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ABSTRACT

Air pollution remains a pressing environmental issue in Brazilian cities, particularly during the dry season when
meteorological conditions favor pollutant accumulation. This study investigates the influence of meteorological variables
on PM:.s and PMio concentrations in the urban atmosphere of Campo Grande, Mato Grosso do Sul, Brazil, during the
transition period between the wet and dry seasons (March to June 2021). Data were obtained from the air quality monitoring
station at the Federal University of Mato Grosso do Sul (UFMS), including daily measurements of particulate matter
and meteorological parameters such as temperature, humidity, precipitation, atmospheric pressure, wind speed, and wind
direction. Descriptive statistics, Pearson’s correlation, multiple linear regression, and Principal Component Analysis (PCA)
were employed to explore the relationships between meteorological drivers and particulate matter. Results revealed that
relative humidity and precipitation are negatively correlated with PM concentrations, indicating their role in atmospheric
cleansing through wet deposition. Conversely, wind speed and atmospheric pressure were positively associated with PM
levels, suggesting pollutant transport or accumulation under stable atmospheric conditions. The PM2.s/PMio ratios of 0.55
(1-hour) and 0.44 (24-hour) point to a predominance of fine particles from anthropogenic sources. The findings highlight
the complexity of pollutant-meteorology interactions and underscore the need to incorporate meteorological data into air
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quality forecasting and management strategies. This approach is especially critical for medium-sized tropical cities that

experience seasonal climate extremes and are subject to both urban and biomass-burning emissions.

Keywords: Air Pollution; Particulate Matter; Meteorological Variables; Statistical Analysis; Campo Grande; Particulate

Matter (PM..s, PMio); Tropical Urban Climate

1. Introduction

Particulate matter (PM), particularly PMz.s and PMo,
poses significant environmental and public health challenges
worldwide. These pollutants are associated with respiratory
and cardiovascular diseases and are influenced by both an-
thropogenic sources and meteorological conditions!'=*. Un-
derstanding the interactions between atmospheric variables
and PM concentrations is essential for improving air quality
management, especially in tropical urban environments that
experience pronounced seasonal variability.

Meteorological factors—including temperature, rel-
ative humidity, wind speed, atmospheric pressure, and
precipitation—play crucial roles in the dispersion, transfor-
mation, and removal of airborne particles>®]. Several stud-
ies in Brazilian metropolitan areas such as Sdo Paulo, Rio de
Janeiro, Porto Alegre, and Rondonépolis have demonstrated
significant relationships between weather conditions and PM
dynamics!7""!]. However, most of these investigations have
been limited to large cities with dense monitoring networks,
leaving medium-sized cities underrepresented despite their
growing environmental and health challenges.

Moreover, methodological limitations remain. Many
studies rely on descriptive statistics or simple correlations,
with limited application of multivariate techniques that cap-
ture the complexity of pollutant-meteorology interactions.
Principal Component Analysis (PCA), for example, has
rarely been applied in Brazilian cities to simultaneously an-
alyze PMa.s, PMio, and meteorological drivers. This gap is
particularly relevant in the Cerrado biome, where seasonal
droughts, biomass burning, and strong climatic variability
play decisive roles in air quality 12141,

Given these gaps, this study evaluates the temporal
variability of PM..s and PMio concentrations and their rela-
tionship with meteorological variables during the transition
season (March to June 2021) in Campo Grande, a mid-sized
city in Central Brazil. By integrating descriptive statistics, re-

gression models, and PCA, we provide one of the first assess-

ments of how meteorological drivers influence particulate
matter in this tropical environment. The results contribute
to advancing methodological approaches and offer evidence
to guide regional air quality management and public health

strategies.

2. Materials and Methods
2.1. Study Area

Campo Grande (20°27' S, 54°36' W, 530 m altitude)
has a humid tropical climate with distinct rainy (summer)
and dry (winter) seasons. Summers are hot and humid (av-
erage > 25 °C), while winters are dry (15-20 °C). With a
population density of ~95 inhabitants/km? and a high urban
Human Development Index, the city’s economy relies on
agriculture and services, contributing to PM emissions via
vehicular traffic and biomass burning 4],

2.2. Experimental Part: Location and Sam-
pling Period

The Air Quality Monitoring Station of the Federal Uni-
versity of Mato Grosso do Sul (EMQA) is located on the
UFMS main campus in Campo Grande, State of Mato Grosso
do Sul (MS), Brazil (20°27" S, 54°36" W; 530 m above
sea level). The surroundings combine vegetated areas with
nearby roads, parking lots, and campus activities, providing
a representative environment influenced by both natural and
anthropogenic emission sources.

The sampling campaign was carried out from May to
December 2021, covering the transition from the dry sea-
son to the onset of the wet season. This period allowed the
assessment of seasonal variability in particulate matter and
meteorological conditions. Continuous 24 h measurements
were classified into daytime (06:00—18:00) and nighttime
(18:00-06:00) periods, enabling comparative analysis of di-

urnal and nocturnal atmospheric processes (Figure 1).
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Figure 1. Photo by EMQAr of the UFMS campus, Campo Grande, MS, Brazil.
Source: UFMS Institute of Physics. https://Ica-infi.ufms.br/qualiar/ (accessed on 26 June 2025).

(The photograph is at a public place at the Federal Uni-
versity of Mato Grosso do Sul, Brazil. Thus, it is free to use
at any time and requires no copyright)['>].

Meteorological and air quality data were continuously
collected at the EMQAT station on the UFMS campus. The
monitoring system comprised high-precision instruments de-
signed for environmental studies. Wind speed and direction
were measured using a Vaisala WXT520 weather transmitter
(Vaisala Oyj, Vantaa, Finland; accuracy: £3°, 0.3 m/s). Pre-
cipitation was recorded with a Tipping Bucket Rain Gauge
(Davis Instruments, Hayward, CA, USA; accuracy: £2%).
Relative humidity and air temperature were monitored with
a Vaisala HMP155 probe (Vaisala Oyj, Vantaa, Finland; ac-
curacy: +1.5%, +0.2 °C), while atmospheric pressure was
measured using a Vaisala PTB110 sensor (Vaisala Oyj, Van-
taa, Finland; accuracy: £0.3 hPa). Solar radiation was ob-
tained from a CMP3 Pyranometer (Kipp & Zonen, Delft, The
Netherlands; accuracy: +5%). Data from all meteorological
sensors were logged at 1-minute intervals and aggregated

into hourly averages for subsequent analysis.

21

Particulate matter concentrations (PM..s and PM.o)
were continuously monitored using an automatic optical
aerosol monitor (Thermo Scientific pDR-1500, Thermo
Fisher Scientific Inc., Waltham, MA, USA; detection limit:
1 pg/m?; accuracy: £5%). Calibration procedures followed
the manufacturer’s recommendations, including weekly zero
and span checks for particulate matter monitors and annual
factory calibrations to ensure traceability to international
standards. In addition, field inspections were conducted be-
fore and after the study period to verify instrument stability

and measurement accuracy ['3-21),

2.3. Meteorological and Air Quality Data

Meteorological data were obtained from the UFMS
monitoring station and included the following parameters:
wind speed and direction, precipitation, relative humidity,
air temperature (maximum and minimum), and atmospheric
pressure. Particulate matter concentrations (PMa.s and PMio)
were recorded continuously at hourly intervals using auto-

matic equipment calibrated according to Brazilian environ-
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mental standards.

A total of 2,589 hourly observations were collected.
Data quality control involved two steps: (i) verification of
instrument calibration and (ii) identification of missing or
anomalous values. Missing data accounted for less than 2%
of the total observations, resulting from short sensor interrup-
tions or communication errors. To ensure data reliability, we
adopted a conservative approach: only days with complete
hourly records for both PMz.s and PMio were included in the
analysis (listwise deletion). This choice avoided introducing
biases associated with imputation methods.

2.4. Statistical Analysis

The following statistical methods were applied: De-
scriptive statistics: mean, standard deviation, variance, skew-

ness, kurtosis, and extreme values. Pearson correlation co-
efficient (r): to identify linear relationships between mete-
orological variables and PM concentrations. Multiple lin-
ear regression: to model the dependence of PM concentra-
tions on meteorological factors.Principal Component Anal-
ysis (PCA): to reduce data dimensionality and identify key
meteorological drivers influencing PM levels, minimizing

multicollinearity 22241,

3. Results

3.1. Descriptive Statistics

Table 1 presents the descriptive statistics of the hourly
means of PM..s, PMio, and meteorological variables observed
in Campo Grande, MS.

Table 1. Descriptive statistics of hourly mean concentrations of PM2.s, PM1o, and meteorological variables in Campo Grande, MS.

Variable Mean Std. Dev. Median Q1 (25%) Q3 (75%) Minimum Maximum Skewness Kurtosis
PMz.s 1 h (pg/m?) 9.29 10.91 5.85 3.50 10.50 0.40 94.10 4.08 25.64
PMio 1 h (pg/m?) 16.20 19.25 12.05 7.80 19.30 0.10 141.50 4.07 20.22
PM..s 24 h (ug/m®)  7.44 3.71 6.60 4.60 8.90 2.40 20.30 1.50 2.75
PMio 24 h (pg/m?) 15.51 7.40 13.25 10.20 19.60 0.10 33.40 0.95 0.43
T (°C) 21.26 3.53 21.55 19.20 24.20 6.00 29.90 -1.20 3.95
RH (%) 89.15 5.78 91.50 85.00 93.50 64.00 95.00 -1.67 2.98
Rain (mm) 2.47 4.54 1.00 0.50 2.20 0.20 31.40 4.09 20.01
ws (m/s) 1.87 1.29 1.34 0.90 2.30 0.45 6.26 1.41 1.78
wd (°) 164.05 107.08 135.00 76.00 258.00 2.00 355.00 0.44 -1.09
Pressure (hPa) 1,013.48 493 1,012.47 1,009.80 1,017.20 1,005.36 1,028.22 0.50 -0.36

Note: ws—daily average wind speed, rain—1-h cumulative precipitation, AP—daily average atmospheric pressure, MaxT—daily maximum temperature, MinT—daily
minimum temperature, RH—daily surface air relative humidity. Q1 and Q3 (first and third quartiles).

For air pollutants, the hourly means of PMa.s (9.29
pg/m?) and PMio (16.20 pg/m?®) remained below the WHO
guideline values'!. However, the maximum concentrations
(94.1 pg/m? for PMaz.s and 141.5 pg/m? for PMuo) reveal the
occurrence of critical short-term pollution episodes, likely
associated with intense local emissions or unfavorable me-
teorological conditions for dispersion. The highly skewed
and leptokurtic distributions (Skewness > 4; Kurtosis > 20)
confirm that most hours presented low pollutant levels in-
terspersed with extreme hourly peaks, a typical feature of
mid-sized cities exposed to point sources and strong regional
climate variability.

With respect to the meteorological variables, the re-
ported values correspond to hourly averages. For air tem-
perature, the observed extremes were 29.9 °C (maximum)
and 6.0 °C (minimum), with an overall hourly mean of 21.3

°C. The distribution exhibited a slightly negative skewness,

reflecting cooler conditions during the night and early morn-
ing, particularly in the dry season. For relative humidity,
values ranged from 95% (RHmax) to 64% (RHmin), result-
ing in an hourly mean of 89.2%. The negative skewness
indicates the predominance of humid conditions interspersed
with episodes of dry air, which favor the accumulation of
particulate matter.

Rainfall showed a low mean (2.47 mm) but with very
high skewness (4.09) and kurtosis (20.01), confirming the
predominance of dry hours interspersed with intense and iso-
lated precipitation events, typical of the tropical convective
regime. The mean wind speed (ws) was low (1.87 m/s), with
strong positive skewness, indicating the predominance of
calm conditions interrupted by occasional gusts (maximum
= 6.26 m/s). This pattern is consistent with reduced pollutant
dispersion most of the time. The mean wind direction (wd

= 164°) indicates a predominance of southeasterly flows,
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which may transport pollutants from rural areas and major
roads. Finally, atmospheric pressure remained stable (mean
= 1013 hPa), with low variability and nearly symmetric dis-
tribution, reflecting the influence of large-scale atmospheric
systems typical of Central-West Brazil.

In summary, the analysis of hourly means indicates
that although average levels of PMz.s and PM.o are moder-
ate, the highly episodic character of hourly concentrations,
combined with calm winds, low humidity, and absence of
rainfall, represents the main risk factor for air quality in
Campo Grande.

The boxplots (Figure 2) provide a visual summary of
the variability and distribution of particulate matter and me-
teorological variables. Hourly concentrations of PM..s and

Boxplot of hourly PM concentrations
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PMio (Figure 2a) exhibited wider interquartile ranges and
extreme values compared with the 24-hour averages (Figure
2b), reinforcing that short-term peaks drive the skewness and
heavy-tailed distributions observed in the descriptive statistics.
The daily averages presented narrower ranges and fewer out-
liers, reflecting the smoothing effect of temporal aggregation.

Temperature distributions (Figure 2¢) were relatively
symmetrical, with small interquartile ranges and moderate
variability between minimum and maximum values. This in-
dicates stable thermal conditions during the study period,
with no extreme events. Relative humidity (Figure 2d)
showed broader dispersion, particularly for RHmin, con-
firming that dry episodes were frequent and likely played a
critical role in modulating PM levels.

Boxplot of daily PM concentrations
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Figure 2. Boxplots of particulate matter concentrations and meteorological variables in Campo Grande, MS, during March—June 2021.
(a) Hourly PM:z.s and PMo; (b) Daily PM2.s and PMio (24 h averages); (¢) Maximum and minimum air temperature; (d) Maximum and

minimum relative humidity.

Note: Boxes represent interquartile ranges (Q1-Q3), horizontal lines indicate medians, and whiskers denote minimum and maximum values.
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The histograms (Figure 3) further highlight the sta-
tistical properties of the dataset. PMa.s and PMio hourly
concentrations (Figure 3a,b) exhibited positively skewed
distributions, dominated by low-to-moderate values with oc-
casional high peaks. Wind speed (Figure 3c¢) displayed a
leptokurtic distribution, with most observations clustered
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around calm conditions (near zero), interspersed with spo-
radic gusts. Rainfall (Figure 3d) was characterized by an
extremely skewed distribution, with the vast majority of
values concentrated near zero and rare but intense precipita-
tion events, consistent with the high skewness and kurtosis
reported in Table 1.
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Figure 3. Histograms of selected variables in Campo Grande, MS, during March—June 2021. (a) Hourly PMz.s concentrations; (b)

Hourly PMio concentrations; (¢) Wind speed; (d) Rainfall.

Note: Dashed vertical lines represent mean values, and the distributions highlight the positively skewed nature of particulate matter and rainfall, as well as the predominance of

calm wind conditions.

Overall, these graphical representations confirm that
particulate matter concentrations in Campo Grande are typi-
cally low but highly sensitive to meteorological variability.
Episodes of dry air, stagnant winds, and the absence of pre-
cipitation create favorable conditions for pollutant accumu-
lation, whereas rainfall and higher humidity act as effective
removal mechanisms.

The results obtained for the accumulated meteorolog-
ical variables can be observed in Table 1 and Figure 4
(Original figure—Rainfall, RH, Tmax, Tmin, PM and wind).

Among the parameters analyzed, wind speed stands out as
a determining factor for the dispersion of atmospheric pol-
lutants. During the evaluated period (March to June 2021),
the average wind speed was 0.64 m/s, with values varying

between 0 and 7.6 m/s.

3.2. Correlations and Regression Analysis

Pearson correlation analysis revealed significant as-

sociations between particulate matter concentrations and
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meteorological drivers. PM..s and PMio showed positive confirmed that wind speed and relative humidity were the
correlations with air temperature and negative correlations —strongest predictors of reduced PM levels, whereas stagnant
with relative humidity and precipitation. Multiple regression conditions favored pollutant accumulation.

Meteorological Variables and Air Pollution - 2021
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Figure 4. Temporal distribution of particulate matter concentrations in Campo Grande, MS, from March to June 2021. (a) PM..s at
hourly scale; (b) PMio at hourly scale; (¢) PM:.s at daily scale (24 h); (d) PMio at daily scale (24 h).

Note: The lines represent the fitted linear regressions with their respective coefficients of determination (R?).

The correlogram (Figure Sa) shows that PM..s and
PM.o concentrations were negatively correlated with relative
humidity and precipitation, confirming the role of moisture
and rainfall in reducing particle accumulation. Conversely,
positive correlations with temperature indicate that warmer
and drier conditions favor higher PM levels.

Wind speed (ws) exhibited a weak negative correlation
with both PM fractions, suggesting limited but consistent dis-
persion effects under stronger winds. Atmospheric pressure

(APmax and APmin) showed only minor associations with

pollutant levels.

Figure 5b highlights the statistical significance of these
relationships. Stronger correlations, such as between rela-
tive humidity and PMz.s/PMio, remained significant (p <
0.05), whereas weaker associations (e.g., with pressure vari-
ables) were not statistically robust. These results confirm
that humidity, rainfall, and temperature are the primary me-
teorological determinants of particulate matter dynamics in

the study area.
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Figure 5. Correlation matrix between meteorological variables and particulate matter concentrations in Campo Grande, MS, during

March—June 2021. (a) Pearson correlation coefficients (color scale:
non-significant correlations (p > 0.05) marked with.

3.3. Principal Component Analysis (PCA)

The scree plot (Figure 6a) indicates that four compo-
nents should be retained according to the parallel analysis and
optimal coordinate methods, although the first two already
explain 42% of the total variance.

The correlation circle (Figure 6b) shows that relative
humidity (RHmin, RHmax) and precipitation (Rain) are
strongly associated with Dim1, representing moisture-driven
processes that reduce particulate matter concentrations. In
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5t
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blue = positive, red = negative); (b) Same as (a), with statistically

contrast, temperature (Tmax, Tmin) and atmospheric pres-
sure (APmax, APmin) align with Dim2, reflecting thermal
and circulation influences.

The contribution plot (Figure 6¢) highlights that hu-
midity and temperature variables were the main contributors
to the first two principal components. This result reinforces
that moisture availability and thermal conditions are the dom-
inant meteorological drivers of PMa.s and PMio variability
in the study area.
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Figure 6. Principal Component Analysis (PCA) of meteorological variables and particulate matter concentrations in Campo Grande, MS,
during March—June 2021. (a) Scree plot of eigenvalues with parallel analysis, optimal coordinates, and acceleration factor criteria; (b)
Correlation circle of variables on the first two principal components (Dim1 = 26.8%, Dim2 = 15.2%); (¢) Contribution of each variable

to Dim1 and Dim2, with higher contributions indicated in red.

Diml is mainly associated with moisture-related pro-
cesses, as it groups relative humidity (RHmax, RHmin) and

precipitation, reflecting the influence of atmospheric water

availability on particulate matter removal. Dim2 is domi-
nated by temperature (Tmax, Tmin) and atmospheric pres-

sure (APmax, APmin), representing thermal and circulation
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effects that modulate pollutant accumulation and dispersion.

3.4. Wind Rose Analysis

Figure 7 presents the pollution roses for PM..s and
PMo at hourly and daily scales. A clear predominance of
concentrations associated with winds from the eastern sector
is observed in all panels, while the other directions show
reduced contributions. This pattern suggests the presence
of relevant emission sources located east of the monitoring
station, possibly related to urban traffic, anthropogenic ac-
tivities, or biomass burning in the region. The most frequent
concentration classes are between 0—5 pg m=> and 5-10 pg

m~3, indicating that most records correspond to low to mod-

PM2.5 pg m=3 (1 hour)
NORTH

erate levels, although higher concentrations (>20 pg m™)
are observed, especially for PMio. The comparison between
temporal scales shows that hourly means present greater vari-
ability and the occurrence of peaks, whereas 24-hour means
smooth these extremes, as expected from a statistical per-
spective. The percentage of calm atmospheric conditions
(<0.5 m s7') was low, indicating relatively favorable disper-
sion conditions during the analyzed period. These results
reinforce the importance of directional analyses for under-
standing the spatial distribution of emission sources and for
supporting air quality management strategies, considering
that PMz.s is more strongly associated with combustion pro-
cesses, whereas PMio is also influenced by dust resuspension
and soil particles.

PM10 pg m~3 (1 hour)
NORTH

SOUTH
PM2.5 pg m=3 (24 hours)
NORTH

SOUTH
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Figure 7. Wind rose diagrams showing the distribution of PM:.s and PMio concentrations in Campo Grande, MS, during March—June
2021. (a) PM..s at hourly scale; (b) PMio at hourly scale; (¢) PM..s at daily scale (24 h); (d) PM.o at daily scale (24 h). Colors indicate
concentration classes (pug/m?), while percentages represent the frequency of wind directions.
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4. Discussion

This study provides new insights into the role of mete-
orology in shaping PM..s and PMioe concentrations in a mid-
sized tropical city. The results revealed that relative humidity
and precipitation were strongly and negatively correlated
with particulate matter, while temperature was positively
associated with higher concentrations. These findings are
consistent with studies conducted in Brazilian metropolitan
areas such as Sdo Paulo and Rio de Janeiro, where drier and
hotter conditions have also been linked to pollutant accumula-
tion!”#]. Similar patterns have been reported internationally,
including in China and India, where seasonal droughts and
high temperatures contribute to critical PM episodes [+,

The patterns identified in this study are in agreement
with recent investigations in other urban contexts. For exam-
ple, Parra et al.[?] analyzing the Aburra Valley (Colombia),
demonstrated that PM..s responds strongly to meteorological
variations, a result similar to that observed in Campo Grande.
Likewise, Zhang et al.!¥] showed that in Krakéw (Poland),
low temperatures combined with thermal inversions intensify
air pollution episodes during the winter months.

The importance of spatio-temporal analyses was high-
lighted by Rautela & Goyal!'3], who demonstrated that the
interaction between meteorological variables and pollutants
can be better understood through approaches that integrate
multiple temporal scales. This perspective broadens the inter-
pretation of the results obtained in this study, suggesting that
the variability observed in Campo Grande is not only local
but also follows patterns recognized in different regions.

In addition, the effects of extreme events on air pollution
deserve attention. Sun et al.[* showed that heatwaves and
intense rainfall can abruptly modify pollutant concentrations,
creating new challenges for forecasting and monitoring. In
this context, the findings of this study reinforce the need for
environmental management strategies that take into account
not only average conditions but also the increasing frequency
of climatic extremes associated with global change.

The corrected PCA results indicated that the first two
components explained 42% of the total variance. Dim1 was
dominated by moisture-related variables (precipitation and
relative humidity), while Dim2 reflected thermal and circu-
lation effects (temperature, atmospheric pressure, and wind).
Although the scree test suggested retaining four components,

the first two were prioritized in the interpretation due to their

stronger physical meaning, while the additional results are
presented in the supplementary material. This clarification
avoids misleading interpretations and strengthens the robust-
ness of the multivariate analysis!?>-281,

Wind rose diagrams confirmed the predominance of
eastern winds, with higher PM2.s and PM.o levels occur-
ring under easterly flows. This highlights potential sources
located east of the monitoring station, such as biomass burn-
ing in rural areas and vehicular traffic along major regional
highways. Similar associations between wind direction and
pollutant transport have been documented in other regions

[10,25

of Brazil I and in Southeast Asia, where biomass burn-

ing during the dry season is strongly influenced by easterly
winds and low humidity 261,

It is also important to note that solar radiation, although
not directly analyzed in this study, plays a critical role in at-
mospheric processes related to particulate matter. High solar
radiation enhances photochemical reactions, leading to the
formation of secondary aerosols, and influences boundary
layer dynamics, thereby affecting pollutant dispersion. Future
studies in Campo Grande and similar tropical cities should
incorporate solar radiation more explicitly to strengthen the
interpretation of pollutant-meteorology interactions.

Overall, the discussion reinforces that meteorological
variables, particularly humidity, precipitation, temperature,
and wind patterns, are central drivers of PM..s and PMio
variability in Campo Grande. These results underscore the
importance of integrating meteorological data into air quality
assessments, not only for large metropolitan areas but also

for mid-sized tropical cities.

5. Conclusions

This study investigated the influence of meteorologi-
cal variables on PM..s and PMio concentrations in Campo
Grande, MS, during the seasonal transition from May to
December 2021. The analysis confirmed that relative hu-
midity and precipitation are key factors reducing particulate
matter levels, while higher temperatures and stagnant wind
conditions favor pollutant accumulation. PCA results demon-
strated that moisture- and temperature-related processes are
the main meteorological drivers of air quality variability in
this tropical mid-sized city.

Wind rose analysis indicated the predominance of east-
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erly winds, suggesting the presence of emission sources in
that sector, likely related to biomass burning and vehicular
traffic. These findings highlight the importance of consider-
ing regional transport processes in air quality management.

Based on the results, the following recommendations
are proposed: (i) implementation of early-warning systems
during periods of low relative humidity (<30%), enabling
public health alerts and preventive measures; (ii) integration
of meteorological forecasts into air quality monitoring to an-
ticipate unfavorable conditions; (iii) stricter emission control
policies, especially regarding biomass burning and vehicular
emissions; and (iv) expansion of monitoring networks in
mid-sized Brazilian cities to strengthen long-term pollutant

forecasting and regional planning.
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