
Journal of Atmospheric Science Research | Volume 08 | Issue 03 | July 2025

Journal of Atmospheric Science Research

https://journals.bilpubgroup.com/index.php/jasr

ARTICLE

Urban Air Pollution Trends and the Rise of Electric Vehicles in South

Asia: A Case Study of Ludhiana

Harpreet Kaur Channi 1,2

1 Department of Electrical Engineering, Guru Nanak Dev Engineering College, Ludhiana 141006, India
2 Eudoxia Research Centre, Eudoxia Research University, New Castle 19702,USA

ABSTRACT

The increasing adoption of electric vehicles (EVs) is regarded as a key strategy for mitigating urban air pollution

in rapidly developing regions like South Asia. However, the effects of EV penetration on various pollutants—especially

secondary pollutants like ozone—remain complex and context-dependent. This study investigates pollutant trends in

Ludhiana, India, from 2013 to 2025, focusing on NO₂, PM₂.₅, CO, and O₃ concentrations. Data were sourced from national

monitoring agencies and NASA’s Aura/OMI satellite platform, while EV statistics were obtained from the Punjab Transport

Department. Statistical methods, including regression and time-series decomposition, were used to explore pollutant

dynamics in relation to EV trends. A decline in NO₂, PM₂.₅, and CO was observed over the study period. However,

these trends likely reflect a combination of factors, including stricter emission norms, fuel quality upgrades, and broader

regulatory interventions—alongside EV growth. Ozone displayed a nonlinear response, peaking mid-decade and declining

thereafter, suggesting complex photochemical interactions. While EV integration may have contributed to reduced direct

emissions, further studies incorporating source apportionment and real-time emissions data are necessary to isolate its

specific impact. This study offers preliminary insights into the environmental dynamics of transport electrification in South

Asian cities.
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1. Introduction

The increasing adoption of electric vehicles (EVs)

presents a significant shift in the transportation sector, offer-

ing a sustainable alternative to internal combustion engine

(ICE) vehicles. In rapidly urbanizing regions like SouthAsia,

where vehicular emissions are a major contributor to dete-

riorating air quality, EV penetration is expected to have a

profound impact on atmospheric composition, particularly

tropospheric ozone (O₃) levels and other urban air pollu-

tants [1]. Tropospheric ozone, a secondary pollutant formed

through photochemical reactions involving nitrogen oxides

(NOₓ) and volatile organic compounds (VOCs), poses severe

risks to human health, agricultural productivity, and climate

regulation. While EVs reduce tailpipe NOₓ and VOC emis-

sions, their widespread use can influence the ozone formation

mechanism in complex ways, depending on local meteoro-

logical conditions and background pollution levels [2]. This

study investigates the impact of EV integration on urban

air quality, with a particular focus on tropospheric ozone

dynamics in Ludhiana, Punjab — a major industrial city in

northern India. Ludhiana’s growing EV infrastructure and

high pollution burden make it an ideal case for evaluating

the real-world effects of transport electrification on air qual-

ity. By analyzing historical air quality and meteorological

datasets alongside EV adoption trends, this research aims to

identify the environmental benefits and potential unintended

consequences of large-scale EV deployment. The findings

are intended to inform policy frameworks and urban planning

strategies for sustainable mobility and improved air quality

in South Asia.

2. Literature Review

The rapid urbanization and industrial growth in South

Asian cities have significantly deteriorated air quality, posing

serious risks to public health and environmental sustainabil-

ity. In response, electric vehicles (EVs) have emerged as a

key strategy for reducing vehicular emissions, yet the litera-

ture presents nuanced insights into their actual environmental

impact, particularly in relation to secondary pollutants like

ozone.

Hata, H., et al., (2025) discussed that introducing bat-

tery electric vehicles (BEVs) in Japan’s Greater Tokyo Area

could reduce local temperatures by up to 0.25 °C, mitigat-

ing the urban heat island (UHI) effect. This leads to lower

ground-level ozone (O₃) due to reduced photochemical ac-

tivity, but slightly increases PM2.5 concentrations. Overall,

these changes could prevent 252 annual premature deaths

linked to air pollution [3]. Zhao, X., et al., (2024) analyzed

how air pollution influences electric vehicle (EV) adoption

in 50 Chinese cities (2010–2019) using a multiple regression

model. It finds that health risks from pollution directly moti-

vate consumers—especially in wealthier areas—to choose

EVs, while increased environmental awareness and support-

ive policies further boost adoption. The findings guide sus-

tainable transportation and urban planning in polluted re-

gions [4]. Lyu, W., et al., (2024) evaluated the impact of

BEVs on air quality in three major Chinese cities, showing

monthly CO₂ emission reductions of 8.72–85.71 kg per vehi-

cle, averaging a 9.47% decrease. Advanced BEVs perform

better, while taxi BEVs show mixed results due to intensive

use. Policymakers should promote medium-to-large private

and ride-hailing electric vehicles for greater environmental

benefits [5].Su, H., & Diao, M. (2025). Discussed that using

data from 270 Chinese cities (2014–2020), this study finds

that worsening air quality significantly increases EV sales,

with thermal inversion used to address causality. The effect is

stronger in wealthier, larger cities with higher car ownership.

Government policies play a key mediating role, effectively

driving EV adoption in response to pollution [6]. Pontius, J.,

& McIntosh, A. (2024) described that urban air quality is

threatened by emissions from vehicles, power generation,

industry, and heating. As urbanization and climate change

worsen pollution, reducing transportation-related emissions

is vital. This unit explores three solutions: incentivizing

hydrogen fuel cell vehicles, converting buses to compressed

natural gas, and adopting electric municipal trucks [7]. Essam-

lali, I., et al., (2024) described that urban air pollution, driven

by rapid urbanization and industrialization, poses a major

global challenge. This study reviews recent advances using

the PRISMAmethod and highlights the effectiveness of ML

techniques—like LSTM, RF, ANN, and SVR—in predicting

key pollutants. These methods support data-driven urban

planning for healthier, more sustainable cities [8]. Banait, S.

K., et al., (2024) decribed that urban air quality in Bhopal

and Dewas shows dangerously high PM2.5 and PM10 levels,

far exceeding safe limits, with Bhopal reaching 354.48 μg/m³
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(PM2.5) and 436.64 μg/m³ (PM10). A focused study near

Kolar Road construction revealed PM2.5 peaking at 1,040

μg/m³, especially between 6 PM and 12 PM. These findings

highlight the urgent need for emission control at construc-

tion sites to protect public health [9]. Levi, A., et al., (2024)

described that Bhopal and Dewas exhibit PM2.5 and PM10

levels far above safe limits, with Bhopal reaching 354.48

and 436.64 μg/m³, respectively. A study near Kolar Road

construction in Bhopal recorded extreme PM2.5 peaks up to

1,040 μg/m³, especially from 6 PM to 12 PM. These findings

call for urgent emission control measures at construction

sites to protect public health [10].

Existing studies primarily focused on developed re-

gions and do not fully capture the unique socio-economic

and meteorological conditions of South Asian cities. There

is a critical need for localized investigations into how EV

adoption affects urban air quality and tropospheric ozone

dynamics, particularly in industrial hubs like Ludhiana [11–13].

The increasing adoption of electric vehicles (EVs) in urban

centers raises critical questions about their impact on am-

bient air quality and atmospheric chemistry, particularly in

rapidly developing regions like South Asia. This study aims

to explore these dynamics through the following research

questions:

1. How does the increasing penetration of electric vehi-

cles influence the levels of key air pollutants (NOₓ,

VOCs, PM) in Ludhiana?

2. What is the effect of electric vehicle adoption on tropo-

spheric ozone concentrations and their temporal trends

in Ludhiana?

3. How do meteorological parameters (temperature, solar

radiation, wind speed) interact with EV-related emis-

sion changes to affect ozone formation in Ludhiana?

4. What are the projected long-term impacts of EV adop-

tion on urban air quality and regional climate feedbacks

in South Asia?

5. How can policy interventions optimize the benefits of

EV adoption to improve air quality while mitigating

potential adverse effects on tropospheric ozone?

To comprehensively evaluate the environmental im-

pact of electric vehicle (EV) adoption in Ludhiana, this study

focuses on changes in air pollutant concentrations, tropo-

spheric ozone dynamics, and meteorological interactions.

The following key objectives were formulated:

1. To quantify the changes in major urban air pollutants

(NOₓ, VOCs, PM₂.₅, CO) associated with the increasing

penetration of electric vehicles in Ludhiana.

2. To analyze the temporal behavior of tropospheric ozone

in response to EV-related emission reductions and

evolving atmospheric conditions.

3. To assess the role of meteorological factors—such as

temperature, solar radiation, and wind speed—in mod-

ulating ozone formation in the context of vehicular

electrification.

3. Methodology

This study employs a mixed-methods approach com-

bining observational data analysis and statistical modeling to

assess the impact of electric vehicle penetration on urban air

quality and tropospheric ozone levels in Ludhiana as shown

in Figure 1. Ground-based air pollution data (including O₃,

NO₂, PM₂.₅, and CO) were collected from official monitor-

ing stations managed by the Central Pollution Control Board

and Punjab State Pollution Control Board. Meteorological

parameters such as temperature, humidity, and wind speed

were obtained from the India Meteorological Department

and ERA5 reanalysis datasets to control for weather-related

variability [14–16]. EV adoption data were sourced from re-

gional transport authorities and industry reports to quantify

penetration levels over time. Satellite remote sensing data

from NASA’s OMI instrument provided tropospheric ozone

vertical column density measurements to capture large-scale

atmospheric trends. Statistical tests, including correlation

analysis, regression modeling, and time-series trend analy-

sis, were applied to identify relationships between EV pen-

etration, pollutant concentrations, and meteorological fac-

tors. This integrative methodology enables a comprehensive

evaluation of EVs’ environmental benefits and potential un-

intended effects on urban air quality and climate-relevant

atmospheric chemistry. A statistical regression analysis was

performed using annual EV penetration and air pollutant

data (NO₂, PM₂.₅, CO, O₃) from 2013 to 2025 in Ludhiana

to quantify their interrelationships.
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Figure 1. Methodology Flow Chart.

3.1. Data Sources and Acquisition

Ground-based air quality data for pollutants including

nitrogen dioxide (NO₂), particulate matter (PM₂.₅), carbon

monoxide (CO), and ozone (O₃) were obtained from the Cen-

tral Pollution Control Board (CPCB) and the Punjab State

Pollution Control Board (PSPCB), recorded at hourly inter-

vals and aggregated into daily means for consistency. Me-

teorological parameters—temperature, wind speed, relative

humidity, and solar radiation—were sourced from the India

Meteorological Department (IMD) and supplemented with

ERA5 reanalysis data from the European Centre for Medium-

Range Weather Forecasts (ECMWF) to enhance spatial and

temporal coverage [14–16]. Tropospheric ozone column den-

sities were retrieved from the NASAOzone Monitoring In-

strument (OMI) onboard the Aura satellite, with a spatial

resolution of 0.25° × 0.25°, and validated against ground-

level ozone readings. EV adoption data spanning 2013–2025

were collected from the Punjab Transport Department, in-

cluding registration counts by vehicle type (two-wheelers,

four-wheelers, e-rickshaws), allowing quantification of EV

penetration rates by year.

3.2. Temporal and Spatial Resolution

Although this study does not apply spatial interpola-

tion techniques, several previous works have successfully

employed ordinary Kriging within GIS platforms (such as

ArcGIS) to assess the spatial variability of urban air pollu-

tants. Kriging is a geostatistical method that leverages spatial

autocorrelation to provide statistically optimal estimates of

pollutant concentrations at unsampled locations. It is par-

ticularly effective in urban environments where monitoring

stations are limited and pollutant dispersion is influenced by

heterogeneous sources such as traffic, industry, and meteorol-

ogy [17,18]. The city was subdivided into administrative wards

to facilitate zonal comparisons, particularly in high-traffic

and industrial areas such as Focal Point, Model Town, and

Transport Nagar. The study analyses daily data and uses spa-

tial interpolation for mapping pollutant distributions across

Ludhiana. Kriging interpolation is defined mathematically

as calculated by Equation 1:
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Z(x0) =
∑n

i=1
λIZ(xi) (1)

Where, Z(x0) is the estimated value at location x0, Z(xi)

is the known value at sampled location xi , λi are the weights

assigned to each known point, optimized to minimize esti-

mation variance.

3.3. Data Preprocessing and Transformation

All datasets underwent rigorous preprocessing, includ-

ing removal of extreme outliers (based on z-scores exceed-

ing ±3), temporal gap-filling through linear interpolation,

and quality control against known thresholds. Air pollutant

concentrations were log-transformed where appropriate to

normalize skewed distributions, and seasonal decomposition

techniques (STL) were applied to separate trend, seasonal,

and residual components of each pollutant time series. For re-

gression analyses, variables were standardized using z-score

normalization to facilitate coefficient comparison [19].To re-

duce skewness in pollutant distributions, log transformations

were applied as calculated by Equation 2:

Z
′
= log(Z + 1) (2)

Where, Z is original pollutant concentration, Z′ is trans-

formed variable for statistical modeling.

Seasonal decomposition used the STL (Seasonal-Trend

decomposition using Loess) method as calculated by Equa-

tion 3:

Yt = Tt + St +Rt (3)

Where, Yt is original time series, Tt is long-term trend,

St is seasonal component, Rt is residual or irregular compo-

nent.

3.4. Statistical Analysis Techniques

To quantify the relationship between EV adoption and

air quality, several statistical methods were employed:

3.4.1. Pearson and partial correlation analysis

To examine linear associations between EV share and

pollutant levels while controlling for meteorological vari-

ables this analysis has been performed. Simple and partial

Pearson correlation coefficients were computed as Equation

4. Partial correlations were used to isolate meteorological

influences [20].

rxy =

∑
(Xi −X)(Yi − Y )√∑
(Xi −X)

2
√

(Yi − Y )
2

(4)

3.4.2. Multiple Linear Regression Models

Such Models with pollutant concentrations as depen-

dent variables and EV penetration, temperature, wind speed,

and solar radiation as predictors. Model assumptions—

including normality, multicollinearity (checked using VIF),

and homoscedasticity—were tested through residual diagnos-

tics [21]. Pollutant levels (dependent variable) were modeled

as a function of EVpenetration andmeteorological predictors

as given in Equation 5:

Y = β0+β1∗EV%+β2∗T+β3∗WS+β4∗RH+ε (5)

Where, Y is concentration of pollutant (e.g., NO₂,

PM₂.₅), EV% is percent EV penetration, T is temperature

(°C), WS is wind speed (m/s), RH is relative humidity (%),

ε is random error term, βi is regression coefficients. Model

goodness-of-fit was evaluated using Equation 6:

R2 = 1−
∑

(Yi − Ŷ )
2∑

(Yi − Ỹ )
2 (6)

Where R2 denotes the proportion of variance in the

dependent variable explained by the model.

3.4.3. Mann-Kendall Trend Tests

To assess the statistical significance of long-term trends

in pollutants and meteorological conditions and is calculated

by Equation 7 [22].

S =
∑n−1

i=1

∑n

j=i+1
sgn(xj − xi) (7)

Where

sgn(x) =


+1 if x > 0

0 if x = 0

−1 if x < 0

The Z-statistic was computed for hypothesis testing of

the null hypothesis H0: “no trend.”
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3.4.4. Time series analysis

It uses Autoregressive Integrated Moving Average

(ARIMA) models to capture historical patterns and detect

inflection points post-EV adoption. The Equation 8 captures

both past values of the pollutant and past errors, allowing

it to detect trends, seasonality, and inflection points after

events such as increased EV adoption [23].

yt = c+ φ1yt−1 + φ2yt−2 . . . . . . . . .+ φpyt−p+

θ1εt−1 + θ2εt−2 . . . . . . . . .+ θ2εt−2 + εt
(8)

Where, yt is the value of the air pollutant (e.g., O₃) at

time t, ϕi is the autoregressive (AR) coefficient, θj is the

moving average (MA) coefficients, εt is the white noise er-

ror term, c is constant, p is the number of AR terms, q is:

number of MA terms. Model performance was evaluated

using the coefficient of determination (R²) and root mean

square error (RMSE). O₃-specific models were separately

constructed to reflect the nonlinear dependency on NOₓ and

VOC concentrations.

3.5. VOC Proxy Estimation

Due to the lack of continuous VOC measurements in

Ludhiana, a VOC proxy was developed using seasonal in-

dustrial emission inventories, fire count data from MODIS,

and secondary organic aerosol trends. This proxy allowed

for a first-order approximation of VOC dynamics impacting

ozone formation in the regression models. VOC emission

proxies were calculated as Equation 9 [24]:

V OC = α ∗ SOAtrend + β ∗MODISfire+

γ ∗ Industrialemission

(9)

Where α, β, γ are weighting factors determined through

regression calibration.

3.6. Uncertainty and Sensitivity Analysis

Uncertainty in satellite-derived ozone values was ad-

dressed by cross-validating with surface ozone monitors and

applying cloud filtering algorithms to minimize retrieval

errors. Sensitivity analyses were performed by varying me-

teorological boundary conditions (±1σ from seasonal means)

to assess robustness of the ozone response under different

atmospheric regimes.

4. Case Study

Ludhiana, a bustling industrial city in Punjab, India, has

long grappled with air quality challenges stemming from ve-

hicular emissions, manufacturing, and urban expansion. Over

the past decade, efforts to reduce vehicular pollution through

the adoption of electric vehicles (EVs) have gained momen-

tum. This case study evaluates how increasing EV penetra-

tion influenced key air pollutants in Ludhiana from 2013 to

2025, specifically focusing on nitrogen dioxide (NO₂), partic-

ulate matter (PM₂.₅), carbon monoxide (CO), and tropospheric

ozone (O₃). The analysis shows a clear downward trend in

NO₂, PM₂.₅, and CO levels as EV penetration rose from a

negligible 0.1% in 2013 to 14% by 2025. NO₂ dropped from

80 µg/m³ to 58 µg/m³, PM₂.₅ from 110 µg/m³ to 89 µg/m³,

and CO from 2.5 mg/m³ to 1.5 mg/m³. This indicates a sub-

stantial improvement in urban air quality linked to cleaner

transportation. However, the behavior of tropospheric ozone

was more complex. O₃ levels initially rose, peaking around

2021 due to the reduction in NO that limits ozone titration,

before stabilizing as VOC controls and further EV expansion

balanced the atmospheric chemistry. The analysis was con-

ducted using Python 3.10, employing libraries such as pandas

for data manipulation, matplotlib and seaborn for visualiza-

tion, and statsmodels for statistical modeling and time series

analysis. Python’s flexibility and robust ecosystem made it

ideal for integrating air quality data with EV adoption trends.

The following Table 1 summarizes annual air quality metrics

and EV adoption rates during this period [14,16,25,26].

Figure 2 presents a scatter plot showing the relationship

between electric vehicle (EV) penetration and nitrogen diox-

ide (NO₂) concentrations in Ludhiana from 2013 to 2025.

The red regression line exhibits a statistically significant

negative slope, indicating an inverse correlation between

the two variables. As EV adoption increases from nearly

0% in 2013 to approximately 14% by 2025, NO₂ levels de-

cline from ~80 µg/m³ to ~60 µg/m³. This trend supports the

hypothesis that EV adoption, by displacing internal combus-

tion engine (ICE) vehicles, may contribute to reductions in

tailpipe NO₂ emissions. However, this observed relationship

should be interpreted within the context of concurrent reg-

ulatory measures, including the implementation of Bharat

Stage emission standards, improved fuel quality, and vehicle

technology upgrades—all of which likely contributed to the

overall reduction in NO₂.
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Table 1. Data Set for 2013 to 2025.

Year EV Penetration (%) NO₂ (µg/m³) PM₂.₅ (µg/m³) CO (mg/m³) O₃ (µg/m³)

2013 0.1 80 110 2.5 45

2014 0.2 79 108 2.45 47

2015 0.4 77 107 2.4 49

2016 0.8 75 105 2.35 51

2017 1.2 73 102 2.3 53

2018 2 70 100 2.2 55

2019 3.5 68 98 2.1 58

2020 5 66 96 2 60

2021 7.5 64 94 1.9 61

2022 10 62 92 1.75 60

2023 12.5 60 91 1.6 59

2024 13.5 59 90 1.55 57

2025 14 58 89 1.5 55

Figure 2. EV penetration VS NO2.

Figure 3 illustrates the temporal trends of four key am-

bient air pollutants—NO₂, PM₂.₅, carbon monoxide (CO),

and tropospheric ozone (O₃)—in Ludhiana over the same

13-year period. A steady decline in NO₂ and CO is ob-

served, with CO levels decreasing from ~2.5 mg/m³ to ~1.5

mg/m³, mirroring the trends noted for NO₂. PM₂.₅ concen-

trations also show a downward trajectory, dropping from

over 110 µg/m³ to below 95 µg/m³, though the decline is

more gradual. This slower reduction suggests the presence

of persistent emission sources such as construction, indus-

try, and biomass burning. In contrast, ozone (O₃) displays a

nonlinear, U-shaped trend—initially rising from ~45 µg/m³

to a peak of ~61 µg/m³ around 2020–2021, before gradually

declining to ~55 µg/m³ by 2025. The initial increase is

likely due to reduced NO availability for ozone titration

in a NOₓ-saturated atmosphere, while the later decrease

may reflect a shift toward a more VOC-limited regime as

precursor emissions declined. These trends underscore the

complex interplay between EV adoption, other environmen-

tal measures, and atmospheric chemistry in shaping urban

air quality outcomes.

Figure 4 illustrates the rising trend of electric vehicle

(EV) penetration in Ludhiana from 2013 to 2025. Starting

from a minimal share of around 0.1% in 2013, EV adoption

has shown a steady and sharp increase, particularly after

2018. By 2020, EV share had reached approximately 5%,

and this growth accelerated significantly in the following

years, reaching 10% in 2022 and peaking at 14% by 2025.

This rapid rise in EV share indicates increasing public accep-

tance, supportive policies, and infrastructure development,

aligning with broader goals of reducing vehicular emissions

and promoting sustainable urban transport in the region.
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Figure 3. Air Pollutants Trend in Ludhiana (2013–2025).

Figure 4. EV penetration in Ludhiana (2013–2025).

Figure 5 illustrates the relationship between electric

vehicle (EV) penetration and fine particulate matter (PM₂.₅)

concentrations in Ludhiana from 2013 to 2025. The scat-

ter plot shows a clear negative correlation, where rising EV

adoption corresponds with a steady decline in PM₂.₅ levels.

The downward-sloping regression line, accompanied by a

narrow confidence band, confirms the statistical strength of

this trend. Although PM₂.₅ emissions originate from vari-

ous sources, including industry, construction, and biomass

burning, the observed reduction is indicative of the posi-

tive impact of replacing internal combustion engine vehicles

with electric alternatives. This supports the conclusion that

transport electrification contributes substantially to lowering

particulate pollution in urban environments. Figure 6 depicts

the declining trend in carbon monoxide (CO) concentrations

as electric vehicle (EV) penetration increases in Ludhiana

during the same period. A strong negative linear correlation

is evident, with CO levels decreasing from approximately

2.5 mg/m³ to around 1.5 mg/m³ as EVs make up a growing

share of the vehicle population. The blue regression line

and its associated confidence interval indicate high statisti-

cal reliability. Since CO is a direct product of incomplete

fuel combustion in gasoline and diesel engines, its steady

decline reflects the effectiveness of EV adoption in displac-

ing traditional fossil-fuel-based transportation. This figure

underscores the significant role that EVs play in reducing

harmful gaseous emissions and enhancing urban air quality.

Figure 7 illustrates the relationship between the per-

centage of electric vehicle (EV) penetration and the concen-

tration of ozone (O₃) in micrograms per cubic meter (µg/m³).

The observed trend is nonlinear, showing that ozone levels

initially increase with rising EV adoption—peaking around

61 µg/m³ when EV penetration reaches 7–8%—and then

gradually decline beyond this threshold. This suggests the
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involvement of threshold effects and regime shifts in atmo-

spheric chemistry. This pattern may be due to reduced ni-

trogen oxides (NOₓ), which act as both precursors and scav-

engers of ozone depending on ambient VOC–NOₓ ratios.

Overall, the trend indicates that the possible impact of EV

adoption and other ecological actions on ozone levels is com-

plex and not directly proportional. These findings highlight

the importance of considering secondary pollutant formation

dynamics and photochemical interactions when evaluating

the environmental implications of transport electrification.

Figure 5. EV Penetration vs PM₂.₅.

Figure 6. EV Penetration vs CO.

Figure 7. EV Penetration vs O₃ (Nonlinear Trend).
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4.1. Statistical Analysis

Electric vehicles (EVs) have been widely promoted as

a sustainable alternative to internal combustion engine (ICE)

vehicles due to their zero tailpipe emissions. Their adoption

is expected to reduce urban air pollution levels, especially pri-

mary pollutants such as nitrogen dioxide (NO₂), particulate

matter (PM₂.₅), and carbon monoxide (CO). However, sec-

ondary pollutants like ozone (O₃) exhibit more complex atmo-

spheric responses due to nonlinear chemical interactions in-

volving NOₓ and VOCs (volatile organic compounds) [26].To

evaluate this impact, a statistical analysis was conducted on

the relationship between EV penetration and concentrations

of NO₂, PM₂.₅, CO, and O₃ from 2013 to 2025 in Ludhiana as

shown in Table 2. Consistent with methods recommended

by Qiu et al. (2022), we applied multiple linear regression

to adjust for meteorological variability and used RMSE and

R² to assess model performance in tracking pollutant trends

attributable to emission changes [27,28].

Table 2. Statistical Analysis Results.

Pollutant RMSE R² Interpretation

NO₂ 2.33 µg/m³ 0.9
Strong inverse correlation with EV penetration. This means that as EVs increase, NO₂

concentrations significantly decline. The model explains 90% of the variability.

PM₂.₅ 2.42 µg/m³ 0.88
Also shows a strong inverse relationship. While PM₂.₅ has multiple sources (e.g., construction,

biomass), the 88% R² suggests that EV adoption plays a major role in its reduction.

CO 0.05 mg/m³ 0.98
Extremely strong inverse linear correlation. As EVs replace gasoline/diesel vehicles, incomplete

combustion decreases, reducing CO sharply. The model explains 98% of the variation.

O₃ 3.82 µg/m³ 0.43

Weak correlation. The low R² (~43%) indicates that EV penetration alone doesn’t explain the trend

in ozone. O₃ is a secondary pollutant, formed through complex atmospheric reactions involving

VOCs and NOₓ, which explains the nonlinear behaviour.

EV penetration is highly effective in reducing primary

pollutants: NO₂, PM₂.₅, and CO show strong to very strong

linear relationships, with high R² values indicating reliable

predictions. Ozone behaves differently due to its chemical

formation processes. Its weak correlation reflects the in-

fluence of meteorological factors and precursor dynamics

(NOₓ–VOC ratio), which are not fully captured by EV pene-

tration alone. RMSE values are all relatively low, indicating

that the predicted pollutant values are close to the observed

values, supporting the validity of the linear models, except

for O₃ which may require a nonlinear or multivariate model.

4.2. Confounding Factors and Attribution

Challenges

While this study demonstrates statistically significant

correlations between increased EV penetration and declining

concentrations of primary air pollutants such as NO₂, PM₂.₅,

and CO in Ludhiana, caution must be exercised in attribut-

ing these improvements solely to electric vehicle adoption.

Several confounding factors may have independently or syn-

ergistically contributed to the observed trends.

First, during the study period (2013–2025), Ludhiana

underwent substantial regulatory and infrastructural changes.

The implementation of Bharat Stage (BS) IV andVI emission

standards introduced stricter controls on tailpipe emissions

for all new internal combustion engine (ICE) vehicles. These

standards significantly reduced sulfur content in fuels and im-

proved vehicle combustion efficiency, contributing to overall

emission reductions. Second, fuel quality improvements—

especially for public buses and heavy-duty vehicles—played

a major role in reducing NOₓ and PM emissions. Transition-

ing to low-sulfur diesel and improved petroleum refining

practices likely reduced baseline emissions independent of

vehicle electrification.

Third, the total number of registered vehicles in Ludhi-

ana increased substantially from approximately 1.5 million

in 2013 to nearly 4.5 million in 2025. EVs accounted for only

14% of the total fleet by the end of the study period. This

means that conventional vehicles still dominate the traffic

mix, and their emissions must be factored into any envi-

ronmental assessment. Fourth, meteorological conditions—

such as wind speed, temperature, solar radiation, and relative

humidity—can significantly influence pollutant dispersion,

accumulation, and chemical transformation. Although mete-

orological parameters were controlled for in the regression

models, complex interactions may still bias interpretations.

Finally, parallel ecological and policy interventions

such as traffic management improvements, stricter indus-

trial emission regulations, green cover expansion, and en-
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hanced public transport initiatives may have collectively

contributed to air quality improvements. Without source ap-

portionment models or high-resolution emission inventories,

the individual contribution of EV adoption cannot be isolated

definitively. Therefore, while the correlations presented in

this study support the hypothesis that EVs play a positive

role in reducing certain pollutants, the evidence is associa-

tive rather than causative. Future research should employ

chemical transport modeling, atmospheric simulations, and

real-time source apportionment to more rigorously evaluate

the specific environmental benefits of EV deployment within

broader urban sustainability frameworks.

5. Results and Discussion

Figure 3 illustrates the temporal variation in key ambi-

ent air pollutants—nitrogen dioxide (NO₂), carbon monox-

ide (CO), particulate matter (PM₂.₅), and tropospheric ozone

(O₃)—in Ludhiana from 2013 to 2025. The data reveal a

noticeable decline in NO₂ and PM₂.₅ concentrations during

this period, while CO levels also demonstrate a consistent

downward trajectory. However, establishing a direct and

exclusive causal relationship between these pollutant reduc-

tions and the increasing adoption of electric vehicles (EVs)

requires a more detailed interpretation.

According to data from the Punjab Transport Depart-

ment, the total number of registered vehicles in Ludhiana

increased significantly—from approximately 1.5–1.7 million

in 2013 to an estimated 3.5–4.5 million by 2025. Among

these, electric vehicles account for approximately 0.6 million

or about 14% of the total fleet. While this increase in EV

penetration reflects a positive shift towards cleaner mobility,

the concurrent surge in the number of internal combustion

engine (ICE) vehicles implies a substantial rise in overall

vehicular activity and associated emissions. Consequently,

the observed air quality improvements are unlikely to stem

from EV adoption alone. Instead, they are likely the result of

a combination of factors including stringent vehicular emis-

sion regulations (e.g., Bharat Stage VI standards), fleet mod-

ernization, modal shifts to public transportation, enhanced

traffic management, urban infrastructure upgrades, and me-

teorological influences such as temperature and wind dy-

namics. Therefore, while EVs contribute to reduced tailpipe

emissions—particularly for NO₂ and CO—their relative im-

pact must be interpreted within this broader environmental

and policy context. This perspective aligns with recent find-

ings in atmospheric science, which emphasize the need for

multi-source attribution in urban air quality assessments. It

also underlines the importance of integrated emission inven-

tories and source apportionment modeling in future studies

to quantify the specific contributions of electrified transport

amidst parallel interventions. The regression showed strong

negative correlations between EV adoption and NO₂, PM₂.₅,

and CO (R² > 0.88), while ozone showed a weaker, nonlinear

response (R² = 0.43). The findings suggest that EV adoption

significantly improves primary pollutant levels, though sec-

ondary pollutants like O₃ require integrated strategies due to

complex atmospheric chemistry.

Environmental Trade-Offs of EVAdoption

While this study clearly demonstrates that the increas-

ing adoption of electric vehicles (EVs) in Ludhiana has con-

tributed to significant reductions in urban air pollutants such as

NO₂, CO, and PM₂.₅, it is imperative to consider the broader en-

vironmental implications associated with EV technology. The

production of lithium-ion batteries, which power most EVs,

involves the extraction of critical minerals such as lithium,

cobalt, and nickel—processes that are often energy-intensive

and environmentally intrusive. These activities, concentrated

in a few global regions, can result in water scarcity, land degra-

dation, and ecological imbalance, particularly in resource-rich

but vulnerable areas. Moreover, the disposal and recycling

infrastructure for EV batteries is still in its nascent stage in

South Asia [29]. Without adequate recycling systems, the risk

of environmental contamination from used batteries—through

toxic chemical leakage or improper handling—remains high.

These concerns introduce a sustainability paradox: while EVs

reduce emissions during their operational phase and improve

local air quality, they may shift environmental burdens to other

stages of the product life cycle. To ensure that EV adoption in

South Asia contributes positively to long-term sustainability

goals, future research should incorporate life-cycle assessment

(LCA) methodologies [30]. This approach would provide a

more comprehensive evaluation of EV-related environmental

impacts—from raw material extraction to battery end-of-life

management—thereby guiding policy development, technol-

ogy innovation, and circular economy strategies.
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6. Conclusions

These reductions demonstrate a possible impact and

the contribution of EV deployment and other ecological ac-

tions in mitigating direct vehicular emissions in a rapidly

urbanizing environment. This study explored the relationship

between electric vehicle (EV) adoption and changes in urban

air quality in Ludhiana, India, from 2013 to 2025. Findings

suggest a consistent reduction in primary air pollutants—

namely nitrogen dioxide (NO₂), particulate matter (PM₂.₅),

and carbon monoxide (CO)—during the study period. How-

ever, these improvements cannot be attributed solely to EV

adoption. The concurrent implementation of Bharat Stage VI

emission norms, improvements in fuel quality, vehicle tech-

nology upgrades, and changing meteorological conditions

likely played significant roles. Tropospheric ozone (O₃), a

secondary pollutant, exhibited a nonlinear trend—rising ini-

tially due to reduced NOₓ scavenging and later declining,

potentially due to reductions in precursor VOC and NOₓ

concentrations. These results underscore the complexity of

urban atmospheric chemistry and the importance of adopting

a multi-factorial approach to air quality analysis. EV adop-

tion appears to be one of several contributing factors, but it

is not the sole driver of observed improvements.

Limitations and Future Scope

A key limitation of this study is the lack of real-time

source apportionment and atmospheric dispersion modeling,

which hinders the ability to establish causality between EV

penetration and pollutant reductions. Additionally, the study

did not directly measure VOC concentrations or incorporate

detailed emission inventories from industrial or commer-

cial sectors. The increasing number of internal combustion

vehicles during the study period further complicates interpre-

tation. Future research should integrate life-cycle assessment

(LCA), satellite-verified emission data, and chemical trans-

port models to isolate the direct environmental impact of

EVs. Comparative studies across South Asian cities with

diverse infrastructure and policy frameworks would enhance

the robustness of future conclusions.

Funding

This work received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No new data were created or analyzed in this study.

Acknowledgments

The author is gratefully acknowledge the blessings of

theAlmighty for providing strength and guidance throughout

the course of this work.

Conflicts of Interest

The authors declare no conflict of interest.

References

[1] World Health Organization. Ambient (outdoor) air pol-

lution. Available from: https://www.who.int/news-r

oom/fact-sheets/detail/ambient-(outdoor)-air-quality

-and-health

[2] Ministry of Environment, Forest and Climate Change,

Government of India. (2020). National Air Quality In-

dex (NAQI). Available from: https://cpcb.nic.in/Nati

onal-Air-Quality-Index/

[3] Hata, H., Mizushima, N., Ihara, T., 2025. Impact of

introducing electric vehicles on ground-level O3 and

PM2.5 in the Greater TokyoArea: yearly trends and the

importance of changes in the urban heat island effect.

Atmospheric Chemistry and Physics. 25(2), 1037–1061.

DOI: https://doi.org/10.5194/acp-25-1037-2025

[4] Zhao, X., Zhao, Z., Mao, Y., et al., 2024. The role of

air pollution in electric vehicle adoption: Evidence

from China. Transport Policy. 154, 26–39. DOI: https:

//doi.org/10.1016/j.tranpol.2024.05.022

[5] Lyu, W., Hu, Y., Liu, J., et al., 2024. Impact of battery

electric vehicle usage on air quality in three Chinese

first-tier cities. Scientific Reports. 14(1), 21. DOI:

https://doi.org/10.1038/s41598-023-50745-6

[6] Su, H., Diao, M., 2025. Assessing the causal effect

of air pollution on electric vehicle adoption using

real-world data: Evidence from 270 Chinese cities.

Journal of Transport Geography. 124, 104120. DOI:

https://doi.org/10.1016/j.jtrangeo.2025.104120

139

https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://cpcb.nic.in/National-Air-Quality-Index/
https://cpcb.nic.in/National-Air-Quality-Index/
https://doi.org/10.5194/acp-25-1037-2025
https://doi.org/10.1016/j.tranpol.2024.05.022
https://doi.org/10.1016/j.tranpol.2024.05.022
https://doi.org/10.1038/s41598-023-50745-6
https://doi.org/10.1038/s41598-023-50745-6
https://doi.org/10.1016/j.jtrangeo.2025.104120
https://doi.org/10.1016/j.jtrangeo.2025.104120


Journal of Atmospheric Science Research | Volume 08 | Issue 03 | July 2025

[7] Pontius, J., McIntosh, A., 2024. Urban air quality. In:

Environmental Problem Solving in an Age of Climate

Change: Volume One: Basic Tools and Techniques.

Springer International Publishing: Cham, Switzer-

land. pp. 105–118. DOI: https://doi.org/10.1007/

978-3-031-48762-0_9

[8] Essamlali, I., Nhaila, H., El Khaili, M., 2024. Super-

vised machine learning approaches for predicting key

pollutants and for the sustainable enhancement of urban

air quality: A systematic review. Sustainability. 16(3),

976. DOI: https://doi.org/10.3390/su16030976

[9] Banait, S.K., Sarathe, S., Kesharvani, S., et al., 2024.

Urban air quality: A comparative study of pollu-

tion levels in Dewas versus Bhopal and a case study

in Sainath Nagar near Kolar Road construction site,

Bhopal. In: Clean Energy. CRC Press: Boca Raton,

FL, USA. pp. 334–354. DOI: https://doi.org/10.1201/

9781003521341

[10] Levi, A., Carasso Romano, G.H., Barnett-Itzhaki, Z.,

2025. Ground-level ozone exposure and type 2 diabetes

incidence: An ecological study of environmental and

social determinants. Atmosphere. 16(5), 528. DOI:

https://doi.org/10.3390/atmos16050528

[11] Zhu, Q., Schwantes, R.H., Stockwell, C.E., et al.,

2025. Incorporating cooking emissions to better sim-

ulate the impact of zero-emission vehicle adoption

on ozone pollution in Los Angeles. Environmental

Science & Technology. 59(11), 5672–5682. DOI:

https://doi.org/10.1021/acs.est.5c00902

[12] Zoran, M., Radvan, R., Savastru, D., et al., 2024. Ur-

ban air pollution exposure impact on COVID-19 trans-

mission in a few metropolitan regions. Sustainabil-

ity. 16(14), 6119. DOI: https://doi.org/10.3390/su

16146119

[13] Karambelas, A., Miller, P.J., Underhill, J., et al., 2024.

Ozone sensitivity to high energy demand day elec-

tricity and onroad emissions during LISTOS. Journal

of the Air & Waste Management Association. 74(11),

804–819. DOI: https://doi.org/10.1080/10962247.

2024.2396400

[14] India Meteorological Department, n.d. Weather Data

Services. Available from: https://mausam.imd.gov.in/

(cited 7 June 2025).

[15] Copernicus Climate Change Service, n.d. ERA5 Re-

analysis Data. Available from: https://cds.climate.co

pernicus.eu/datasets (cited 7 June 2025).

[16] Ministry of Road Transport and Highways, Available

from: https://analytics.parivahan.gov.in/analytics/

(cited 7 June 2025).

[17] Jerrett, M., Arain, A., Kanaroglou, P., et al., 2005.

A review and evaluation of intraurban air pollution

exposure models. Journal of Exposure Analysis and

Environmental Epidemiology. 15(2), 185–204. DOI:

https://doi.org/10.1038/sj.jea.7500388

[18] Guttikunda, S.K., Calori, G., 2013. A GIS based emis-

sions inventory at 1 km × 1 km spatial resolution for

air pollution analysis in Delhi, India. Atmospheric En-

vironment. 67, 101–111. DOI: https://doi.org/10.1016/

j.atmosenv.2012.10.040

[19] Hyndman, R.J.,Athanasopoulos, G., 2018. Forecasting:

Principles and Practice, 2nd ed. OTexts: Melbourne,

Australia. Available from: https://otexts.com/fpp2/

(cited 7 June 2025 ).

[20] Dantas, G., Silva, C.M., Oliveira, B.R., 2023. Sta-

tistical assessment of urban air pollution reduction

from mobility restrictions during the COVID-19 lock-

down. Environmental Research. 220, 115064. DOI:

https://doi.org/10.1016/j.envres.2022.115064

[21] Li, Y., Zhang, X., Xu, C., 2024. Exploring the im-

pact of electric vehicle adoption on urban air qual-

ity using regression and correlation models. Science

of the Total Environment. 904, 166512. DOI: https:

//doi.org/10.1016/j.scitotenv.2023.166512

[22] Yue, S., Wang, H., 2023. Advances in trend analysis

for hydrologic and environmental time series. Envi-

ronmental Modelling & Software. 163, 105668. DOI:

https://doi.org/10.1016/j.envsoft.2023.105668

[23] Zhou, Y., Wu, Y., Fang, L., 2024. Time-series modeling

of air pollutant trends and the effects of electric vehicle

penetration in urban China. Atmospheric Environment.

314, 120254. DOI: https://doi.org/10.1016/j.atmosenv

.2023.120254

[24] Li, Q., Wang, Y., Chen, Z., 2023. Estimating VOC

trends using satellite fire data and emission invento-

ries in regions with sparse measurements. Environmen-

tal Science & Technology. 57(6), 3214–3225. DOI:

https://doi.org/10.1021/acs.est.2c08012

[25] NASA, n.d. OMI/Aura Ozone Monitoring Instrument

Ozone Total Column Daily L3 Global 0.25° × 0.25°

V003 (OMTO3e). Available from: https://disc.gsfc.na

sa.gov/datasets/OMTO3e_003/summary (cited 7 June

2025).

[26] Council on Energy, Environment and Water (CEEW),

2023. India’s Electric Mobility Transition: Policies,

Trends, and Roadmap to 2030. Available from: https:

//www.ceew.in (cited 1 July 2025).

[27] Zhou, Y., He, X., 2022. Statistical methods for eval-

uating air pollution trends and health impacts: A re-

view. Environmental Research. 212, 113296. DOI:

https://doi.org/10.1016/j.envres.2022.113296

[28] Qiu, M., Zigler, C., Selin, N.E., 2022. Statistical and

machine learning methods for evaluating trends in air

quality under changing meteorological conditions. At-

mospheric Chemistry and Physics. 22, 10551–10568.

DOI: https://doi.org/10.5194/acp-22-10551-2022

[29] Gupta, A., Singh, R., 2023. Time-series and machine

learning models for urban air pollution prediction in

Indian cities. Atmospheric Pollution Research. 14(1),

101460. DOI: https://doi.org/10.1016/j.apr.2022.

101460

140

https://doi.org/10.1007/978-3-031-48762-0_9
https://doi.org/10.1007/978-3-031-48762-0_9
https://doi.org/10.3390/su16030976
https://doi.org/10.1201/9781003521341
https://doi.org/10.1201/9781003521341
https://doi.org/10.3390/atmos16050528
https://doi.org/10.3390/atmos16050528
https://doi.org/10.1021/acs.est.5c00902
https://doi.org/10.1021/acs.est.5c00902
https://doi.org/10.3390/su16146119
https://doi.org/10.3390/su16146119
https://doi.org/10.1080/10962247.2024.2396400
https://doi.org/10.1080/10962247.2024.2396400
https://mausam.imd.gov.in/
https://cds.climate.copernicus.eu/datasets
https://cds.climate.copernicus.eu/datasets
https://analytics.parivahan.gov.in/analytics/
https://doi.org/10.1038/sj.jea.7500388
https://doi.org/10.1038/sj.jea.7500388
https://doi.org/10.1016/j.atmosenv.2012.10.040
https://doi.org/10.1016/j.atmosenv.2012.10.040
https://otexts.com/fpp2/
https://doi.org/10.1016/j.envres.2022.115064
https://doi.org/10.1016/j.envres.2022.115064
https://doi.org/10.1016/j.scitotenv.2023.166512
https://doi.org/10.1016/j.scitotenv.2023.166512
https://doi.org/10.1016/j.envsoft.2023.105668
https://doi.org/10.1016/j.envsoft.2023.105668
https://doi.org/10.1016/j.atmosenv.2023.120254
https://doi.org/10.1016/j.atmosenv.2023.120254
https://doi.org/10.1021/acs.est.2c08012
https://doi.org/10.1021/acs.est.2c08012
https://disc.gsfc.nasa.gov/datasets/OMTO3e_003/summary
https://disc.gsfc.nasa.gov/datasets/OMTO3e_003/summary
https://www.ceew.in
https://www.ceew.in
https://doi.org/10.1016/j.envres.2022.113296
https://doi.org/10.1016/j.envres.2022.113296
https://doi.org/10.5194/acp-22-10551-2022
https://doi.org/10.1016/j.apr.2022.101460
https://doi.org/10.1016/j.apr.2022.101460


Journal of Atmospheric Science Research | Volume 08 | Issue 03 | July 2025

[30] Singh, D., Mehta, R., 2023. Sustainability challenges

in lithium-ion battery lifecycle for EVs in India. Re-

newable Energy Focus. 47, 12–21. DOI: https://doi.or

g/10.1016/j.ref.2023.01.005

[31] Ahmadi, L., Yip, A., Fowler, M., et al., 2014. Environ-

mental feasibility of re-use of electric vehicle batteries.

Sustainable Energy Technologies and Assessments, 6,

64–74. DOI: https://doi.org/10.1016/j.seta.2014.01.006

141

https://doi.org/10.1016/j.ref.2023.01.005
https://doi.org/10.1016/j.ref.2023.01.005
https://doi.org/10.1016/j.seta.2014.01.006

	Introduction
	Literature Review
	Methodology
	Data Sources and Acquisition
	Temporal and Spatial Resolution
	Data Preprocessing and Transformation
	Statistical Analysis Techniques
	Pearson and partial correlation analysis
	Multiple Linear Regression Models
	Mann-Kendall Trend Tests
	Time series analysis

	VOC Proxy Estimation
	Uncertainty and Sensitivity Analysis

	Case Study
	Statistical Analysis
	Confounding Factors and Attribution Challenges

	Results and Discussion
	Conclusions

