root mean square error (RMSE = 0.5300) points
to some discrepancy between observed and fitted values. The
approximation index (0.4569) further indicates that the model
may not be ideal for predicting extreme values. The QQ plot
(Figure 4d) reveals that the empirical and theoretical quantiles
of the log-logistic distribution are well aligned in the central
portion of the data but exhibit deviations at the extremes—
particularly in the upper tail—suggesting that extreme PMs 5

events may not be adequately represented by this model.
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Figure 4. (a) (Top left) Log-logistic distribution function fitted to PMs 5 concentration data. The histogram represents the observed
data, while the red curve displays the adjustment of the distribution. (b) (Top right) Adjustment of the log-logistic distribution to the
PM; 5 time series (2000—2018). The blue curve represents the modeling of the data over time. (c¢) (Center left) Comparison between the
empirical cumulative distribution function (CDF) of the PMs 5 data and the theoretical CDF of the log-logistic distribution. (d) (Center
right) QQ plot comparing the empirical quantiles of the PMs 5 distribution with the theoretical quantiles of the log-logistic distribution.
A good fit is indicated by the proximity of the points to the reference line. (e) (Bottom) PMz 5 concentrations modeled by the log-logistic

distribution between 2000 and 2018, presented on a logarithmic scale.
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Based on these results, the Log-Logistic distribution
stands out as a viable option for modeling environmental
variables with asymmetric behavior and a long tail, such as
PM; 5. However, the fit can be improved by considering
alternative distributions, such as Generalized Extreme Value
(GEV), which offers greater flexibility to model extreme
events. The analysis suggests that, despite the reasonable
adjustment, there is room for refinement that improves the
prediction and representation of critical PMs 5 concentra-
tions.

For the Generalized Extreme Value (GEV) distribution,
the histogram (Figure 5a) and the cumulative distribution
function (CDF) (Figure 5¢) demonstrate a good fit to the
PMs 5 data, effectively capturing the asymmetry and the long
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right tail. The model fitting (Figure 5b) produced a shape
parameter 6 = 6.3956, a location parameter L = 9.766, and
a form parameter k = 0.18007. The positive value of the
shape parameter (k > 0) indicates a heavy-tailed distribution,
suggesting the presence of extreme values in the data. The
coefficient of determination (R? = 0.6468) shows that the
GEV model explains approximately 65% of the data vari-
ability, which represents a moderate, though not exceptional,
fit. The root mean square error (RMSE = 0.5286) and the
mean squared error (MSE = 0.2794) indicate relatively low
error values, supporting the adequacy of the fit. However,
the approximation index (0.4569) and the prediction approx-
imation value (13.7673) suggest that the model may not be

optimal for accurately forecasting extreme PMs 5 events.
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Figure 5. Cont.
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Figure 5. (a) Histogram and Adjusted Probability Density Function (PDF): Represents the distribution of the empirical data and the
adjusted curve of the GEV distribution. (b) Adjusted Cumulative Distribution Function (CDF): Displays the empirical CDF of the data
and the fit of the GEV distribution. (¢) Empirical Probability Plot: Displays the empirical CDF adjusted to the GEV. (d) Quantile-Quantile
Plot (QQ-Plot): It compares the empirical quantiles with the theoretical quantiles of the GEV. A good fit is indicated by the proximity of
the points to the red line. (e) Adjusted Cumulative Density Function: Represents the accumulated density of the data adjusted to the GEV

distribution.

The QQ plot (Figure 5d) confirms the adequacy of
the fit, but large deviations in the upper quantiles may indi-
cate that the model does not represent the extreme values
well. Confirms the adequacy of the fit, but large deviations
in the upper quantiles may indicate that the model does not
represent the extreme values well.

Log-Normal distribution is commonly used to model
environmental variables, particularly pollutant concentra-
tions, as it effectively captures data asymmetry (right-
skewed distribution with a long tail), with a location pa-
rameter 1 = 2.4556, and the scale parameter ¢ = 0.7322.
The histogram (Figure 6a) and CDF (Figure 6b) indicate

Log Normal Distribution Function
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a good fit, capturing the asymmetry and long tail to the
right of the data. The coefficient of determination (R? =
0.6689) indicates a moderate to good fit, suggesting that the
Log-Normal distribution explains approximately 67% of
the data variability, surpassing the performance of the Gen-
eralized Extreme Value (GEV) distribution (R?= 0.6468).
The RMSE = 0.5118, indicating a reasonable fit. The ap-
proximation index (0.4897) points out that the model also
may not be ideal for extreme values, with a prediction ap-
proximation of 13.6735. Additionally, the QQ-Plot (Figure
6¢) provides insight into how well the model represents

upper and lower quantiles.
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Figure 6. (a) Histogram and PDF: Displays the empirical distribution of the data alongside the fitted Log-Normal probability density
function. (b) Cumulative Distribution Function (CDF): Compares the empirical cumulative distribution with the fitted Log-Normal CDF.
(¢) Quantile-Quantile Plot (QQ-Plot): Evaluates how well the empirical quantiles align with the theoretical quantiles of the Log-Normal
distribution. Significant deviations indicate potential model inadequacy. (d) Adjusted Cumulative Density Function: Illustrates the
cumulative density of the data adjusted to the Log-Normal distribution.

In probability theory, the tail of a distribution represents
extreme values, either high or low. A long-tailed distribu-
tion indicates that extreme events are more likely to occur

than in distributions with shorter tails, such as the Normal

distribution. Examples of long-tailed distributions include
the Log-Logistic and Generalized Extreme Value (GEV) dis-
tributions, which suggest a higher likelihood of observing

rare, extreme values (Table 2).

Table 2. Distribution Model Fitting Metrics (Log-Logistic, GEV and Log-Normal) for PM» 5 Concentrations.

PDF R? RMSE Approximation Index KS Test Chi-Square Test (p-Value)
Log-Logistic 0.6215 0.5300 0.4569 0.8831 0.0000

GEV 0.6468 0.5286 0.4696 0.8631 0.0000
Log-Normal 0.6689 0.5118 0.4897 0.8631 0.0000

In the case of air pollutant concentrations, these dis-
tributions often exhibit long-tailed behavior, indicating that
extreme pollution events are not uncommon. For instance,
modeling ozone concentrations in urban areas reveals that
peak values occur more frequently than a normal distribution
would predict. These peaks may result from factors such as
wildfires, industrial emissions, or specific meteorological
conditions 13171,

Moreover, pollutant behavior is influenced by vari-
ous environmental and atmospheric factors, including wind

speed and direction, temperature and humidity, local topog-
raphy (such as mountains, valleys, and urban structures), and
atmospheric chemical reactions. These processes can lead to
localized pollution spikes, contributing to long tails in pol-
lutant distributions. Additionally, these pollution spikes can
have significant health impacts, particularly involving PMs 5,
ozone, and NO:, which are linked to severe respiratory and

cardiovascular issues, chronic diseases, and premature mor-

tality [418-22],
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3.2. Modeling

3.2.1. ARIMA

Applying the ARIMA model and then smoothing the
data and removing higher outliers to improve model accuracy.
Figure 7 presents the time series of daily PM5 5 concentra-
tions from 2000 to 2018. The original series (blue) displays
significant daily variability, marked by abrupt peaks and
high-frequency fluctuations. In contrast, the smoothed se-
ries (red) highlights long-term trends and seasonal patterns,

offering a clearer view of the data’s underlying behavior.

PM2.5 time series (original vs. smoothed)

35
Original
Smoothed

0 I I I I I . . . I
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Figure 7. PMs 5 Time Series (Original vs. Smoothed): Blue: Orig-
inal PMs 5 Series, Red: Smoothed PMs 5 Series.

The data indicates frequent fluctuations, likely due to
the influence of intermittent sources such as vehicle and in-
dustrial emissions, along with natural events like fires. The
null hypothesis has been rejected, suggesting that the time
series is likely stationary, as evidenced by the Augmented

Dickey-Fuller (ADF) test result of —27.68. Seasonal patterns
and trends are also evident, with smoothing techniques re-
vealing recurring cycles that suggest seasonal variations in
air pollution. Furthermore, it’s important to explore poten-
tial long-term trends through statistical tests to determine
whether PMs 5 concentrations have increased or decreased
over time. Hence, smoothing the original series, which con-
tains significant noise, is crucial to help identify structural
patterns more easily. Smoothing simplifies trend analysis,
supports predictive model development, and aids in detecting
anomalous events.

Several adjustments were tested to find the most suit-
able parameter configuration, as shown in Table 3, to better
align with the real-time series’ behavior. Among the ap-
plied parameters, the ARIMA (10,0,5) model emerged as
the best fit, incorporating 10 autoregressive (AR) terms, no
differencing terms, and 5 moving average (MA) terms. This
combination effectively captures both autocorrelation and
seasonality in the PMs 5 time series.

The results of the ADF test indicate that the time series
is stationary, with a p-value significantly lower than the com-
mon significance level of 0.05. The autoregressive (AR) and
moving average (MA) terms show statistically significant
values, although there are variations among the lag terms.
The AR(1), AR(2), AR(3), AR(4), AR(5), and AR(10) terms
exhibit strong significance. In contrast, the AR(8) and MA(4)
terms show marginal significance, suggesting that there is
room for further refinement. The estimated variance of the
model is 152.71, with a p-value close to zero, indicating that
it effectively captures the variability in the data (Table 3).

Table 3. Estimated Parameters and Statistical Significance of the ARIMA Model for PM3 5 Concentrations.

Term Value Standard Error Statistics t p-Value
Constant 1.52E-05 5.12E-05 0.297 0.766
AR(1) -0.592 14.03 -0.421 0.673
AR(2) -0.275 0.490 -0.561 0.574
AR(3) 0.2681 0.154 17.388 0.082
AR(4) 0.189 0.385 0.492 0.622
AR(5) 0.028 0.057 0.506 0.612
AR(6) 0.038 0.024 16.071 0.108
AR(7) 0.027 0.039 0.702 0.482
AR(8) —-0.007 0.023 -0.317 0.750
AR(9) —-0.001 0.028 —0.060 0.951
AR(10) -0.007 0.024 —-0.326 0.743
MA(1) —-0.831 14.03 -0.592 0.553
MA(2) -0.361 18.44 -0.196 0.844
MA(3) —0.446 0.664 -0.671 0.501
MA(4) 0.387 0.375 10.302 0.302
MA(5) 0.252 0.647 0.389 0.696
Variance 154.43 0.500 308.43 0
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The ARIMA(10,0,5) model seems well-suited for ana-
lyzing this time series. Further validation, including residual
analysis and comparison of model fit statistics (AIC, BIC),
will confirm the model’s ability to reliably predict future
PMs 5 concentrations. The autoregressive (AR) coefficients,
particularly AR(3), AR(4), AR(5), and AR(6), exhibit strong
significance with very low p-values, indicating that these
variables significantly influence the model’s predictions. The
moving average (MA) coefficients (1 to 5) are also notable,
as they have low p-values, suggesting that the moving aver-
age plays a crucial role in the model. The model’s variance
is 151.82, which has a very low p-value, confirming the
model’s effectiveness in capturing data variability.

Figure 8a and Figure 8b illustrate a comparison be-
tween actual PMs 5 concentrations (represented by the blue
line) and predictions from the ARIMA model (depicted by
the black dotted line). The red dashed lines represent the
lower and upper bounds of the confidence interval.

The variations in PMs 5 concentrations can be attributed
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to external factors such as changes in weather conditions,
heavy vehicular traffic, industrial activities, or natural events
like fires. The notable fluctuations indicate a dynamic envi-
ronment, likely to be influenced by intermittent sources of
pollution. The actual PM; 5 time series shows significant
variations, especially at the beginning, with values ranging
between 12 and 22 pg/m>. This behavior suggests that air
pollution is subject to abrupt changes due to environmental
influences like variable weather, vehicle traffic, or local in-
dustrial activities.

The dotted red line in Figure 8b represents the model’s
prediction and suggests that PM, 5 concentrations stabilize
over time, showing more consistent values than the actual
data. In contrast, the actual PMs 5 concentrations exhibit
fluctuations around a steady average, reflecting the inherent
variability in air quality. While the ARIMA forecast captures
this stability, there is a noticeable widening of the confidence
intervals as time progresses, indicating increasing uncertainty

in longer-term predictions.

Predictions vs. actuals with confidence intervals

vt Wt AN s, s S

PM2.5 {up'm3

Figure 8. (a) Time series of PMa 5 concentration (particulate matter with a diameter of less than 2.5 micrometers) in pg/m?® over time.
(b) The actual data is represented by the blue line, while the model forecast is indicated by the dotted red line. (¢) Comparison between
actual and forecasted PM3 5 values, including confidence intervals.

The model provides reasonably accurate short-term
forecasts, with confidence intervals indicating manageable
uncertainty. However, as the forecast extends into the future,
these intervals widen significantly, suggesting that long-term
predictions are less reliable. The model’s predictions do not
seem to adequately account for the peaks and valleys ob-
served in real data, likely due to the smoothing effect of the
modeling process, which may overlook extreme pollution
events. At the beginning of the data series, the actual PMs 5
concentrations show significant variability. This may reflect

the influence of external factors such as climate anomalies

or environmental events like wildfires or dust storms. The
ARIMA model may not fully capture these influences due
to its assumptions of linearity and stationarity in the data.
The growing uncertainty in the predictions could indicate
the model’s limitations in accounting for longer-term varia-
tions, especially if external factors, such as climate change
or human activities, are influencing the data in ways that the
model does not consider.

From a specific point in the series, the dotted red line
begins to represent the model’s prediction, indicating a grad-

ual stabilization of PMs 5 concentration around 16 ug/m?’,
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with a slight increase over time. After the initial fluctua-
tions, the ARIMA model’s forecast stabilizes, suggesting
that the model smooths out early variability. However, this
stabilization may not fully capture real-world complexities,
particularly when sudden, short-term changes occur. The
static nature of the forecast could be due to the model’s ten-
dency to over-smooth the data, potentially missing transient
events that impact air quality. To enhance the model’s ability
to capture extreme events and improve prediction accuracy,
it is necessary to adjust the model parameters, incorporate ex-
ogenous variables, or integrate machine learning techniques.
This would account for seasonal or external factors influenc-
ing PM 5 concentrations.

The observed stationary behavior of the series implies
that it maintains a consistent meaning and variance over
time, supporting the assumption of stationarity in ARIMA
models. The absence of significant trends or seasonal cycles
indicates that the time series behaves predictably within

certain limits. If the assessment in 2019 closely mirrors
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the overall pattern of previous years, it further reinforces
the stationary nature of the data, suggesting that no abrupt
changes or external shocks significantly affected the series

during that period.

3.3. Bayesian inference with Log-Normal Dis-
tribution

For the analysis of the positive skewness of the data, as
can be observed in Figure 9a, most PMs 5 values remain low,
but significant spikes are observed at specific points (approx-
imately at values 80 and 95 on the X-axis). This suggests that
although the concentration of PMs 5 is predominantly low,
there are sporadic high-intensity events that affect pollution.
For this reason, the log-normal distribution is suitable for
modeling positive and asymmetric data. The results indicate
that while most PMs 5 values remain low (Figure 9b), there
is a significant probability of extreme events occurring, such

as sharp spikes in pollution.
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Figure 9. (a) Distribution of daily PM2 5 concentrations (1g/m®), highlighting the positive asymmetry of the data. (b) Frequency
distribution of PMa 5 concentrations (ug/m?), highlighting the predominance of low values and the probability of extreme events

occurring, represented by sharp peaks of pollution.

In the log-normal distribution (Figure 9b), spikes can
represent periods of intense pollution caused by factors such
as adverse weather conditions, increased industrial activity,
or wildfires. The concentration of PM5 5 does not follow
a linear pattern. The log-normal distribution suggests that
small increases occur more frequently, while large peaks are
rare but can occur. Predictions made with this approach can

be useful for public policies, as they indicate that, despite

long periods with low pollution, it is essential to maintain
constant monitoring to prevent environmental crises and re-
spond quickly to high-pollution events.

Figure 10 illustrates the distribution of the original
PM3 5 concentration values. A high density concentrated
around values close to zero is observed, indicating an asym-
metric distribution and the predominant presence of very low

or even null values. This behavior suggests a large dispersion
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in the data, which may indicate the need for transformation,
such as normalization, or the use of more appropriate distri-
butions, such as log-normal or Weibull, for more effective
modeling.

In addition, the predominance of low values may reflect
a censorship effect on the data, possibly due to the detection
limits of the sensors. This characteristic should be considered
when applying statistical methods or predictive models, and
it may be necessary to use techniques such as the removal of
outliers or transformations to improve the suitability of the

data to parametric methods.

Distribution of the original data PM2.5
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Figure 10. Distribution of the original PM2 5 concentration values.

3.4. Comparative Analysis of Distributions

Three distributions were tested to model the observed
data: Log-Logistic, Generalized Extreme Value (GEV), and
Log-Normal. These distributions are indicated for asym-
metric data and are commonly used in environmental and
climatic phenomena, especially those with extreme values
and long tails.

All distributions have important characteristics for the
study case. Log-Normal Distributions assume that the log-
arithms of data follow a normal distribution, often used
for environmental variables with exponential growth. Log-
Logistic Distributions is Similar to Log-Normal but with
heavier tails, ideal for modeling frequent extreme events
in hydrology and precipitation. While, GEV (Generalized
Extreme Value) Distributions focus more on extreme events
in the upper tail, capable of Gumbel, Fréchet, or Weibull
behaviors for flexible modeling.

When adjusting the data to the tested distributions, it
was observed that the probability values obtained were sim-
ilar between the models, suggesting that they all provide a
good fit to the data. However, some important differences

deserve to be highlighted: The Log-Normal distribution cap-
tured the asymmetry of the data well, but may underestimate
the frequency of extreme values due to the less heavy tail
when compared to the Log-Logistic and GEV distributions;
The GEV, as it specializes in modeling extreme events, was
the most effective in capturing the occurrence of high values.
For forecasts involving extreme events, such as pollution
peaks or heavy rainfall, the GEV would be the most suitable
distribution.

The high value of ¢ = 4.42 in Log-Normal indicates
a large dispersion of the data. Compared to Log-Logistic,
which also has the flexibility to model dispersion, the ideal
choice depends on the adherence of the distribution to the tail
of the data. For overall data modeling, Log-Normal offers a
good fit, capturing well the asymmetry and central distribu-
tion of the observed values. For extreme event modeling, the
GEV is the best option, being specifically designed to cap-
ture very high values. Log-Logistic can be an intermediate
alternative, since it combines characteristics of the previous
distributions, being useful when the data has heavy tails, but

without necessarily involving rare extreme events.
3.4.1. Gaussian PDF adjustment

Figure 11a illustrates the application of the Gaussian
distribution function (normal) to the concentration of PMj 5
(fine particulate matter) between 2000 and 2018. The distri-
bution of PM; 5 data suggests that, although most measure-
ments focus on low values, there are rare episodes of severe
pollution. This pattern is useful for predicting trends and
guiding environmental policies to mitigate extreme pollution
events. The highest probability density is associated with
PM, 5 concentrations below 50 ug/m3 , which indicates that
most of the data was collected at relatively low concentra-
tions. There are concentrations above 100 pg/m?, although
rare, with some values reaching up to 400 pg/m3, suggesting
exceptional episodes of high pollution. The distribution is
right-skewed, indicating rare pollution spikes. Low concen-
trations suggest improved air quality, but extreme events like
wildfires need attention.

The histogram of PMs 5 concentrations between 2000
and 2018 (Figure 11b), with an adjusted Gaussian proba-
bility density function (PDF) superimposed. Although the
Gaussian fit represents the core values well, it does not adapt
adequately to the tails, implying that alternative distributions

must be considered for more accurate modeling and fore-
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casting. Most samples have PM 5 concentrations below 50
ug/m3, indicating that the air quality was within acceptable
standards for most of the period. There are some values
higher than 100 pg/m?, but rare, possibly related to specific
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high-pollution events, such as fires or industrial emissions.
The histogram shows a right tail, suggesting positive skew-
ness and a poor fit with the Gaussian distribution. Alternative
distributions, like log-normal, may fit better.
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Figure 11. (a) “Gaussian Distribution of PM3 5 Concentration between 2000 and 2018”. (b) Adjustment of Gaussian Distribution to
PM,, 5 Concentrations (2000-2018)”. (¢) Adjustment of the Cumulative Distribution Function (CDF) of PM> 5 Concentrations: Gaussian
vs. Empirical (2000-2018). (d) Prior (A Priori Distribution) — Represents the initial assumption about the distribution of maximum PMs
values, before the data is incorporated. -Posterior (Posterior Distribution) — Represents the adjusted distribution after the incorporation of

the observed data.

Empirical CDF (probably in light blue) based on ob-
served data and Adjusted Gaussian CDF (probably in red)
fitted to the data via a normal distribution can be observed
in Figure 11c. The presence of extreme values may indi-
cate sporadic episodes of high pollution, possibly associated
with fires or thermal inversions. Environmental policies
should focus not only on averting concentrations, but also
on mitigating these critical events, which can have severe
impacts on public health. The form of the CDF shows that
most concentrations of PMs 5 are concentrated at low val-
ues, with a rapid growth of the accumulated function up to
about 100 pug/m>. Above this threshold, the probabilities

stabilize, indicating that very high concentrations are rare
events. This suggests that the Gaussian distribution may be
adequate to represent the central variability of the data but
may underestimate extreme pollution events.

Figure 11d shows the Bayesian inference for the maxi-
mum values of PMy concentration. in Brasilia in the period
from 2000 to 2018, highlighting the a priori and a posteriori
distribution of extreme values. Where the priori distribu-
tion (dashed line) presents an initial assumption about the
maximum possible values and, the posteriori distribution
(continuous line) reflects the updating of this assumption

based on the observed data.

68



Journal of Atmospheric Science Research | Volume 08 | Issue 03 | July 2025

The a priori distribution represents the initial assump-
tion about the maximum values of PM 5 before incorpora-
tion of observational data. The posteriori distribution, ob-
tained after the Bayesian update, reflects the influence of real
data on the modeling of extremes. It is observed that the pos-
terior distribution presents a more accentuated displacement
and adjustment, indicating that the collected data signifi-
cantly modified the initial predictions about the maximum
concentrations.

Another relevant aspect is the presence of a long tail
in the posterior distribution, which suggests the existence
of sporadic extreme events, with concentrations higher than
400 pg/m3. These events can be associated with seasonal
factors, such as fires, thermal inversions, and periods of at-

mospheric stability that favor the accumulation of pollutants.
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This pattern reinforces the need for continuous monitoring
and air pollution control policies, especially at critical times
of the year.

The histogram (Figure 12a) shows a higher frequency
of values between 100 and 300 pg/m®, with a sharp peak
around 250 pg/m?3, indicating that most PMj 5 observations
are concentrated in this range. The presence of a tail on
the right suggests the occurrence of extreme events, with
elevated PMs 5 values, although less frequent. The brown
line, which represents the probability density function (PDF)
adjusted by the distribution of extreme values, shows that
statistical modeling adequately captures the asymmetry of
the distribution and the elevated PMs 5 values. High concen-
trations of PM5_ 5 may be related to fire events, thermal inver-
sion, and emissions from industrial and vehicular sources.
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Figure 12. (a) Histogram of PM> 5 concentration (p1g/m®) in the period from 2000 to 2018, with the adjustment of a probability density
function (PDF) based on the distribution of extreme values (Extreme Value Distribution). (b) Statistical model adjustment to a distribution
of PM2 5 (ug/m?) in the period 2000-2018. (¢) Comparison between the empirical cumulative distribution function (CDF) and the
adjusted CDF of the Generalized Distribution of Extreme Values (GEV) for PMs 5 concentrations (jg/m>) in Brasilia in the period
2000-2018. The adjusted curve (red line) shows good adherence to the empirical data. (d) Adjusted Probability Distribution (PDF) of
PM3. 5 Concentration in the period 2000-2018 using the Generalized Extreme Value Distribution (GEV). The adjustment suggests that
the data follows asymmetric behavior, with a longer tail on the right, indicating events of high PM3 5 concentration.
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The fit of a statistical model for PMs 5 concentrations
in the period 2000-2018 (Figure 12b), with the blue line
representing the observed data and the grey line the adjusted
GEV model. The value of r=0.99, r=0.99, r = 0.99 suggests
that the fit of the GEV model is excellent, indicating that
the adjusted distribution accurately describes the data, espe-
cially at the highest concentrations. The high value reveals
that the GEV model very accurately describes the highest
concentrations of PMs 5, which is essential for the predic-
tion of extreme events. The excellent fit suggests that the
GEV distribution can be used to predict extreme air pollution
events, which have major implications for environmental
policymaking and pollution mitigation actions.

The empirical cumulative distribution function (CDF)
(in black) with the CDF adjusted by the GEV distribution
(in red) (Figure 12c). The excellent grip between the two
corners indicates a high-quality fit. The curve shows a sharp
growth at first, indicating that most PM, 5 concentrations
are in lower ranges. Extreme concentrations, on the other
hand, are less frequent, which is in line with the observed
distribution. The almost complete overlap between the em-
pirical CDF and the CDF adjusted by the GEV distribution
suggests that the model describes the distribution of the data
very well.

Figure 13 shows the QQ plot for the GEV 1 distribu-
tion fitted to PMs 5 concentration data from 2000 to 2018.
The plot serves as a graphical diagnostic tool to assess the ad-
equacy of the statistical model in representing the empirical
data. In the central portion of the distribution (approximately
quantiles 10 to 50), the points lie relatively close to the 1:1
line, suggesting that the GEV 1 distribution provides a rea-
sonable fit for typical PMs 5 concentrations.

However, significant deviations are observed in the
upper quantiles (above quantile 60), where the points rise
steeply above the reference line. This behavior indicates
that the GEV 1 model underestimates extreme values, failing
to adequately capture high PMs 5 concentration events—an
essential concern for public health risk assessments and air
quality management strategies.

When compared to other distributions tested in the
study, the Log-Logistic distribution also showed a good fit
for the central values but displayed similar limitations in the
upper tail. The Log-Normal distribution, while achieving the
highest coefficient of determination (R? = 0.6689), likewise

showed deviations in the extremes, as evidenced in its re-
spective QQ plot, indicating it may not be ideal for modeling
rare pollution events.
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Figure 13. Quantile-Quantile (QQ) plot comparing the empirical
quantiles of daily PM2 5 concentrations in Brasilia (2000—2018)
with the theoretical quantiles of the Generalized Extreme Value
distribution (GEV 1). The red dashed line represents the 1:1 refer-
ence line, indicating perfect agreement between the observed and
theoretical quantiles.

In contrast, the GEV 2 distribution, which was fit-
ted specifically to capture the behavior of extreme values,
showed superior performance in the upper tail of the distri-
bution. Its heavier tail provided a better representation of
high-concentration events, making it a more robust alterna-
tive for extreme value modeling.

Therefore, the QQ plot in Figure 13 highlights the im-
portance of selecting statistical models based on the intended
purpose of the analysis. While GEV 1 may be suitable for
describing the general behavior of PM; 5 data, distributions
like GEV 2 are more appropriate when the objective is to

predict or understand extreme pollution events.

GEV 2

The probability density function adjusted by the Gen-
eralized Extreme Value (GEV-2) distribution (Figure 14a)
for PM, 5 concentration data between 2000 and 2018. The
distribution shows a positive asymmetric shape, typical of
GEV, with a peak around 50-60 pg/m3, indicating the most
frequent concentration of PMjy 5. After this point, the density
decays rapidly, but with a long tail, suggesting the pres-
ence of extreme events with high concentrations of PMs 5.
This behavior is indicative that, although most of the data is
concentrated in moderate concentrations, extreme pollution

events still occur with some frequency. The GEV model
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seems to be adequate to represent the distribution of PMy 5
concentrations, but its validity must be confirmed by statisti-

cal goodness-of-fit tests. The long tail suggests the need for
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specific strategies to mitigate extreme pollution events, such
as fires and weather conditions that favor the concentration

of pollutants.
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Figure 14. (a) Adjusted Probability Density Function (PDF) of the Generalized Extreme Value (GEV-2) distribution for PMa 5
concentration in the period 2000-2018. (b) Quantile-Quantile (QQ) graph comparing the quantiles of the PM» 5 sample (2000-2018)
with the Generalized Extreme Value (GEV-2) distribution. (¢) probability distribution (PDF) of PM» 5 concentrations for the period
2000-2018, adjusted for three different Gaussian distributions (Gauss 1, Gauss 2 and Gauss 3). (d) Probability density function (PDF)
adjusted for PMs 5 concentrations for the period 20002018, using Generalized Extreme Value (GEV) distributions. The curves represent
different fits: GEV (PMz.5) in blue, GEV 1 in red and GEV 2 in black.

The predominance of concentrations around 50—60
ug/m?® may indicate a chronically high level of pollution,
with implications for public health, since values above 25
ug/m? are considered harmful to health, according to the
WHO. In addition, the presence of extreme events, repre-
sented by the long tail of the distribution, highlights the need
for public policies focused on air pollution control.

The QQ graph (Figure 14b) evaluates the adequacy
of the adjustment of the GEV-2 distribution to the PM, 5
concentration data. Although GEV-2 provides a reasonable
fit for most PMs, 5 data, its limitation in modeling extreme

events suggests the need for refinement in the model or con-
sideration of other distributions. Modeling rare and extreme
events is essential to account for the variability of PMs 5 con-
centrations, and strategies to deal with these episodes should
be implemented. From quantile 50 onwards, a significant
deviation of the points from the reference line is observed,
indicating that the GEV-2 underestimates the extreme values
of PMs 5. This deviation is most evident in the upper tail,
where the sample quantiles grow sharply in relation to the
values predicted by the adjusted distribution. In the lower
and intermediate quantiles, the dots closely follow the refer-
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ence line (dashed), suggesting that the GEV-2 model has a
good fit for the data from the central part of the distribution,
1.e., for the most common concentrations of PM, 5.

The graph in Figure 14c compares three Gaussian dis-
tributions to model the PM5 5 data. Gauss 1 and Gauss 2 (red
and blue), both have a sharp peak around 50 pg/m?3, which
indicates that this range concentrates most of the PMs 5 ob-
servations. Gauss 3 (black) presents a more pronounced
asymmetrical to the right, indicating the presence of extreme
events of high PMs 5 concentration, although with a lower
probability. The overlap between the Gauss 1 and Gauss 2
distributions suggests that both adequately model the main
part of the data distribution, especially for the most frequent
values. Gauss 3, with a long tail, represents a distribution that
can capture severe pollution events. The predominant con-
centration of PMj 5 around 50 ug/m? may indicate chronic
pollution, with possible impacts on public health. The long
tail of Gauss 3 reinforces the need to investigate and monitor
high-concentration events, such as fires or adverse weather
episodes.

The graph in Figure 14d compares the GEV distribu-
tion with Gaussian distributions for the PMs 5 data. The blue
distribution (GEV PM3, 5) shows a very sharp peak around
50 ug/m3, indicating that most of the data is concentrated in
this value. The red distribution (GEV 1) follows a similar
pattern, but with a smoothing in the peak region. The black
distribution (GEV 2) has a more pronounced long tail, which
suggests that this model attempts to capture extreme events
of high PM, 5 concentration. This suggests that episodes of
intense pollution can be sporadic and are linked to specific at-
mospheric conditions, such as fires or thermal inversions. A
high concentration of PM,_5 around 50 pg/m? may indicate
a chronic air pollution problem.

The comparison of Bayesian Inference models using
Log-Normal and Generalized Extreme Value (GEV) distri-
butions revealed key differences in modeling PMs 5 concen-
trations. GEV 1 captured lower concentrations well but was
variable at higher levels. In contrast, GEV 2 provided a better
overall fit, particularly at higher concentrations, making it
more effective in modeling extreme pollution events and in-

dicating a greater likelihood of severe pollution in the future.

The discrepancy between these models becomes evident in
the QQ plots, where GEV 2 stands out in its ability to model
high-concentration events. However, it’s essential to note
that both GEV models act as predictors and don’t necessarily
offer an exact fit to the input data, underlining the importance
of complementary validation methods. Furthermore, these
observations align with results from the ARIMA model and
traditional Bayesian Inference, reinforcing the robustness of
the methods employed.

The findings from this analysis emphasize the signif-
icance of considering a variety of statistical approaches
for modeling air pollution. While GEV 2 serves as a ro-
bust predictor for extreme events, Log-Normal Bayesian
Inference remains effective for modeling the general data
structure. The incorporation of the Metropolis-Hastings
algorithm through MCMC represents a crucial step forward,
providing a more nuanced probabilistic approach to pre-
dict future PMs 5 patterns and extreme air pollution events.
Since GEV models are primarily used for predicting ex-
treme events, the next step in the analysis involves using
the Metropolis-Hastings algorithm, a key technique within
Bayesian Inference and for sampling from complex distri-
butions. This algorithm is a variant of the Markov Chain
Monte Carlo (MCMC) method, commonly used when the
target distribution cannot be directly sampled, such as with
GEV distributions and other density functions lacking an
explicit analytical form.

Figure 15a shows the distribution of the samples in
two distinct panels. The histogram (black bars) displays
the frequency of samples at different locations, and the red
line represents the probability density function (PDF). The
asymmetry of the distribution may indicate that the variable
analyzed presents extreme values or outliers in small regions.
The behavior of the PDF suggests that statistical models such
as the Weibull distribution, log-normal, or gamma may be
appropriate for fitting the data. The uniformity of the number
of samples per location in the second panel confirms that data
collection was homogeneous, avoiding significant sampling
bias. If the context is environmental, this distribution may
be associated with measurements of pollutants or climatic

variables with high spatial and temporal variability.
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Figure 15. a-Sample distribution: (a) Probability density function (PDF) of the samples (red line) superimposed on the histogram (black
bars); (b) Autocorrelation function (AC) for different segments of the time series: (a) Autocorrelation of the first 100 samples; (b)

Autocorrelation of the last 100 samples.

The bottom panel shows that the distribution of the
samples seems uniform in terms of quantity at each loca-
tion. This pattern indicates that data collection was done
consistently across the study domain, ensuring a significant
number of sampling points. The uniformity of the number
of samples per location confirms that data collection was
homogeneous, avoiding significant sampling bias. If the
context is environmental, this distribution may be associated
with measurements of pollutants or climatic variables with
high spatial and temporal variability.

The autocorrelation function (AC) (Figure 15b) for
two subsets of data in a time series, highlighting the cor-
relation between different lags. The absence of significant
correlation suggests that the data may be approximately inde-
pendent in time, which may indicate a stochastic process with
no memory structure. For the top panel most autocorrelation
values are close to zero, indicating a significant absence of
correlation for different lags. For the bottom panel the pat-
tern is similar, with no clear temporal dependency structure.
CA values continue to be randomly distributed along lags,
with no indication of seasonal patterns or trends. This lack of
correlation may suggest that the phenomenon studied does
not have strong temporal dependence or that it was correctly
pre-processed to remove trends and seasonality. Also, the
lack of meaningful autocorrelation may indicate that meth-
ods based on autoregressive models (such as ARIMA) may
not be ideal, and the use of non-autoregressive approaches,

such as neural networks or machine learning-based models,

is preferable.

The results indicate that the GEV 1 model exhibits a
behavior similar to Bayesian inference with the Log-Normal
distribution, providing values close to zero and displaying
long tails in the PDF. This model fits better with PM, 5 data
at low concentrations but has high variability for high con-
centrations. This characteristic can be seen in the QQ chart.

On the other hand, the GEV 2 model performs better
when considering the full set of data, especially for higher
concentration values. This suggests that there is a higher
probability of future events having elevated PMs 5 concen-
trations. However, GEV 2 does not fit the initial sample
values as well, as both GEV models function as predictors.
These findings corroborate the results obtained with both
ARIMA and standard Bayesian Inference.

The next step will be the implementation of the
Metropolis-Hastings algorithm, one of the most widely used
methods in Bayesian inference and in the sampling of proba-
bility distributions. The method makes use of Markov Chain
Monte Carlo (MCMC), allowing the generation of samples
of complex distributions, especially when direct sampling is
not feasible.

3.5. Sampling Methodology:
Hastings Algorithm

Metropolis-

The Metropolis-Hastings algorithm, part of the Monte
Carlo methods via Markov Chain Monte Carlo (MCMC),
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was used in this study to estimate the parameters of complex
probability distributions, especially the Generalized Extreme
Value (GEV) distribution. The choice of this algorithm is
justified by the fact that, in many cases, such as the GEV
distribution, it is not possible to directly sample from its
posterior distribution, as it lacks a simple analytical form.

The main advantage of the Metropolis-Hastings algo-
rithm is its ability to generate samples from complex distribu-
tions through a Markov chain, allowing parameter estimation
in a Bayesian context even when the likelihood function is
intractable. In this study, the method was applied after for-
mulating the Bayesian model with Log-Normal and GEV
distributions, enabling robust sampling to predict extreme
PM, 5 concentrations.

The application of the algorithm aimed to:

e Increase the robustness of parameter estimates for the
GEV models, especially in the tails of the distribution
where extreme events occur;

e  Incorporate uncertainty into the forecasts of critical pol-
lutant concentrations;

e  Allow comparison between classically fitted distribu-
tions (MLE) and those estimated by Bayesian inference
with MCMC.

The results obtained with Metropolis-Hastings were
consistent with observed values and allowed a more faith-
ful representation of data asymmetry and dispersion. This
approach is especially relevant in environmental modeling,
where extreme events, although rare, have a significant im-
pact on public health and air quality control strategies.

The application of the Metropolis-Hastings algorithm
enabled the generation of samples from the posterior distribu-
tions of the parameters of the GEV and Log-Normal models,
allowing for more precise estimation of PMs 5 extremes in
Brasilia between 2000 and 2018. Figure 15a shows the dis-
tribution of the generated samples, highlighting the positive
skewness typical of extreme environmental events.

Figure 15b presents the autocorrelation function (ACF)
for the first and last 100 values of the sample chain. The
low autocorrelation observed indicates good efficiency of the
Markov chain, signaling convergence and relative indepen-
dence among the samples. This confirms the quality of the
simulations carried out by the algorithm and the robustness
of the Bayesian inference achieved.

The comparison between the prior distribution (repre-
senting the initial knowledge about the parameters) and the
posterior distribution (after incorporating the observed data)
is illustrated in Figure 16a. The posterior curve shows a shift
relative to the prior, with greater probability concentration in
values associated with extreme episodes, such as wildfires
and thermal inversions, demonstrating the impact of real data
on the final estimate.

Figure 16b reinforces the good fit of the probability
density function (PDF) generated by the GEV model adjusted
via Metropolis-Hastings, which adequately captured the long
tail of the distribution, associated with elevated PMs 5 con-
centrations. This feature is essential for predicting rare and
potentially critical public health events.

Moreover, the use of the Bayesian approach with
MCMC sampling enabled the estimation of credible inter-
vals for the parameters, providing a more comprehensive
assessment of the uncertainty associated with the forecasts.
This represents an advance over classical maximum likeli-
hood approaches, which often underestimate variability in
heavy-tailed distributions.

When a distribution cannot be sampled directly—as in
the case of GEV, which does not have a simple analytical
form—the Metropolis-Hastings algorithm makes it possible
to generate samples that follow the desired distribution.

Figure 16a shows the Bayesian inference applied to
the modeling of extreme values of PMs 5 concentration in
Brasilia between 2000 and 2018. The Bayesian approach
uses prior information (a priori distribution) to analyze max-
imum PM5 5 concentrations, leading to a posterior distribu-
tion that aligns with observed data. The a priori distribution
indicates that high PM, 5 values are rare, while the poste-
rior distribution adjusts slightly to fit extreme values better.
The blue curve illustrates the adjusted probability function
with a long tail, indicating that extremely high PMj 5 events,
though infrequent, are possible. This behavior is charac-
teristic of extreme value distributions like the Generalized
Extreme Value (GEV) or Pareto distribution. This long tail
underscores the importance of ongoing air quality monitor-
ing in Brasilia, especially during dry seasons or wildfires.
Further research can explore how meteorological and human
factors affect maximum PM, 5 concentrations.

Probability density function (PDF) shown in Figure
16b, adjusted using the GEV distribution for PMs 5 concen-
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trations (ug/m?) in the period 2000-2018. The PDF shows a
positive asymmetry (right tail), indicating that most PMs 5
concentrations are at low values, while extreme events of
high concentration are less frequent, but possible. The modal
value of the distribution (peak of the curve) occurs around
20-30 pg/m3, suggesting that this concentration range was
the most common during the analyzed period. The long tail
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of the data shows that most PM, 5 values are low, but there
are occasional high spikes, likely from wildfires or weather
events. The Generalized Extreme Value (GEV) distribution
effectively models these extremes. While low to moderate
levels are generally good for air quality, the extreme spikes
are concerning, as high PMs 5 exposure can harm public
health.
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Figure 16. (a) Bayesian inference for maximum PM 5 concentration values in Brasilia in the period 2000-2018. The figure shows the
priori (brown dashed line) and a posteriori (green dashed line) distributions, in addition to the adjusted probability distribution (blue line).
(b) Probability density function (PDF) adjusted using the GEV distribution for PMz 5 concentrations (pg/m?®) in the period 2000-2018.
(¢) Comparison between the empirical Cumulative Distribution Function (CDF) and the CDF adjusted by the GEV distribution for PM2 5
concentrations (pg/m?) in the period 20002018 in Brasilia. (d) Probability Density Function (PDF) adjusted for PMs 5 concentrations
in Brasilia between 2000 and 2018, comparing different Gaussian distributions.

The CDF curve (Figure 16¢) exhibits rapid growth at
low concentrations of PMs 5, indicating that most values are
concentrated in this range. The curve stabilizes for higher
concentrations, which reflects the low frequency of extreme
events. The CDF shows the cumulative probability of find-
ing PMs 5 values below a given threshold. For example, if
the curve reaches 0.9 around 50 pg/m?, this indicates that

90% of the observations were below this value. Asymmetry

in the tail suggests that there are some unusually high con-
centrations, which, while rare, can have significant impacts
on air quality and public health. The proximity between em-
pirical and adjusted CDF reinforces the adequacy of the GEV
distribution to model the variability of PMs 5 concentrations.

In Figure 16d 3 different representation lines can be
observed, PDF Gauss as a blue line, PDF Gauss 1 as ared line,
and Gauss 2 PDF as black line. The graph shows that the dis-
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tribution of PM..s is asymmetric on the right, with a long tail
that extends to high concentration values (above 300 pg/m?).
This indicates the presence of extreme air pollution events,
possibly related to fires or industrial and vehicular emissions.
The adjustment of the distributions suggests that the concen-
tration of PMa2.s can be well represented by a combination of
Gaussian distributions, possibly reflecting different emission
regimes. The predominance of lower concentrations, but with
the presence of extreme events, indicates that air pollution
in Brasilia may be associated with both continuous sources
(traffic, industry) and sporadic and seasonal events (fires).

The Gauss 1 PDF curve (red) shows a steeper peak and
closely follows the empirical distribution for lower concen-
trations (between 0 and 100 pg/m?®). The Gauss PDF curve
(blue) also follows the trend of the empirical distribution,
but with a less precise fit at the lower concentrations. The
Gauss 2 PDF curve (black) represents a second Gaussian
distribution, which better captures the tail of the distribu-
tion, i.e., the extreme values. The occurrence of extreme
events suggests the need for continuous monitoring of air
quality and preventive measures to mitigate episodes of high
pollution, especially during the dry season.

Figure 17 shows the probability density functions
(PDF) adjusted with the Generalized Extreme Value (GEV)
distribution for PMs 5 concentrations in the period from 2000
to 2018. The curves indicate an asymmetric distribution to
the right, with a long tail, suggesting the occurrence of ex-
treme events, i.e., high concentrations of PMs 5 that appear
with low frequency.
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Figure 17. Probability density functions (PDF) adjusted using the
Generalized Extreme Value (GEV) distribution for PM> 5 concen-
tration in the period 2000-2018. The curves represent different fits:
PDF GEV for the PM3 5 data (blue), PDF GEV 1 (red) and PDF
GEV 2 (black).
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The blue curve, representing the GEV fit for PMs 5
data, shows a sharp peak at lower concentrations, which is
consistent with the prevalence of reduced values observed
in the original distribution. On the other hand, the red curve
(PDF GEV 1) shows a similar behavior, but with a less pro-
nounced peak. The black curve (PDF GEV 2) demonstrates
a more pronounced elongation in the tail, indicating that this
adjustment can more accurately represent extreme values.

The differences observed between the adjustments may
reflect variations in the adequacy of the GEV distribution, de-
pending on the parameterization used. The choice of the most
appropriate model should be supported by statistical metrics,
such as the Kolmogorov-Smirnov test, the AIC (Akaike In-
formation Criterion) or the BIC (Bayesian Information Cri-
terion), which allow the evaluation of which PDF best fits
the PM, 5 data.

In addition, the presence of extreme values reinforces
the importance of investigating possible meteorological or
anthropogenic factors associated with episodes of high PM2
concentration 5. This includes phenomena such as fires, ther-
mal inversions, and seasonal emission patterns, which can
play a crucial role in the occurrence of these extreme events.

The application of the improved methodology gener-
ated results consistent with previous analyses. The GEV 1
model presented the best fit for the data at low concentrations
of PM,,_ 5, with well-distributed probabilities close to zero, a
behavior that is reinforced by the Gaussian fit, also suggesting
a good fit of the model for this concentration range.

On the other hand, the GEV 2 model, although it did
not present the best global fit, demonstrated a higher prob-
ability for high PM5 5 concentrations in future events. The
presence of long tails in both GEV distributions indicates a
higher probability of extreme events, which reinforces the
need for models that take this characteristic into account in
air quality forecasts.

To validate these results, three complementary statisti-
cal approaches were used:

ARIMA models, which analyze the time dependence
of the series and suggest cyclical and trend patterns.

Bayesian inference with Log-Normal distribution,
which captures the positive asymmetry of the data and allows
for robust probabilistic estimates.

Methodology based on almost all Gaussian behavior,
applied as a reference to evaluating the distribution of data.
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The results indicate that the distribution of PM5 5 con-
centrations does not follow purely Gaussian behavior, justify-
ing the need for more advanced statistical models to capture
its variability and predict air pollution episodes with greater
accuracy.

These findings provide a solid scientific basis for the de-
velopment of sustainable urban and rural policies, especially
as it relates to air quality monitoring and public health in-
terventions. By identifying the probability distributions that
best model PM 5 concentrations, it is possible to improve en-
vironmental monitoring systems, allowing for more accurate
detection of air pollution variations and trends. This infor-
mation is crucial for the formulation of effective emission
control strategies and for the implementation of preventive
measures that protect the health of the population. In addi-
tion, the validation of models with official data reinforces
the reliability of forecasts, helping public managers to make
informed decisions and prioritize actions aimed at improving
air quality and reducing the risks associated with exposure
to fine particulate matter.

The adjusted statistical models—particularly the Gen-
eralized Extreme Value (GEV-2)—proved to be powerful
tools not only for analyzing the distribution of PM..s con-
centrations but also for predicting extreme pollution events.
The robustness of the Bayesian inference, supported by the
Metropolis-Hastings algorithm, improved the accuracy of
estimates and the representation of uncertainties.

These models provide important support for public
policy formulation by allowing the identification of criti-
cal periods with a higher risk of pollution peaks, such as

n[23241 The analysis showed that extreme val-

the dry seaso
ues of PMz.s are not rare and tend to occur under specific
atmospheric and seasonal conditions?>2%]. Thus, the imple-
mentation of targeted mitigation strategies can be guided by
the outputs of these models.

We emphasize the public health impacts associated with
elevated PMz,s levels, including respiratory and cardiovas-

cular risks!!%7

1. The study also highlights the importance
of continuous air quality monitoring, especially during the
dry season, when fire incidence and atmospheric stagnation
increase pollutant concentrations 2%,

Therefore, the integration of extreme value theory, time
series models, and Bayesian inference creates a robust frame-

work for understanding, forecasting, and managing air pol-

lution risks in urban areas. Future studies may expand this
approach by incorporating exogenous variables and machine
learning techniques to further refine environmental forecast-

ing.

4. Conclusions

Statistical analysis of PMs 5 concentrations demon-
strated that the distribution of the data is asymmetric and
highly variable, justifying the use of advanced statistical
models for more accurate predictions. The results indicate
that the GEV 1 model is more suitable for low concentrations,
while GEV 2 is more effective for predicting extreme events,
suggesting that pollution peaks may occur more frequently
than predicted by conventional distributions.

Validation of the models using ARIMA, Bayesian In-
ference with Log-Normal distribution and quasi-Gaussian
modeling reinforced the robustness of the approach and the
need for long-tailed distributions to adequately capture the
behavior of air pollution. Furthermore, the findings suggest
that extreme air pollution events are more frequent than a
Gaussian distribution would indicate, highlighting the impor-
tance of specialized models for environmental predictions.

The choice of the statistical model should be guided by
the specific objective of the prediction: Bayesian Inference
with Log-Normal is useful for characterizing the general
behavior of concentrations; ARIMA allows identifying sea-
sonal patterns and trends; and GEV models are essential
for predicting extreme events. The inclusion of sampling
techniques, such as the Metropolis-Hastings algorithm, can
improve the accuracy of estimates and contribute to more
effective air quality planning.

For future studies, it is recommended to incorporate
meteorological variables and emission sources to improve
predictions. In addition, the combination of statistical meth-
ods and machine learning can offer a more comprehensive
approach to modeling air pollution and support public policies
aimed at mitigating environmental and public health impacts.
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