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ABSTRACT

Bangladesh is one of the most vulnerable countries to climate change-related disasters and economic loss and damage.
This study examines 20 years of satellite-derived land surface temperature (LST) data to investigate seasonal trends, changes
in land use and land cover (LULC), and the relationship between temperature changes and the most common mangrove
species in the Coastal islands of Bangladesh. The most noticeable temperature changes happened in the pre-monsoon and
monsoon seasons. In December, on the other hand, there was a statistically significant cooling trend of —0.041 °C per year.
At the same time, forest cover has been shrinking by an average of 26.36 km? per year, while coastal water bodies have been
growing by 23.44 km? per year. Cluster analysis shows that temperatures change a lot from month to month outside of the
pre-monsoon season. This suggests that the climate is unstable and could push the system beyond ecological thresholds.
SARIMA modelling demonstrated 98.12% accuracy in predicting temperatures, highlighting the importance of temporal
analysis in forecasting future stress thresholds. Species-specific temperature clustering shows how different mangrove species
can handle heat: Ceriops decandra is more common in locations with higher temperatures, while Heritiera fomes is more
common in areas with lower temperatures. These patterns show that ecosystem resilience is becoming less stable; therefore,
we need to move from passive Conservation to proactive, species-informed, and thermally adaptive management practices.
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1. Introduction

Climate change is no longer a far-off threat to the envi-
ronment; it is already a growing force that is changing ecosys-
tems and pushing natural systems to their limits. Increas-
ing heat waves, changing rainfall patterns, and more unpre-
dictable weather events are not just signs of a warming world,
but they are also tests of how well the environment can adapt.
Forests, especially those in tropical and coastal regions, are
among the most sensitive and responsive systems to environ-
mental changes!!). The IPCC determined that rising global
temperatures and changing precipitation patterns are deplet-
ing forest biomass and biodiversity, which compromises their
ecological functions]. In humid tropical areas, extended
periods of drought and very high temperatures are making it
harder for forests to grow back and stay strongl. Climate
change and the health of forests, particularly in coastal and
tropical areas, are significant concerns, as these ecosystems
are fragile and crucial for maintaining a stable climate both
locally and globally. Forest ecosystems play a crucial role
in storing carbon, protecting biodiversity, and regulating the
climate. However, they are currently facing unprecedented
challenges due to climate change®l. Forests help stabilize
the environment by trapping carbon, but the climate they help
stabilize is also making it harder for them to survive.

One of the main effects of climate change is that the
sea surface temperature (SST) is rising. The rise in SSTs
is altering ocean systems and the way heat is distributed in
nearby land areas. Many studies show that SSTs have risen
significantly around the world in the last century, especially

361 These changes are not

in tropical and coastal regions!
limited to marine systems, which is essential. The warming
of the oceans also has effects on land, raising land surface tem-
peratures (LSTs) and disrupting the delicate balance between
soil moisture, evapotranspiration, and atmospheric feedbacks.
This can alter wildfires, landslides, and precipitation thresh-
olds[”). Higher sea-surface temperatures have been linked
to stronger tropical storms, changes in rainfall patterns, and
variations in regional climates. All of these factors affect
forests and other land-based ecosystems. A shocking 71.6%
of the world’s coastlines are seeing SSTs rise. The oceans are
getting warmer, and so is the land around them '],

Higher ocean temperatures are bad for nearby land
ecosystems, especially mangrove forests, which are already

under stress from rising sea levels and coastal erosion %],

Additionally, studies indicate a strong correlation between
SST and LST in coastal areas. This means that warmer
oceans directly affect the LST of coastal areas. Additionally,
rising SST makes coastal forests less able to handle envi-

(19, The Bay of Bengal, which includes the

ronmental stress
Coastal islands, is where this dynamic is most clear and dan-
gerous. The Coastal islands are one of the largest and most
important mangrove forests in the world. They are essen-
tial for storing carbon, protecting the coast, and regulating
Temperature .

Bangladesh is highly vulnerable to CC due to its unique
geographical location, poor infrastructure, low-lying topog-
raphy, and high population density. Understanding potential
climate change is essential for creating adaptation strategies
and increasing resilience to CC. However, a few studies used
CMIPS5 models to assess future changes in Temperature in

Bangladesh for various CC scenarios[!>!3],

This was pro-
jected Tmax and Tmin over Bangladesh using the MME of
eight CMIP5 GCMs. They projected an increase in Tmax
by 1.3 °C—4.3 °C and Tmin by 1.8 °C-5.1 °C for different
RCPs. They also projected the highest rise in Tmax and
Tmin in the northern region and the lowest in the south-
eastern coastal area of Bangladesh!'¥. This was found that
higher increase in Tmax and Tmin in the southwest region
than in other parts of Bangladesh!!'3). Earlier research was
mainly concentrated on a limited number of GCMs or RCMs
for monthly or annual Tmax and Tmin projections at the re-

16,171 Unfortunately, understanding

gional or national scale!
the spatiotemporal trends and variations of future tempera-
ture changes at monthly, seasonal, and annual timescales is
limited. Moreover, no extensive study has been conducted to
project temperatures employing all existing CMIP5 GCMs

18,19

at various time scales over Bangladesh!'3!°], Several stud-

ies show that the Bay of Bengal’s sea surface temperatures
(SSTs) rise all year round, except during the dry season %211,
Even during the monsoon season, it seems that freshwater
inflows raise sea surface temperature (SST) levels, making

[22,23

the region’s thermal stress worse 1. The Temperature of

the land adjacent also rises because of this. According to

1.1201 SSTs are increasing by 0.10-0.16 °C per

Shuva et a
decade during the day and by 0.18-0.27 °C per decade at
night along the Bay of Bengal. This is a worrying trend. The
rising sea surface temperatures (SSTs) are strongly linked

to the increasing land surface temperatures (LSTs) in the
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Coastal islands, which makes the climate less stable 1222241,

The IPCC reports indicate that greenhouse gas emissions
are not only making coastal areas warmer, but they are also
altering the seasons, which affects the timing, duration, and
intensity of the seasons®?3. Long-term temperature data
from the Coastal islands support these global predictions,
like the IPCC’s: temperatures are rising significantly before
and after the monsoon season, but they get colder during the
dry season?®. Remote sensing data backs up these trends,
showing that summer temperatures are at their highest and
monsoon and dry season temperatures are at their lowest?7].,
Forests, such as those found on the Coastal islands, are es-
sential for maintaining regional microclimates by recycling
moisture and allowing it to evaporate. Mangroves act as nat-
ural heat buffers by providing shade, keeping soil moist, and
controlling wind patterns. In principle, higher SST should
lead to higher temperatures. However, the coastal area near
the Coastal islands has cooler temperatures during the dry
season instead['%?2]. This is bad news since forests like those
on the Coastal islands help keep the Temperature stable by
releasing water vapor, which cools the area around them.
Evapotranspiration rates in trees may be too high during
the dry season, as there is insufficient moisture and lower
temperatures. This can cause stress and perhaps harm bio-

9.2527.28]  Some people say that these frigid, dry

diversity!
seasons could even cause the forest cover to go down. The
land surface gets more direct sunlight when there is less veg-
etation, which could make temperatures even higher in other

seasons 28]

. Lower winter temperatures may enable man-
grove habitats to expand northward, potentially replacing
salt marshes in specific locations. The distinction between
adaptability and ecological displacement is a crucial issue
for future conservation policy ?%!.

Recent studies show that the Coastal islands have
lost about 129 square kilometers of forest in the last few
decades >3], This exacerbates the effects of climate stres-
sors. The changes in air and water temperatures that happen
as aresult can have a significant impact on where species live,
how fast they breathe, and how mangroves and salt marsh
plants reproduce3!!. Higher water temperatures may change
the thermal conditions of mangrove ecosystems, which could
affect the growth of mangrove plants and animals in the
areal®?l. As temperatures rise, many creatures exhibit sig-

moid physiology, which means they undergo a rapid adapta-

tion period, then reach an equilibrium, and subsequently start
to deteriorate 3. However, we do not know precisely what
the temperature limits for collapse are, which makes fore-
casts more challenging. Also, a temperature rise could make
the lack of water vapour worse, making it harder for man-
grove plants to survive and develop in dry areas*3]. These
thermal stressors do not operate independently. They face
contemporary challenges such as pollution, habitat loss, and
changes in salinity, which further exacerbate the risk to bio-
diversity and ecosystem services. These changes can have
a profound impact on biodiversity, ecosystem services, and
the livelihoods of local people. This means that people need
to devise effective ways to adapt[**]. Temperature changes
can make habitats less suitable, change where species live,
and make concerns like habitat loss and pollution worse. To
develop effective conservation plans and optimize resource
utilization, it is essential to understand how Temperature
influences biodiversity dynamics[3>-36],

There is much writing about climate change and envi-
ronmental change in the Coastal islands, but there are still
significant gaps in the studies. Fu et al.!'), Mandal et al. >3],
and Osland et al.[?!] have examined global changes in sea
surface temperature (SST) and salinity, as well as the impact
of climate on mangrove ecosystems. However, their assess-
ments often do not focus on specific regions. Chowdhury et
al.['8 Sarker(!'%], and Shuva et al. 21 Jooked at Bangladesh’s
coastal region’s climate, including SST, precipitation, and
air temperature. However, they did not look at the ecological
limits of the Coastal islands. There have not been many direct
efforts to learn more about the area. Ghosh et al.[*! looked at
how Temperature and precipitation affect mangrove species,
but they did not look at how these factors change with the
seasons or how LST affects species distribution. Barik et
al.321 also looked at how salinity affects the spread of man-
groves, ignoring other climate parameters. Samanta et al. (2],
on the other hand, only studied the Indian Coastal islands and
did not look at how land surface temperature affects species.

One problem with these studies is that they lack ex-
tensive, species-specific LST analysis or ongoing ground-
based meteorological monitoring in the Coastal islands. This
has made it challenging to understand how changes in mi-
croclimates, particularly temperature fluctuations, impact
the distribution of mangrove species and the stability of

ecosystems over time. This work utilizes remote sensing
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and spatio-temporal methods to examine land surface tem-
perature patterns in coastal islands from 2000 to 2023, aiming
to fill existing gaps. This study also examines the impact of
changes in land use and land cover (LULC) on temperature
fluctuations. It does this by looking at the thermal prefer-
ences and distributions of four common mangrove species:
Heritiera fomes, Excoecaria agallocha, Sonneratia apetala,
and Ceriops decandra. This study also uses the SARIMA
model to estimate future temperature changes. This is a
crucial piece of information for proactive Conservation and
ecosystem management as climate pressures intensify. The
main goals of this project are to map out temperature changes

over the last 20 years in the Coastal islands.

*  Looking at how land cover changes and how forests are
getting worse.

e Connecting changes in LST with the distribution of the
most common mangrove species.

*  Predicting temperature trends to figure out what the

stress levels will be in the future.

This study examines the Coastal Islands region through

Bangladesh

four main goals, linking them to demonstrate how climate
change’s changing temperatures put stress on mangrove

species.

2. Materials and Methods

The authors chose the southeastern coastal zone of
Bangladesh for their study. They focused on three islands:
Mabheskhali, Kutubdia, and Sandwip. Climate vulnerability,
rates of displacement, land erosion, and repeated disasters
have been thought about when choosing people for the study.
The Sandwip Island is part of the Chittagong district, which
has an area of 762.42 km?. Cox’s Bazar district includes
Kutubdia Island, which is 215.8 km? and is surrounded by
the Bay of Bengal. Cox’s Bazar district also includes Mah-
eskhali Island, which is another coastal island. It has an area
0f 362.18 km? and is also surrounded by the Bay of Bengal.
The Ganges River’s tidal, supra-tidal, and fluvial processes
form three islands. The terrain of these islands is mostly

mudflats, sandy areas, and mild slopes (Figure 1).

>z

Sandwip Island

Maheskhali Island

Kutubdia Island

Figure 1. Geographical Location of the study areas.

35



Journal of Atmospheric Science Research | Volume 08 | Issue 04 | October 2025

2.1. Data Collection

This study used Landsat (5—8) and MODIS satellite
data to look at land surface temperature (LST) and other fea-
tures of the land. The Google Earth Engine (GEE) JavaScript
interface was used to get and process the data. We configured
the study’s geographical scope by uploading a shapefile of
the research area into GEE. This made it easier to filter rele-
vant datasets by location. We used the given parameters to
combine pixel-level measurements from the satellite bands
to find the average daily temperatures across the study area.
The bonus section provides information on the entire data ex-
traction procedure and the coding scripts that accompany it.

The analysis spans the years 2000 to 2023, covering
temperature and raster layers. Because there are not many
ground-based weather stations in the Coastal islands region,
we picked MODIS LST data because it is very accurate over
vast areas with very little error. In clear skies, MODIS ther-
mal readings are more precise than 1K at a spatial resolution
of 1 km[*]. Different studies on long-term climate fluctua-
tions in different parts of the earth indicate that it is likely
that the impact of climate change will challenge and even
reverse the advancements made in many African countries’
socio-economic well-being[3®!. A study in China found that
there is only a minimal daytime bias of 1.32K, which is
even less at night and when there are no clouds**. Accord-
ing to additional validation trials done in the US, the root
mean square error (RMSE) values were less than 1.3K 401,
MODIS LST errors in the Bangladesh region are limited
to +1K, and data from satellites closely match data from
the ground (R2 = 0.95)#1421 Cloud interference, dust, or
sensor problems can all affect satellite-derived land surface
temperature data; however, these problems were not signif-
icant for this study®. It did not matter that a few pixels
were missing because the monthly means were based on the
average temperature data for the whole area. Because of
this, this analysis did not need data imputation. This study
employed the Mann—Kendall trend analysis approach 44431,
a standard nonparametric method for detecting a monotonic
trend (either increasing or decreasing) in a time series dataset.
This method does not assume a specific distribution, unlike
parametric models, hence it is suitable for environmental and
climate data. The null hypothesis says that there is no clear
trend over time, while the alternative hypothesis says that

the observed values have changed in a statistically signifi-

cant way (4], The approach checks to see if the data indicate
a consistent change in direction, without requiring a linear
trend. A p-value of 0.05 or lower is considered statistically
significant and strongly suggests that there is a monotonic
trend in the datal*®). The next part explains the statistical
methods used in the analysis:

n—1 n
S = Zi:l ZFHI sgn (z; — ;)

In this context, z; and x; represent the values of se-

(M

quences j and i, respectively; n denotes the length of the time

series, and
+1 if (z;—2) >0
Sgn(z; — z;)= 0 if (xj —z;)=0 2)
-1 if (v, —2i) <0

If the test statistic value S is more than 0, it means that the
dataset is going up. If the value S is less than 0, it means that
the dataset is going down. In this case, xi and x5 are single
observations at times ¢ and j, and n is the total number of
observations in the time series. If the data are independent
and identically distributed, the distribution of S can be close
to a normal distribution. In this case, the variance of S is

found using the following formula:
VAR(S) =n(n—1)(2n + 5) 3)

“4)

Where ¢ represents the standard deviation, the rele-

n(n—1)(2n + 5) = ¢*

vance of the testing method is indicated by the statistical
value Z, where |Z| > 1.96 (corresponding to p < 0.05) is
deemed significant.

S—1
VAR (S)’ $>0
, S=0

Z=> 0 (5)
;8 <0

S+1

VVAR (5)
(6)

ﬁ:Median{yf]_yi, 1§i§j§n}
—1

The MK is a non-parametric estimator based on Sen’s
slope estimator. It is defined by the time series showing an in-
creasing trend with magnitude § when 3 > 0 and a decreasing

trend with magnitude |B| in the other case!”47],

2.2. Data Analysis

The Autoregressive Integrated Moving Average

(ARIMA) model is widely used for predicting time series. It
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consists of three main parts: autoregressive (AR), integra-
tion (I), and moving average (MA). The Seasonal ARIMA
(SARIMA) model is a variation of ARIMA that works ex-
ceptionally well with data that has seasonal patterns that
repeat[*¥]. This study employed SARIMA to examine tem-
perature patterns, taking into account natural seasonal fluc-
tuations. Because daily temperature measurements fluctuate
significantly and do not follow a consistent pattern, they were
combined into monthly averages to improve the model’s ac-
curacy and consistency.

The raw daily data contained a lot of noise and rapid
changes, making it difficult for prediction algorithms to func-
tion effectively. However, averaging the data into monthly
averages made the forecasts far more stable and reliable.
There were 276 monthly observations used for this study.
This is a lot more than the 40 to 50 observations that are
usually recommended as a minimum for reliable ARIMA
modelling*°], The three parameters that define an ARIMA
model are p, d, and q. p is the number of autoregressive terms,
d is the number of differencing steps needed for stationarity,
and ¢ is the number of lagged forecast errors in the moving
average component%. Equation (7) shows how the ARIMA

(p, d, @) model is usually written down mathematically:

& (1 - 1), = 0(1)e ™)

In this equation, ¢l and 0 (1) are the polynomial coeffi-
cients for the autoregressive (AR) and moving average (MA)
parts of orders p and ¢, respectively.

The Seasonal ARIMA (SARIMA) model builds on the
ARIMA framework to handle time series data with seasonal
trends. It is written as SARIMA(p, d, q)(P, D, Q)s. The
first set of parameters, p, d, and ¢, is for the model’s non-
seasonal parts. The second set of parameters, P, D, and @,
is for the model’s seasonal autoregressive, differencing, and
moving average parts. The subscript s shows how long the
seasonal cycle lasts (for example, 12 for monthly data that
shows annual seasonality). Seasonal polynomials are used
to describe the seasonal framework of the SARIMA model.
They capture repeating patterns at set intervals and are added
to the overall model to make predictions more accurate when
dealing with cyclical behavior.

(1) pp () (1D (A1) e = 0,0,(1ec  (®)

The SARIMA modelling strategy follows a structured

process with three main steps: identifying the model, esti-

mating the parameters, and testing the diagnostics, which
ultimately leads to forecasting[“®>!1. This study employed
a modeling technique that utilized two different seasonal
cycles, one with 12 periods and one with 24 periods, to ex-
amine short- and medium-term patterns in the temperature
data. In the first step, you need to check if the time series is
stationary. Differencing is used to stabilize the mean when
the data show trends or seasonality. After that, the plots
of the autocorrelation function (ACF) and the partial auto-
correlation function (PACF) are looked at to find the best
values for the model parameters. The Bayesian Information
Criterion (BIC) makes it easier to choose a model by giving
it a penalised likelihood score to find the simplest and best
model. Once a candidate model is selected, its parameters are
estimated using well-known methods developed . These
methods include autoregressive and moving average compo-
nents. At this point, all the extra seasonal and non-seasonal
coefficients are also figured out.

After the estimation, a diagnostic examination is done
to see if the model accurately reflects how the observed data
changes over time. This validation supports the model’s
assumptions, thereby enhancing its ability to predict more
reliably. We use the Ljung-Box test to check for autocor-
relation in the residuals and model fit indices, as shown in

Equations (9) and (10), to check the overall goodness-of-fit:
Mean Absolute Error (M APE) =

)
LM (X)), — (Xs),]

Root mean square error (RMSE) =

VE S (), — (X))

In this case, N stands for the total number of predicted

(10)

observations, Xm stands for the actual (measured) values,
and Xs stands for the projected values that the model came
up with. The Ljung-Box test is a way to check if a time series
model is good enough by looking for autocorrelations in the
residuals. The null hypothesis (HO) says that the model fits
the data well enough that there is no significant autocorre-
lation in the residuals. On the other hand, the alternative
hypothesis (Ha) says that the model does not accurately
reflect the structure of the data. The level of statistical sig-
nificance, which is usually set at 0.05, tells you whether to
accept or reject H0. This shows whether the model is sta-
tistically valid or not!*8]. This study used satellite images
from two different sources, Landsat 5 and Landsat 8, both of
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which have a spatial resolution of 30 m. We chose January
images to examine since there are usually few clouds during
this time, which makes the photos more transparent and eas-
ier to use. Before classifying the data, ENVI 5.1 was used to
make sure that the data was accurate by making radiometric
and surface reflectance modifications. We used ArcGIS 10.3
Desktop to process and classify images, focusing on two key
types of land cover: vegetation and water bodies. Because
the Coastal islands did not have many people living there
or much land that was not being used, there was no need to
establish more land use categories. In ArcGIS, a supervised
classification method was employed to identify training sites
by carefully examining the spectral and spatial characteristics
of all images. We digitalized polygons for each type of land
cover to show locations with similar land use and land cover
(LULC) features. The classification approach employed the
Maximum Likelihood algorithm, which analyzes the mean
and standard deviation values of each pixel from the training
data to determine the likelihood that the pixel belongs to a
specific category >3], After that, pixels were put into the class
that best matched them, and similar classes were combined
into one representative group. After the classification, the
area covered by each land feature was measured in square
kilometres.

To verify the accuracy of the classification, an accu-
racy check was performed using both historical reference
images (such as those from Google Earth Pro) and publicly
accessible ground-truth data. Using the “Create Accuracy
Assessment Points” function in ArcMap, we made a set of
200 random validation points. To check how accurate the
results were, an error matrix was created that juxtaposed cat-
egorized map outputs (rows) next to reference ground truth
data (columns). We used the Kappa coefficient, which is a
statistical measure that goes from —1 to +1, to measure how
well the classifications agreed with each other. Values over
0.80 show perfect classification accuracy, values between
0.40 and 0.80 show moderate accuracy, and values below
0.40 show inadequate agreement>*l. We used the “Com-
pute Confusion Matrix” tool in ArcMap to find the Kappa
coefficients.

Kappa coef ficient =

(TS*TCS)—>" (Col.total*row total)
TS%2— 3" (Col.total*row total)

(11)

TS is the total number of samples utilised to check for

correctness, and TCS is the number of samples that were
correctly classified. The total for each class is the sum of all
the reference samples in that class, and the total for each row

is the number of samples that were put into that category.

2.3. Statistical Analysis

We used tree distribution maps and temperature maps
from all four seasons to look at the links between temperature
and tree distribution patterns. First, we gathered temperature
raster information from all four seasons during the course
of the 24-year study. Then, all of the rasters were averaged
to create one raster that shows the average temperature dis-
tribution across the Coastal islands for each season. After
that, three distribution maps from several studies were put
together, and four main species were found. A new raster
was generated 3633361 Then, the fishnet tool was used to pro-
duce data with 300,000 equally spaced points using ArcMap
tools and a point shape file. After that, all of the necessary
rasters were stacked on top of each other, and the points were
utilized as geographical markers to get the pixel value from
all of the raster’s in one table.

The 300,000 sample points made many sample points
inside each MODIS 1 km? pixel. Tree species in the Coastal
islands grow in massive groups of identical trees over large
areas. Having many sample points inside a single MODIS
pixel helped us find tiny temperature changes. The Landsat
data with better resolution, which mainly shows tree types,
helped figure out which species were most common in each
pixel. Several sample points inside a single MODIS pixel
enhanced accuracy and ensured that the temperature data
accurately represented the dominant tree species. This was
because similar tree species tended to cluster together. We
found a strong link between land surface temperature (LST)
and tree species distribution by combining species data from
Landsat with MODIS pixels and looking at how temperatures
changed at different sample points. This method reduced
differences in resolution and ensured that the LST data from
MODIS accurately reflected the patterns of dominant tree
species observed in Landsat. After filtering out specific
blanks and inaccurate data points, the acquired data were
used for statistical analysis to find a link between trees and
the distribution of Temperature in space. Figure 2 shows
how the detailed workflow works.
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23 years averaged Map n All rasters are set as a layer A point shape file made with
1 1 J 'E L in Arc map 300000 points over the study
’ X ill_\ — area using the “Fishnet tool”
P l- '.
Dry Pre- _mn-n.s oon N .[:I
v, " z
L g k
i_ o * a
Monsoon Post:
[
Tree Distribution Map
o € Utilizing “Extract multi values to point” tool for raster value
extraction
Corresponding values from all the inputted raster layer are
collected in the point shape file attribute table
- Exporting attribute table and filtering data
Utilizing the filtered data for correlation and other statistical
analysis
Figure 2. Process of extracting data from multiple raster’s for statistical analysis.
3. Results mencement of the monsoon, has the most variable monthly

Bangladesh has four distinct seasons: pre-monsoon
(March to May), monsoon (June to August), post-monsoon
(September to November), and dry (December to February).
These seasons show how the country’s ecology works. The
data and results of this study indicate that the rhythm is being
broken. Data from the last 23 years show that April, which
is the pre-monsoon season, has the highest average Tempera-
ture at 28.31 °C. On the other hand, January, which is the dry
season, has the lowest average Temperature at 20.9 °C. The
monthly average temperature changes that were recorded
over the 23 years are shown in Figure 3b. June, the com-

Temperature (1.56), which means that temperatures might
change in ways that are hard to predict. This could affect the
phenological and physiological processes of forest species.
On the other hand, October, which follows the mon-
soon, has the least variability (0.41), indicating that the Tem-
perature remains stable for a short time. Figure 3¢ shows
that this instability is even stronger: both the monsoon and
pre-monsoon seasons have a temperature variability index of
1.075, which shows that the climate is becoming less stable
during months that are important for biological life. The post-
monsoon season, on the other hand, has the least volatility,

with a score of 0.46.

(a)

243

Annual average temperature

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

2020 2021 2022 2023

C125%~75%
T Range within 1.51QR
— Median Line
o Mean
Qutliers

344 b

324

30 +

N
®
L

N
L3
1

Temperature
n
>
1

N
N
1

é”

0.78

z

{54

18, .48,

061 0.46
. %

.
0.50

n
o
1

0.51

a
©
1

T T T T T T T T T T T T
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

[C125%~75%
T Range within 1.51QR
— Median Line

o Mean

+ Outliers

Variance

(©

30

N
*
L

N
-3
L

Temperature
I
B

22

20 T T T T

Figure 3. Temperature pattern of the study areas for the past 24 years, (a) yearly average LST, (b) monthly average temperature data,

and (c) average seasonal Temperature.
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The dendrogram in Figure 4 shows a cluster analysis
of the months based on 24 years of average temperature data.
It illustrates the complexity of temperature patterns in the
study areas during different seasons. The research reveals
four main clusters, each representing a distinct seasonal and
transitional period in the area. January and December, which
are both dry-season months, form their own group since their
temperatures are similar. February is different from the other
months in this group since it does not fit with the dry season
months. This shows that there are small changes. March,
April, and May were all in the same group of months be-
fore the monsoon season. This indicates that the monthly
temperature ranges stayed relatively constant during the pre-
monsoon season. September, October, and June made up
another group with similar temperature ranges. This is likely
due to changing weather patterns, as these months typically

mark the start or end of the rainy season. This is why they

are all in the same group. The cluster that includes July and
August, which are usually thought of as monsoon months, is
the most interesting part of the dendrogram. These months
share a temperature cluster with February and November,
which are typically considered dry or post-monsoon months.
The low temperatures during the monsoon are very different
from what is usually expected, and they may be connected
to how rain and humidity change the Temperature. This
outlier cluster suggests that seasonal patterns are becom-
ing less distinct, likely due to the effects of climate change,
which can lead to unusual phenomena such as increased
rainfall and temperature fluctuations. This change in Tem-
perature between seasons shows that the climate is changing
more broadly. Even while seasonal categories are common,
monthly temperature trends in the Coastal islands are more
variable, with one big exception: the pre-monsoon months,

which are relatively stable.
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Figure 4. Cluster analysis of the monthly average Temperature of the study areas.

The study area encompasses three sub-districts and two
districts in Bangladesh: Sandwip, Maheshkhali, and Kutub-
dia. In general, Sandwip always has the highest temperatures,
whereas Kutubdia always has the lowest. The pre-monsoon
season is the hottest time of year in all areas, with an aver-
age temperature of 27.35 °C. The dry season, on the other
hand, has the mildest weather, with an average temperature
0f 22.09 °C. Sandwip has the greatest average Temperature
during the dry season, at 22.59 °C, while Kutubdia has the

lowest average Temperature, at 21.79 °C. The temperature
differences stay the same all year long. For example, in the
pre-monsoon season, the temperatures are similar (Sandwip:
27.84 °C, Maheskhali: 27.11 °C, Kutubdia: 27.11 °C). In the
monsoon season, the temperatures are also identical (Sand-
wip: 26.20 °C, Maheskhali: 25.61 °C, Kutubdia: 24.87 °C).
In the post-monsoon season, the temperatures are also sim-
ilar (Sandwip: 24.94 °C, Maheskhali: 24.33 °C, Kutubdia:
24.05 °C).
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The average Temperature in all three regions is 25.15
°C. Sandwip has the highest average at 25.66 °C, and Kutub-
dia has the lowest at 24.73 °C.

The eastward temperature gradient shows that the Land
Surface Temperature (LST) is getting lower as you go from
west to east throughout the Coastal islands. Changes in land

cover also affect how much the temperature changes. The

amount and variety of tree species in these areas have a sig-
nificant effect on temperature changes, as shown by the data
in Figure 5. These changes show how climate change could
alter local ecosystems. For example, temperature changes
can change the kind of organisms that live in the Coastal
islands, how quickly they grow back, and the balance of the

ecosystem.
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Figure 5. Trend analysis of the Temperature of the

The authors used the Mann-Kendall test to find steady
temperature changes in the study areas over four different
seasons: dry, pre-monsoon, monsoon, and post-monsoon.
This statistical method is essential for understanding temper-
ature changes, which could be a sign of bigger problems with
the climate. The results of this study are shown in Figure 5,
which shows how temperature patterns change over time.

Before the monsoon season, the Mann-Kendall (MK)
statistic is 1.03, and the p-value is 0.303. This means that
the Temperature has been going up steadily over this time
period. There is an apparent temperature rise (0.035 °C each
year according to Sen’s slope), but this shift does not meet
the criterion for being statistically significant. Still, this rise
could be an early symptom of climate change, which can
affect the health of forests and the behaviour of animals in
the area.

During the monsoon season, the MK value is 0.555,
and the p-value is 0.579. This means that the temperature
trend is not statistically significant, but it is still increasing.
The Sen’s slope shows that the Temperature rises by 0.008
°C per year, which is the least of the four seasons. This slow
rise could be linked to changes in rainfall patterns, which
could disrupt the established monsoon dynamics that have
traditionally controlled water supply and ecological cycles
in the Coastal islands.

study areas: the average seasonal temperature trend.

After the monsoon season, the MK value is —1.558, and
the p-value is 0.119. This means that the temperature trend is
significantly lowering, although not as much as it was during
the dry season. The measured temperature drop of —0.017 °C
per year lacks statistical significance, yet it aligns with cli-
mate models that predict cooling effects during transitional
stages. This cooling could affect how animals move, how
plants grow, and how carbon is stored in the Coastal islands’
ecosystems, making the area more vulnerable to long-term
climatic stress.

During the dry season, the MK statistic of —0.554 and
a p-value of 0.579 show that the Temperature drops slightly
during the dry season, with Sen’s slope showing a yearly
decreasing rate of 0.014 °C. These little drops, while not
statistically significant, could have an impact on water stress,
animal behaviour, and the health of forests during the dry
months.

The average Temperature over the course of the year
did not go up by a significant amount. The Mann-Kendall
(MK) value of 0.132 and the p-value of 0.895 show that the
average Temperature rose by 0.0054 °C each year, although
this change was not statistically significant. These results
show that even while there are clear patterns in how tem-
peratures change, they do not match the requirements for

statistical significance in the dataset that was studied. The
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results of the Mann-Kendall test indicate that the tempera-
ture variations are not significant enough to be definitively
linked to long-term climate changes, despite being detectable
(Figure 5).

The monthly trend analysis (Figure 6) shows that sev-
eral months, such as November, August, July, June, May,
April, and March, have big Temperature rises. These tenden-
cies suggest climate change, but they lack sufficient statisti-
cal significance. May has the highest average temperature
rise, 0.051 °C per year, which could mean that the weather is
more stressful during this month. August, on the other hand,

has the smallest rise, just 0.008 °C. This could be because
more rain makes temperature extremes less extreme. The
months of October, September, February, and January, on
the other hand, tended to get cooler, but this trend was not
statistically significant. December stands out because it has
a statistically significant annual temperature drop of —0.0409
°C (MK value of —2.614, p-value of 0.008). This could be
due to changes in seasonal cycles or the effects of changing
weather patterns in the area. These numbers illustrate the
complex and far-reaching consequences of climate change

on the region’s monthly temperature patterns.
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Figure 6. Trend analysis of the Temperature of the study areas - the average monthly temperature trend.

Different predictive models were used to guess how
temperatures might change in the Coastal islands in the future,
with a focus on accuracy and model fit. We used the Ljung-
Box test, PD-MAPE (Predicted Data Mean Absolute Per-
centage Error), and PD-RMSE (Predicted Data Root Mean
Square Error) to see how well the models worked. All of
them were very good at predicting monthly average temper-
atures, with an accuracy rate of 98% (Table 1).

All of the predicted models had very low PD-MAPE
(Predicted Data Mean Absolute Percentage Error) and PD-
RMSE (Predicted Data Root Mean Square Error). On average,
all of the models were able to predict the monthly average
Temperature with 98% accuracy. Therefore, the best model
for predicting Temperature will depend on how well it fits the
data, the Ljung-Box test, and the residuals. All of the model
significance levels are more than 0.05, which means that they
all support the hypothesis perfectly for making predictions.

The model with the lowest BIC score is considered the
best; however, you cannot simply look at BIC to determine
that a model is the best. So, after looking at the residuals of
all the models, the (1,0,0) (0,1,1) model at the 24th period-
icity level is the only one that does not have any significant
residuals in either autocorrelation or partial correlation. This
means that this model is more accurate than all the other mod-
els that were evaluated. In addition, this model has the lowest
PD-MAPE (1.86) and PD-RMSE (0.56) values while still
having an acceptable level of R-squared, MD-RMSE (Model
data Root Mean Square Error), and MD-MAPE (Model data
Mean Absolute Percentage Error). So, at the 24th period-
icity level, (1,0,1) (0,1,1) is the best model for predicting
the Temperature in the Coastal islands. Figure 7 shows all
of the anticipated and observed data for all of the models.
The temperature trend continues the pattern established in

previous years.
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Table 1. All tested models’ fitness of prediction and model data.

Predicted Data Model Data Ljung-Box Test
Model {2‘; ‘;’ld‘c‘ty PD-MAPE PD-RMSE R-Squared MD-RMSE MD-MAPE g;’éma"zed Statistics  Sig.
(1,0,1) (0,1,1) 12 2.04 0.66 0.83 0.98 3.05 0.04 24.73 0.05
(1,0,0) (0,1,1) 12 2.04 0.67 0.83 0.98 3.05 0.01 26.08 0.05
(1,0,1) (1,1,1) 24 2 0.59 0.81 1.03 3.19 0.17 21.33 0.09
(1,0,1) (0,1,1) 24 1.86 0.56 0.81 1.03 3.17 0.15 23.89 0.07
@) (b)
30 Residual ACF Residual PACF
» » : L
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Figure 7. Prediction model for forecasting the Coastal islands’ Temperature, (a) predicted and observed data, and (b) residual of (1,0,0)

(0,1,1) at the 24th periodicity level model.

The authors used Landsat images with a resolution of
30 meters to do a detailed assessment of land use and land
cover (LULC) in the Coastal islands. The study primarily
focused on the forest and wetland areas of the region, as
there were no residential or agricultural regions. The kappa
coefficient for classifying images was quite reliable, with
values between 0.90 and 0.95 when compared to historical
data from Google Earth Pro. The study examined only two
main types of land (forests and aquatic bodies), yet it still
identified clear patterns in how land cover changed. Figure
8 shows how much the forest area has shrunk. On average,
it has been shrinking by 26.36 square kilometres every year.
There is a statistically significant trend, with a Mann-Kendall
value of —2.067 and a p-value of 0.0388. This supports the
idea that climate change and human activities are putting
stress on this unique ecosystem.

On the other hand, the size of bodies of water has been
steadily growing at a rate of about 23.44 square kilometres
per year. The Mann-Kendall value of 2.0665 and the p-value
of 0.0388 show that this increase in waterbody coverage is
statistically significant. From 2002 to 2022, the amount of
aquatic bodies grew by 41.61%, while the amount of forest
cover shrank by 2.86% (110.71 square kilometers). The find-
ings show that the Coastal islands are changing, with rising

sea levels and erosion making the region’s ecosystem more
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vulnerable. This is likely due to climate change. The LULC
map (Figure 8) shows how land cover has changed a lot in
the last 20 years. This study highlights the importance of
initiating conservation projects and adaptation techniques
to mitigate the adverse effects of both natural and human-
induced stresses on coastal islands.

The study focused on four main tree species in the
Coastal islands: Heritiera fomes, Excoecaria agallocha, Son-
neratia apetala, and Ceriops decandra. The goal was to find
out how the distribution of these species relates to the land
surface temperature (LST) in the area, which is an integral
part of understanding how the climate changes in the area.
Figure 9 shows the distribution of various tree species, giv-
ing a complete picture of how they are spread out across the
Coastal islands. The correlation study revealed a substantial
relationship between the number of trees and Temperature
in different seasons (Table 2). All of the correlation values
were statistically significant at the 0.01 level, which means
that they were essential. The study shows that the correla-
tion coefficients for the dry, pre-monsoon, monsoon, and
post-monsoon seasons are 0.613, 0.460, 0.440, and 0.650,
respectively. Even while some seasons have smaller correla-
tion values, the high statistical significance shows that there
is a strong link between tree distribution and temperature

changes, notably before and during the monsoon. There were
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strong and vital links between the dry and post-monsoon sea-
sons and the land surface temperature in the Coastal islands.
This shows that tree distribution patterns had a significant

effect. There was a strong relationship between the dry and

pre-monsoon seasons (0.777), which got stronger during the
post-monsoon season (0.911). This illustrates how tree dis-
tribution directly impacts temperature patterns during these

critical periods.
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Figure 8. Land use and land cover (LULC) change over 24 years in the Coastal islands.
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Figure 9. Negative feedback loop caused by extreme temperature fluctuation.

Table 2. Correlation between seasonal Temperature and tree distribution.

Correlations
Tree Dry Pre-Monsoon Monsoon Post-Monsoon
Tree 1
Dry 0.613** 1
Pre-monsoon 0.460%* 0.777%* 1
Monsoon 0.440%** 0.567** 0.528** 1
Post-monsoon 0.650** 0.911%** 0.628** 0.660**

** Correlation is significant at the 0.01 level (2-tailed).
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The results show how important plants are in keeping
the Temperature in the Coastal islands from changing too
much from season to season. The existence and distribution
of some tree species have a significant impact on the local
climate, especially when it comes to keeping temperatures
from getting too hot or too cold. Because of this, it is essen-
tial to protect these species to maintain the area’s balance
and help regulate the Temperature.

Further study showed that there were significant differ-
ences in how the Temperature was spread out between areas
with different types of trees. The highest LST is in Sandwip
(annual average 25.66 °C), followed by Maheskhali (annual
average 25.05 °C), and the lowest is in Kutubdia (annual aver-
age 24.73 °C). This is true for all seasons. Ceriops decandra
(Goran), primarily found in Sandwip, has the highest land
surface temperature (LST) with a yearly average of 26.15 °C.
This made it the warmest place all year. The Exocoecaria
agallocha (Gewa) areas had the second-highest Tempera-
ture, with an average of 25.85 °C each year (Figure 10).

The average annual Temperature of the land surface in areas
with Sonneratia apetala (Keora) was somewhat lower, at
25.79 °C. The areas with the most Heritiera fomes (Sundari)
trees, which make up most of the Sundarban, had the lowest
average annual Temperature of 25.30 °C (Figure 10). The
trend stays the same across many seasons. The Sundari tree
zones always have the lowest average Temperature during
the dry season, which is 21.88 °C. This means that Heritiera
fomes has a significant impact on temperature control during
the warmer months, as it is so prevalent in the areca. The
results confirm the idea that tree species, especially Ceriops
decandra and Exocoecaria agallocha, which are common in
the warmer parts of Sandwip, make the land surface temper-
ature higher. On the other hand, Heritiera fomes, which is
common in the cooler parts of Kutubdia, helps keep the Tem-
perature down by acting as a natural temperature regulator.
This demonstrates the importance of maintaining a diverse
range of tree species in coastal islands to help stabilize the

Temperature and the environment as a whole.
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Figure 10. Land surface temperature (LST) of the Coastal islands based on tree species.

45



Journal of Atmospheric Science Research | Volume 08 | Issue 04 | October 2025

4. Discussion

This study discusses the intricate climate-vegetation
feedback mechanisms influencing the Coastal islands ecosys-
tem, wherein increasing and variable temperatures interact
with alterations in land cover, hydrological stress, and species
redistribution. Over the past 24 years, the Coastal islands
have undergone not only a warming trend but also a ther-
mal reconfiguration; seasonal extremes have intensified, and
established ecological balances are being disrupted.

Long-term Land Surface Temperature (LST) data from
the present study demonstrate considerable annual variabil-
ity, with the minimum values observed in 2000 and 2022.
From 2000 to 2009, a consistent increase in Temperature is
noted, succeeded by irregular fluctuations from 2010 to 2015
and a period of relative cooling until 2022. These trends cor-
respond with the established effects of the El Nifio—Southern
Oscillation (ENSO), which affects the Temperature of both
LST and SSTP7. Furthermore, the Indian Ocean Dipole
(IOD) modifies these thermal dynamics and influences the
Bay of Bengal cyclone activity®®). Temporal temperature
analysis of the present study reveals significant fluctuations
within the Coastal islands region, particularly on a monthly
and seasonal basis during the pre-monsoon and monsoon
periods. The ecological significance of these fluctuations is
pronounced, particularly during the pre-monsoon and mon-
soon phases. These rapid intra-seasonal shifts alter the ther-
mal niche of specific zonal clusters, making mangroves more
vulnerable to environmental extremes. Moreover, shifts in
monsoon circulation patterns exacerbate thermal instability,
leading to erratic rainfall and evaporation cycles (3. These
findings are consistent with previous zonal and seasonal anal-
yses, which confirm that the Coastal islands are experiencing
accelerated climatic disequilibrium 21261,

The trend analysis reveals an asymmetric seasonal pat-
tern in LST changes. Pre-monsoon and monsoon temper-
atures are increasing, while post-monsoon and dry season
temperatures are decreasing (Figure 5). The post-monsoon
and dry seasons exhibited similar rates of temperature de-
cline; however, the rising trend in the pre-monsoon season
is twice the rate of decline, signifying an increasing seasonal
temperature differential in a monthly scenario, a significant
declining tendency was discovered for December (—0.041
°C/year) and minor declines in October, September, January,
and February. In contrast, all other months exhibit warm-

ing trends. These patterns reflect global SST warming along
71.6% of the world’s coastlines!'], a trend also observed along

1026 * An increasing trend of SST was

the Bangladeshi coast!
also observed on the Bangladesh coast, where SSTs have in-
creased by 0.10-0.16 °C per decade (daytime) and 0.18-0.27
°C per decade (nighttime)!**l. Kelvin wave activity from
the Ganges-Brahmaputra inflow during the southwest mon-
soon raises SSTs by 0.5—-1 °C along the northeastern Indian
coast[?*]. Local LST studies confirm this asymmetric warm-
ing, where one study found that January LST dropped by
~1.85 °C over several decades, and another reported a 0.005

10121 'These concerning trends

°C annual winter cooling trend!
are also found in this study analysis. The conflicting seasonal
trends exacerbate thermal amplitude, heightening ecologi-
cal stress and disrupting mangrove metabolic rhythms 331, a
finding further validated by our study.

Land cover changes aggravate the climatic effects. Sea-
level rise, sediment dynamics, and fluvial processes have
all contributed to coastal erosion, which has dramatically al-
tered the region’s geomorphology. Between 1991 and 2021,
800.72 sq. km of land was lost®°), while 129 sq. km of forest
cover vanished between 2000 and 2023 due to coastal re-
treat('?], which rate aligns with our research findings within
the coastal area. This deforestation disrupts the local energy
balance. Whereas dense forest once provided evapotranspi-
rative cooling, newly exposed water bodies now absorb and
re-radiate solar energy, affecting surface thermal dynamics.
Water bodies have higher thermal inertia than terrestrial sur-
faces. In the dry season, they function as heat sinks, absorb-
ing excess heat throughout the day and releasing it at night

to mitigate temperature extremes 22l

During the dry sea-
son, when water is scarce, forests with intact vegetation can
maintain higher moisture levels through their root systems,
retaining water in the soil. However, due to the low moisture
content during the dry season, trees tend to have a higher
evapotranspiration rate, which further cools the surrounding
environment 28],

Furthermore, the loss of canopy cover during the dry
season removes the shade offered by trees, exposing the land
surface directly to solar radiation. This enhances solar energy
absorption, which causes higher surface temperatures in the
summer(?®). So, land erosion has an impact on the LST of
coastal islands, and a decrease in forest area contributes to

significant temperature variations, causing them to be in a
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negative feedback loop (Figure 9).

The Coastal islands have not only become warmer over
the past 24 years, but they have also changed how they
heat up. Seasonal extremes have gotten worse, and estab-
lished ecological balances are being thrown off. Long-term
Land Surface Temperature (LST) data (Figure 3a) show that
temperatures change significantly from year to year, with
the lowest recorded in 2000 and 2022. There was a steady
rise in Temperature from 2000 to 2009, followed by unpre-
dictable changes from 2010 to 2015 and a period of relative
cooling until 2022. These patterns are in line with what
we know about the El Nifio—Southern Oscillation (ENSO),
which changes the Temperature of both LST and SST®7.
The Indian Ocean Dipole (IOD) also changes these thermal
dynamics and affects the activity of cyclones in the Bay of
Bengal*®]. Additionally, changes in monsoon circulation
patterns exacerbate thermal instability, resulting in unpre-
dictable cycles of rain and evaporation[?®]. These results are
in line with other zonal and seasonal studies that show the
Coastal islands are experiencing faster climate change 2126,

These temperature changes have significant effects on
the environment. Studies show that even a 2 °C rise in dry
mangrove areas lowers production, biomass, and survival,
and also changes the types of species and their phenological
thythms 3], When temperatures rise too high and there is not
enough freshwater flowing in, mangrove systems become
even more stressed, leading to biodiversity loss and changes
in dominance %1,

In the Coastal islands, higher vapor pressure deficits
hurt photosynthesis and water productivity, which lowers the
health and ability to grow back of mangroves 33,

The trend analysis reveals that LST variations occur
unevenly throughout the seasons. Temperatures are rising
before and during the monsoon, but falling after the monsoon
and throughout the dry season. The Temperature dropped
at the same pace during the post-monsoon and dry seasons.
However, the Temperature rose at twice the rate during the
pre-monsoon season, which means that the temperature dif-
ference between the seasons is getting bigger. In a monthly
scenario, there was a significant drop in Temperature for
December (—0.041 °C/year) and small drops for October,
September, January, and February. All other months, on
the other hand, show warmer trends. These trends show
that the sea surface temperature (SST) is rising along 71.6%

of the world’s coastlines!'). This is also happening along
the coast of Bangladesh!'%2]. On the coast of Bangladesh,
SSTs have likewise been rising, by 0.10-0.16 °C per decade
during the day and 0.18-0.27 °C per decade at night>*1. Dur-
ing the southwest monsoon, the Ganges-Brahmaputra influx
causes Kelvin waves to move, which boosts SSTs over the
northeastern Indian coast by 0.5—1 °C[23]. This study also
shows these worrying patterns. The different seasonal trends
make the thermal amplitude worse, which puts more stress
on the ecosystem and throws off the metabolic rthythms of
mangroves, as their study also found %,

Predictive modeling adds a new layer to this compli-
cated scenario. LASSO, MSTL, ALLSSA, and wavelet
analysis are all advanced methods that work well with cli-
mate datasets that have a lot of dimensions and variables.
SARIMA is the best model for forecasting univariate LST

time series (00611,

It properly reflects how trends and sea-
sons change, and it can predict with about 98% accuracy.
SARIMA’s forecasts indicate that seasonal LST divergence
will continue and intensify in the future, leading to increased
thermal stress. At this rate, the difference in Temperature
between seasons will keep getting bigger.

Changes in land cover make the effects of climate
change worse. The region’s geomorphology has undergone
significant changes due to coastal erosion, which is caused
by rising sea levels, altered sediment, and river processes.
Between 1991 and 2021, 800.72 square km of land were lost,
including 129 square km of forest cover between 2000 and
2023 due to shore retreat??. This rate of land loss aligns
with our findings in the coastal areal®?]. The cutting down
of trees disrupts the local energy balance. In the past, dense
forests cooled things down by evaporating and transpiring.
Now, freshly exposed water bodies absorb and re-radiate
solar radiation, which changes how heat moves around on
the surface. Water bodies have more thermal inertia than
land surfaces. During the dry season, they act as heat sinks,
taking in more heat during the day and releasing it at night to
keep temperatures from being too hot or too cold??]. Forests
with healthy vegetation can retain more moisture in the soil
during the dry season, when water is hard to come by. This
is because the trees’ roots hold onto water, but because the
air is so dry, trees tend to lose more water through evapotran-
spiration, which cools the area even more[?®l. Also, when

the canopy cover goes away during the dry season, the trees’
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shade goes away, leaving the ground directly exposed to the
sun. This makes it easier for solar energy to be absorbed,
which makes the surface temperatures greater in the sum-
mer?8]. Land erosion affects the Coastal islands’ LST, and
a loss of forest area causes significant Temperature, putting
them in a negative feedback loop.

These changes in the weather and the shape of the land
are changing where mangrove species live. According to our
analysis, the continuous moderate to strong El Nifio presence
from 2002 to 2016, which influenced the global temperature
rise, was followed by a weak El Nifio that lasted until 2022.
This period correlates with the LST of Coastal islands [0%-62],
While the spread of C. decandra is associated with the higher
LST, better suited to thermal stress, has proliferated in the
warmer areas of Maheskhali and Sandwip, with Kutubdia
being the only exception**]. On the other hand, S. During
this time, apetala grew in all areas. E. In Maheskhali and
Kutubdia, C. agallocha was on the rise, but not in the hotter
regions of Sandwip[*3]. At the current rate, temperature rises
will change species distribution and composition, with vary-
ing effects on productivity and reproductive phenology 31,
which is consistent with the findings of this study. As LST
rise persists, thermally sensitive species such as H. fomes
may experience local extinction (Suitable habitat will de-
cline by 45% by 2100). In contrast, heat-tolerant species like
C. decandra are likely to expand their ecological niche!®'],
Comparable poleward transitions have been noted in the Gulf
of Mexico, where mangroves are supplanting temperate salt
marshes 2. Nevertheless, the Coastal islands lack the spatial
continuity necessary for such migration. The expansion of
mangroves to the north is physically limited by agricultural
land and fragmented aquatic areas, indicating a forthcoming
reduction in total forest area.

Islam et al.[%] stated that temperature rise is a con-
cern for future agriculture in different regions of the globe.
The statistical downscaling climate model (SimCLIM) was
used for downscaling and to ensemble temperature pro-
jections (Tmax and Tmin) for the near (2021-2060) and
far (2071-2100) periods compared to the base period
(1986-2005). They found that the northern and northwest-
ern parts of the country would experience the highest rise
in maximum temperature (Tp,x) and minimum temperature
(Tmmin), which have traditionally been exposed to tempera-
ture extremes. In contrast, the southeastern coastal region

of Bangladesh would experience the least rise in Tempera-
ture. A higher increase in Ty, than Tyax was detected for all
timescales, signifying a future decrease in the diurnal tem-
perature range (DTR). This study suggests that the Coastal
islands are ensnared in a detrimental climatic negative feed-
back loop. Increasing pre-monsoon and monsoon temper-
atures, in contrast to cooling during the post-monsoon and
dry seasons, are disrupting the region’s ecological patterns.
These modifications diminish photosynthetic efficiency, dis-
rupt species interactions, and weaken forest resilience. Land
degradation and species displacement exacerbate environ-
mental susceptibility. In the absence of targeted mitigation,
these trends may lead to irreversible harm to the world’s
largest mangrove ecosystem.

Despite these ongoing efforts, there is still room for
improvement, particularly in aligning climate policy with the
biophysical realities of a rapidly warming Coastal islands.
Adaptive zoning, modeled after dynamic frameworks such
as Australia’s Great Barrier Reef Marine Park, could use
thermal mapping to inform seasonal restrictions on tourism
and extraction, thereby protecting biodiversity hotspots 64631,
Infrastructure policy should shift toward ecosystem-based
engineering, replacing polders and embankments with man-
grove bioshields and sediment-based restoration to mitigate
the hydrological disruption caused by rigid development[¢¢].
Furthermore, predictive tools validated in this study, such
as SARIMA, should be integrated into national early warn-
ing systems, as demonstrated by examples from Vietnam’s
Mekong Delta, where machine learning forecasts support
real-time agricultural planning[®”). Finally, policies should
emphasize local knowledge and participation. Nepal’s buffer
zone forestry model exemplifies how decentralized gover-
nance can integrate community priorities with conservation

s[67]. Without such bottom-up participation, climate

objective
resilience efforts risk becoming technocratic and unsustain-
able. A future-proof coastal islands policy must combine
ecological science, engineering innovation, and grassroots
stewardship before thermal feedback depletes the system’s

regenerative potential.

5. Conclusions

The Coastal island’s mangrove forest is recognized

as a biodiversity hotspot and serves as a vital provider of
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ecosystem services. However, according to an analysis of
data spanning 24 years, it is evident that the ecological equi-
librium of the coastal islands is under jeopardy, notably in
terms of LST dynamics. This study provides a thorough
assessment of the complex trend analysis of temperature
fluctuations and their correlation with tree species on coastal
islands. Notably, during the pre-monsoon and monsoon sea-
sons, the Coastal islands region faces significant temperature
variability, along with a rising temperature trend. In contrast,
during the Dry and post-monsoon seasons, the Temperature
decreases, indicating increased ecological stress and poten-
tial disturbances to species acclimated to specific temperature
niches. Cluster analysis, which delves deeper into temporal
patterns, demonstrates the non-linear nature of LST varia-
tions between months. Between 2002 and 2022, water body
area increased by 41.61% while forest cover decreased by
2.86%, highlighting the extent of land cover change and its
implications for temperature dynamics. Predictive modeling
projections underscore the persistence of current temperature
trends, indicating a future with wider temperature differen-
tials between seasons. This forecast insight underscores the
importance of taking early actions to reduce temperature
extremes and protect the Coastal islands’ ecological integrity.
The relationship between tree canopy and LST distribution
demonstrates the critical function that vegetation plays in
modifying microclimates throughout the region. This growth
pattern, along with the rising LST from 2000 to 2015, has
been correlated with El Nifio and La Nifia. From 2000 to
2015, El Nifio influenced global weather patterns and con-
tributed to rising temperatures. Its impact on the LST of
Coastal islands is also visible. As climate change is pre-
dicted to result in temperatures in the future, this may lead to
a further increase in the population of C. decandra on coastal
islands, while H. Fomes may decrease as they prefer lower
LST. ULC analysis corroborates ecological degradation, in-
dicating accelerated deforestation and the encroachment of
aquatic systems, thereby reinforcing adverse thermal feed-
back loops.

Conservation initiatives must consequently extend be-
yond conventional forest preservation. Adaptive strategies,
including the promotion of thermally resilient mangrove
species, the integration of land-use and land-cover monitor-
ing into early warning systems, and the revision of climate

action policies to align with microclimatic conditions, are

crucial. Without prompt intervention, the Coastal islands
may shift from a protective barrier against climate extremes
to a casualty of their declining resilience. Future manage-
ment must synchronize scientific research, community en-
gagement, and policy to ensure the ecological integrity of
this globally significant mangrove forest. In essence, this
study underscores the urgent need for proactive measures to
mitigate temperature extremes and preserve the ecological
integrity of the coastal islands. With each passing year, the
stakes rise, necessitating swift action to protect this priceless

natural heritage.
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