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ABSTRACT

Bangladesh is one of the most vulnerable countries to climate change-related disasters and economic loss and damage.

This study examines 20 years of satellite-derived land surface temperature (LST) data to investigate seasonal trends, changes

in land use and land cover (LULC), and the relationship between temperature changes and the most common mangrove

species in the Coastal islands of Bangladesh. The most noticeable temperature changes happened in the pre-monsoon and

monsoon seasons. In December, on the other hand, there was a statistically significant cooling trend of −0.041 ℃ per year.

At the same time, forest cover has been shrinking by an average of 26.36 km² per year, while coastal water bodies have been

growing by 23.44 km² per year. Cluster analysis shows that temperatures change a lot from month to month outside of the

pre-monsoon season. This suggests that the climate is unstable and could push the system beyond ecological thresholds.

SARIMAmodelling demonstrated 98.12% accuracy in predicting temperatures, highlighting the importance of temporal

analysis in forecasting future stress thresholds. Species-specific temperature clustering shows how different mangrove species

can handle heat: Ceriops decandra is more common in locations with higher temperatures, while Heritiera fomes is more

common in areas with lower temperatures. These patterns show that ecosystem resilience is becoming less stable; therefore,

we need to move from passive Conservation to proactive, species-informed, and thermally adaptive management practices.
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1. Introduction

Climate change is no longer a far-off threat to the envi-

ronment; it is already a growing force that is changing ecosys-

tems and pushing natural systems to their limits. Increas-

ing heat waves, changing rainfall patterns, and more unpre-

dictable weather events are not just signs of a warming world,

but they are also tests of how well the environment can adapt.

Forests, especially those in tropical and coastal regions, are

among the most sensitive and responsive systems to environ-

mental changes [1]. The IPCC determined that rising global

temperatures and changing precipitation patterns are deplet-

ing forest biomass and biodiversity, which compromises their

ecological functions [2]. In humid tropical areas, extended

periods of drought and very high temperatures are making it

harder for forests to grow back and stay strong [3]. Climate

change and the health of forests, particularly in coastal and

tropical areas, are significant concerns, as these ecosystems

are fragile and crucial for maintaining a stable climate both

locally and globally. Forest ecosystems play a crucial role

in storing carbon, protecting biodiversity, and regulating the

climate. However, they are currently facing unprecedented

challenges due to climate change [4]. Forests help stabilize

the environment by trapping carbon, but the climate they help

stabilize is also making it harder for them to survive.

One of the main effects of climate change is that the

sea surface temperature (SST) is rising. The rise in SSTs

is altering ocean systems and the way heat is distributed in

nearby land areas. Many studies show that SSTs have risen

significantly around the world in the last century, especially

in tropical and coastal regions [5,6]. These changes are not

limited to marine systems, which is essential. The warming

of the oceans also has effects on land, raising land surface tem-

peratures (LSTs) and disrupting the delicate balance between

soil moisture, evapotranspiration, and atmospheric feedbacks.

This can alter wildfires, landslides, and precipitation thresh-

olds [7]. Higher sea-surface temperatures have been linked

to stronger tropical storms, changes in rainfall patterns, and

variations in regional climates. All of these factors affect

forests and other land-based ecosystems. A shocking 71.6%

of the world’s coastlines are seeing SSTs rise. The oceans are

getting warmer, and so is the land around them [1].

Higher ocean temperatures are bad for nearby land

ecosystems, especially mangrove forests, which are already

under stress from rising sea levels and coastal erosion [8,9].

Additionally, studies indicate a strong correlation between

SST and LST in coastal areas. This means that warmer

oceans directly affect the LST of coastal areas. Additionally,

rising SST makes coastal forests less able to handle envi-

ronmental stress [10]. The Bay of Bengal, which includes the

Coastal islands, is where this dynamic is most clear and dan-

gerous. The Coastal islands are one of the largest and most

important mangrove forests in the world. They are essen-

tial for storing carbon, protecting the coast, and regulating

Temperature [11].

Bangladesh is highly vulnerable to CC due to its unique

geographical location, poor infrastructure, low-lying topog-

raphy, and high population density. Understanding potential

climate change is essential for creating adaptation strategies

and increasing resilience to CC. However, a few studies used

CMIP5 models to assess future changes in Temperature in

Bangladesh for various CC scenarios [12,13]. This was pro-

jected Tmax and Tmin over Bangladesh using the MME of

eight CMIP5 GCMs. They projected an increase in Tmax

by 1.3 ℃–4.3 ℃ and Tmin by 1.8 ℃–5.1 ℃ for different

RCPs. They also projected the highest rise in Tmax and

Tmin in the northern region and the lowest in the south-

eastern coastal area of Bangladesh [14]. This was found that

higher increase in Tmax and Tmin in the southwest region

than in other parts of Bangladesh [15]. Earlier research was

mainly concentrated on a limited number of GCMs or RCMs

for monthly or annual Tmax and Tmin projections at the re-

gional or national scale [16,17]. Unfortunately, understanding

the spatiotemporal trends and variations of future tempera-

ture changes at monthly, seasonal, and annual timescales is

limited. Moreover, no extensive study has been conducted to

project temperatures employing all existing CMIP5 GCMs

at various time scales over Bangladesh [18,19]. Several stud-

ies show that the Bay of Bengal’s sea surface temperatures

(SSTs) rise all year round, except during the dry season [20,21].

Even during the monsoon season, it seems that freshwater

inflows raise sea surface temperature (SST) levels, making

the region’s thermal stress worse [22,23]. The Temperature of

the land adjacent also rises because of this. According to

Shuva et al. [20], SSTs are increasing by 0.10–0.16 ℃ per

decade during the day and by 0.18–0.27 ℃ per decade at

night along the Bay of Bengal. This is a worrying trend. The

rising sea surface temperatures (SSTs) are strongly linked

to the increasing land surface temperatures (LSTs) in the
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Coastal islands, which makes the climate less stable [12,22,24].

The IPCC reports indicate that greenhouse gas emissions

are not only making coastal areas warmer, but they are also

altering the seasons, which affects the timing, duration, and

intensity of the seasons [9,25]. Long-term temperature data

from the Coastal islands support these global predictions,

like the IPCC’s: temperatures are rising significantly before

and after the monsoon season, but they get colder during the

dry season [26]. Remote sensing data backs up these trends,

showing that summer temperatures are at their highest and

monsoon and dry season temperatures are at their lowest [27].

Forests, such as those found on the Coastal islands, are es-

sential for maintaining regional microclimates by recycling

moisture and allowing it to evaporate. Mangroves act as nat-

ural heat buffers by providing shade, keeping soil moist, and

controlling wind patterns. In principle, higher SST should

lead to higher temperatures. However, the coastal area near

the Coastal islands has cooler temperatures during the dry

season instead [10,22]. This is bad news since forests like those

on the Coastal islands help keep the Temperature stable by

releasing water vapor, which cools the area around them.

Evapotranspiration rates in trees may be too high during

the dry season, as there is insufficient moisture and lower

temperatures. This can cause stress and perhaps harm bio-

diversity [9,25,27,28]. Some people say that these frigid, dry

seasons could even cause the forest cover to go down. The

land surface gets more direct sunlight when there is less veg-

etation, which could make temperatures even higher in other

seasons [28]. Lower winter temperatures may enable man-

grove habitats to expand northward, potentially replacing

salt marshes in specific locations. The distinction between

adaptability and ecological displacement is a crucial issue

for future conservation policy [29].

Recent studies show that the Coastal islands have

lost about 129 square kilometers of forest in the last few

decades [22,30]. This exacerbates the effects of climate stres-

sors. The changes in air and water temperatures that happen

as a result can have a significant impact on where species live,

how fast they breathe, and how mangroves and salt marsh

plants reproduce [31]. Higher water temperatures may change

the thermal conditions of mangrove ecosystems, which could

affect the growth of mangrove plants and animals in the

area [32]. As temperatures rise, many creatures exhibit sig-

moid physiology, which means they undergo a rapid adapta-

tion period, then reach an equilibrium, and subsequently start

to deteriorate [33]. However, we do not know precisely what

the temperature limits for collapse are, which makes fore-

casts more challenging. Also, a temperature rise could make

the lack of water vapour worse, making it harder for man-

grove plants to survive and develop in dry areas [33]. These

thermal stressors do not operate independently. They face

contemporary challenges such as pollution, habitat loss, and

changes in salinity, which further exacerbate the risk to bio-

diversity and ecosystem services. These changes can have

a profound impact on biodiversity, ecosystem services, and

the livelihoods of local people. This means that people need

to devise effective ways to adapt [34]. Temperature changes

can make habitats less suitable, change where species live,

and make concerns like habitat loss and pollution worse. To

develop effective conservation plans and optimize resource

utilization, it is essential to understand how Temperature

influences biodiversity dynamics [35,36].

There is much writing about climate change and envi-

ronmental change in the Coastal islands, but there are still

significant gaps in the studies. Fu et al. [1], Mandal et al. [23],

and Osland et al. [28] have examined global changes in sea

surface temperature (SST) and salinity, as well as the impact

of climate on mangrove ecosystems. However, their assess-

ments often do not focus on specific regions. Chowdhury et

al. [18], Sarker [10], and Shuva et al. [20] looked at Bangladesh’s

coastal region’s climate, including SST, precipitation, and

air temperature. However, they did not look at the ecological

limits of the Coastal islands. There have not beenmany direct

efforts to learn more about the area. Ghosh et al. [31] looked at

how Temperature and precipitation affect mangrove species,

but they did not look at how these factors change with the

seasons or how LST affects species distribution. Barik et

al. [32] also looked at how salinity affects the spread of man-

groves, ignoring other climate parameters. Samanta et al. [22],

on the other hand, only studied the Indian Coastal islands and

did not look at how land surface temperature affects species.

One problem with these studies is that they lack ex-

tensive, species-specific LST analysis or ongoing ground-

based meteorological monitoring in the Coastal islands. This

has made it challenging to understand how changes in mi-

croclimates, particularly temperature fluctuations, impact

the distribution of mangrove species and the stability of

ecosystems over time. This work utilizes remote sensing
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and spatio-temporal methods to examine land surface tem-

perature patterns in coastal islands from 2000 to 2023, aiming

to fill existing gaps. This study also examines the impact of

changes in land use and land cover (LULC) on temperature

fluctuations. It does this by looking at the thermal prefer-

ences and distributions of four common mangrove species:

Heritiera fomes, Excoecaria agallocha, Sonneratia apetala,

and Ceriops decandra. This study also uses the SARIMA

model to estimate future temperature changes. This is a

crucial piece of information for proactive Conservation and

ecosystem management as climate pressures intensify. The

main goals of this project are to map out temperature changes

over the last 20 years in the Coastal islands.

• Looking at how land cover changes and how forests are

getting worse.

• Connecting changes in LST with the distribution of the

most common mangrove species.

• Predicting temperature trends to figure out what the

stress levels will be in the future.

This study examines the Coastal Islands region through

four main goals, linking them to demonstrate how climate

change’s changing temperatures put stress on mangrove

species.

2. Materials and Methods

The authors chose the southeastern coastal zone of

Bangladesh for their study. They focused on three islands:

Maheskhali, Kutubdia, and Sandwip. Climate vulnerability,

rates of displacement, land erosion, and repeated disasters

have been thought about when choosing people for the study.

The Sandwip Island is part of the Chittagong district, which

has an area of 762.42 km2. Cox’s Bazar district includes

Kutubdia Island, which is 215.8 km2 and is surrounded by

the Bay of Bengal. Cox’s Bazar district also includes Mah-

eskhali Island, which is another coastal island. It has an area

of 362.18 km² and is also surrounded by the Bay of Bengal.

The Ganges River’s tidal, supra-tidal, and fluvial processes

form three islands. The terrain of these islands is mostly

mudflats, sandy areas, and mild slopes (Figure 1).

Figure 1. Geographical Location of the study areas.
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2.1. Data Collection

This study used Landsat (5–8) and MODIS satellite

data to look at land surface temperature (LST) and other fea-

tures of the land. The Google Earth Engine (GEE) JavaScript

interface was used to get and process the data. We configured

the study’s geographical scope by uploading a shapefile of

the research area into GEE. This made it easier to filter rele-

vant datasets by location. We used the given parameters to

combine pixel-level measurements from the satellite bands

to find the average daily temperatures across the study area.

The bonus section provides information on the entire data ex-

traction procedure and the coding scripts that accompany it.

The analysis spans the years 2000 to 2023, covering

temperature and raster layers. Because there are not many

ground-based weather stations in the Coastal islands region,

we picked MODIS LST data because it is very accurate over

vast areas with very little error. In clear skies, MODIS ther-

mal readings are more precise than 1K at a spatial resolution

of 1 km [37]. Different studies on long-term climate fluctua-

tions in different parts of the earth indicate that it is likely

that the impact of climate change will challenge and even

reverse the advancements made in many African countries’

socio-economic well-being [38]. A study in China found that

there is only a minimal daytime bias of 1.32K, which is

even less at night and when there are no clouds [39]. Accord-

ing to additional validation trials done in the US, the root

mean square error (RMSE) values were less than 1.3K [40].

MODIS LST errors in the Bangladesh region are limited

to ±1K, and data from satellites closely match data from

the ground (R² = 0.95) [41,42]. Cloud interference, dust, or

sensor problems can all affect satellite-derived land surface

temperature data; however, these problems were not signif-

icant for this study [43]. It did not matter that a few pixels

were missing because the monthly means were based on the

average temperature data for the whole area. Because of

this, this analysis did not need data imputation. This study

employed the Mann–Kendall trend analysis approach [44,45],

a standard nonparametric method for detecting a monotonic

trend (either increasing or decreasing) in a time series dataset.

This method does not assume a specific distribution, unlike

parametric models, hence it is suitable for environmental and

climate data. The null hypothesis says that there is no clear

trend over time, while the alternative hypothesis says that

the observed values have changed in a statistically signifi-

cant way [46]. The approach checks to see if the data indicate

a consistent change in direction, without requiring a linear

trend. A p-value of 0.05 or lower is considered statistically

significant and strongly suggests that there is a monotonic

trend in the data [46]. The next part explains the statistical

methods used in the analysis:

S =
∑n−1

i=1

∑n

j=i+1
sgn (xj − xi) (1)

In this context, xj and xi represent the values of se-

quences j and i, respectively; n denotes the length of the time

series, and

Sgn(xj − xi)=


+1 if (xj − xi) > 0

0 if (xj − xi) = 0

−1 if (xj − xi) < 0

(2)

If the test statistic value S is more than 0, it means that the

dataset is going up. If the value S is less than 0, it means that

the dataset is going down. In this case, xi and xj are single

observations at times i and j, and n is the total number of

observations in the time series. If the data are independent

and identically distributed, the distribution of S can be close

to a normal distribution. In this case, the variance of S is

found using the following formula:

VAR(S) = n(n−1)(2n+ 5) (3)

n(n−1)(2n+ 5) = σ2 (4)

Where σ represents the standard deviation, the rele-

vance of the testing method is indicated by the statistical

value Z, where |Z| ≥ 1.96 (corresponding to p ≤ 0.05) is

deemed significant.

Z =>


S−1√

V AR (S)
, S > 0

0 , S = 0
S+1√

V AR (S)
, S < 0

(5)

β = Median

{
yj − yi
J − i

, 1 ≤ i ≤ j ≤ n

}
(6)

The MK is a non-parametric estimator based on Sen’s

slope estimator. It is defined by the time series showing an in-

creasing trend with magnitude β when β > 0 and a decreasing

trend with magnitude |β| in the other case [7,47].

2.2. Data Analysis

The Autoregressive Integrated Moving Average

(ARIMA) model is widely used for predicting time series. It
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consists of three main parts: autoregressive (AR), integra-

tion (I), and moving average (MA). The Seasonal ARIMA

(SARIMA) model is a variation of ARIMA that works ex-

ceptionally well with data that has seasonal patterns that

repeat [48]. This study employed SARIMA to examine tem-

perature patterns, taking into account natural seasonal fluc-

tuations. Because daily temperature measurements fluctuate

significantly and do not follow a consistent pattern, they were

combined into monthly averages to improve the model’s ac-

curacy and consistency.

The raw daily data contained a lot of noise and rapid

changes, making it difficult for prediction algorithms to func-

tion effectively. However, averaging the data into monthly

averages made the forecasts far more stable and reliable.

There were 276 monthly observations used for this study.

This is a lot more than the 40 to 50 observations that are

usually recommended as a minimum for reliable ARIMA

modelling [49]. The three parameters that define an ARIMA

model are p, d, and q. p is the number of autoregressive terms,

d is the number of differencing steps needed for stationarity,

and q is the number of lagged forecast errors in the moving

average component [50]. Equation (7) shows how theARIMA

(p, d, q) model is usually written down mathematically:

Φl(1− l)dyt = θ(l)ε (7)

In this equation, φl and θ (l) are the polynomial coeffi-

cients for the autoregressive (AR) and moving average (MA)

parts of orders p and q, respectively.

The Seasonal ARIMA (SARIMA) model builds on the

ARIMA framework to handle time series data with seasonal

trends. It is written as SARIMA(p, d, q)(P, D, Q)s. The

first set of parameters, p, d, and q, is for the model’s non-

seasonal parts. The second set of parameters, P , D, and Q,

is for the model’s seasonal autoregressive, differencing, and

moving average parts. The subscript s shows how long the

seasonal cycle lasts (for example, 12 for monthly data that

shows annual seasonality). Seasonal polynomials are used

to describe the seasonal framework of the SARIMAmodel.

They capture repeating patterns at set intervals and are added

to the overall model to make predictions more accurate when

dealing with cyclical behavior.

Φp(l
s)ρp(l)(1−l)

d(1−ls)dyt = θqθq(l
s)εt (8)

The SARIMAmodelling strategy follows a structured

process with three main steps: identifying the model, esti-

mating the parameters, and testing the diagnostics, which

ultimately leads to forecasting [48,51]. This study employed

a modeling technique that utilized two different seasonal

cycles, one with 12 periods and one with 24 periods, to ex-

amine short- and medium-term patterns in the temperature

data. In the first step, you need to check if the time series is

stationary. Differencing is used to stabilize the mean when

the data show trends or seasonality. After that, the plots

of the autocorrelation function (ACF) and the partial auto-

correlation function (PACF) are looked at to find the best

values for the model parameters. The Bayesian Information

Criterion (BIC) makes it easier to choose a model by giving

it a penalised likelihood score to find the simplest and best

model. Once a candidate model is selected, its parameters are

estimated using well-known methods developed [52]. These

methods include autoregressive and moving average compo-

nents. At this point, all the extra seasonal and non-seasonal

coefficients are also figured out.

After the estimation, a diagnostic examination is done

to see if the model accurately reflects how the observed data

changes over time. This validation supports the model’s

assumptions, thereby enhancing its ability to predict more

reliably. We use the Ljung-Box test to check for autocor-

relation in the residuals and model fit indices, as shown in

Equations (9) and (10), to check the overall goodness-of-fit:

Mean Absolute Error (MAPE) =

1
N

∑M
i=1 |(Xm)i − (Xs)i|

(9)

Root mean square error (RMSE) =√
1
N

∑N
i=1 [ (Xm)i − (Xs)i]

2
(10)

In this case, N stands for the total number of predicted

observations, Xm stands for the actual (measured) values,

and Xs stands for the projected values that the model came

up with. The Ljung-Box test is a way to check if a time series

model is good enough by looking for autocorrelations in the

residuals. The null hypothesis (H0) says that the model fits

the data well enough that there is no significant autocorre-

lation in the residuals. On the other hand, the alternative

hypothesis (Ha) says that the model does not accurately

reflect the structure of the data. The level of statistical sig-

nificance, which is usually set at 0.05, tells you whether to

accept or reject H0. This shows whether the model is sta-

tistically valid or not [48]. This study used satellite images

from two different sources, Landsat 5 and Landsat 8, both of
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which have a spatial resolution of 30 m. We chose January

images to examine since there are usually few clouds during

this time, which makes the photos more transparent and eas-

ier to use. Before classifying the data, ENVI 5.1 was used to

make sure that the data was accurate by making radiometric

and surface reflectance modifications. We used ArcGIS 10.3

Desktop to process and classify images, focusing on two key

types of land cover: vegetation and water bodies. Because

the Coastal islands did not have many people living there

or much land that was not being used, there was no need to

establish more land use categories. In ArcGIS, a supervised

classification method was employed to identify training sites

by carefully examining the spectral and spatial characteristics

of all images. We digitalized polygons for each type of land

cover to show locations with similar land use and land cover

(LULC) features. The classification approach employed the

Maximum Likelihood algorithm, which analyzes the mean

and standard deviation values of each pixel from the training

data to determine the likelihood that the pixel belongs to a

specific category [53]. After that, pixels were put into the class

that best matched them, and similar classes were combined

into one representative group. After the classification, the

area covered by each land feature was measured in square

kilometres.

To verify the accuracy of the classification, an accu-

racy check was performed using both historical reference

images (such as those from Google Earth Pro) and publicly

accessible ground-truth data. Using the “Create Accuracy

Assessment Points” function in ArcMap, we made a set of

200 random validation points. To check how accurate the

results were, an error matrix was created that juxtaposed cat-

egorized map outputs (rows) next to reference ground truth

data (columns). We used the Kappa coefficient, which is a

statistical measure that goes from −1 to +1, to measure how

well the classifications agreed with each other. Values over

0.80 show perfect classification accuracy, values between

0.40 and 0.80 show moderate accuracy, and values below

0.40 show inadequate agreement [54]. We used the “Com-

pute Confusion Matrix” tool in ArcMap to find the Kappa

coefficients.

Kappa coefficient =

(TS∗TCS)−
∑

(Col.total∗row total)

TS2−
∑

(Col.total∗row total)

(11)

TS is the total number of samples utilised to check for

correctness, and TCS is the number of samples that were

correctly classified. The total for each class is the sum of all

the reference samples in that class, and the total for each row

is the number of samples that were put into that category.

2.3. Statistical Analysis

We used tree distribution maps and temperature maps

from all four seasons to look at the links between temperature

and tree distribution patterns. First, we gathered temperature

raster information from all four seasons during the course

of the 24-year study. Then, all of the rasters were averaged

to create one raster that shows the average temperature dis-

tribution across the Coastal islands for each season. After

that, three distribution maps from several studies were put

together, and four main species were found. A new raster

was generated [36,55,56]. Then, the fishnet tool was used to pro-

duce data with 300,000 equally spaced points using ArcMap

tools and a point shape file. After that, all of the necessary

rasters were stacked on top of each other, and the points were

utilized as geographical markers to get the pixel value from

all of the raster’s in one table.

The 300,000 sample points made many sample points

inside each MODIS 1 km² pixel. Tree species in the Coastal

islands grow in massive groups of identical trees over large

areas. Having many sample points inside a single MODIS

pixel helped us find tiny temperature changes. The Landsat

data with better resolution, which mainly shows tree types,

helped figure out which species were most common in each

pixel. Several sample points inside a single MODIS pixel

enhanced accuracy and ensured that the temperature data

accurately represented the dominant tree species. This was

because similar tree species tended to cluster together. We

found a strong link between land surface temperature (LST)

and tree species distribution by combining species data from

Landsat withMODIS pixels and looking at how temperatures

changed at different sample points. This method reduced

differences in resolution and ensured that the LST data from

MODIS accurately reflected the patterns of dominant tree

species observed in Landsat. After filtering out specific

blanks and inaccurate data points, the acquired data were

used for statistical analysis to find a link between trees and

the distribution of Temperature in space. Figure 2 shows

how the detailed workflow works.
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Figure 2. Process of extracting data from multiple raster’s for statistical analysis.

3. Results

Bangladesh has four distinct seasons: pre-monsoon

(March to May), monsoon (June to August), post-monsoon

(September to November), and dry (December to February).

These seasons show how the country’s ecology works. The

data and results of this study indicate that the rhythm is being

broken. Data from the last 23 years show that April, which

is the pre-monsoon season, has the highest average Tempera-

ture at 28.31℃. On the other hand, January, which is the dry

season, has the lowest average Temperature at 20.9 ℃. The

monthly average temperature changes that were recorded

over the 23 years are shown in Figure 3b. June, the com-

mencement of the monsoon, has the most variable monthly

Temperature (1.56), which means that temperatures might

change in ways that are hard to predict. This could affect the

phenological and physiological processes of forest species.

On the other hand, October, which follows the mon-

soon, has the least variability (0.41), indicating that the Tem-

perature remains stable for a short time. Figure 3c shows

that this instability is even stronger: both the monsoon and

pre-monsoon seasons have a temperature variability index of

1.075, which shows that the climate is becoming less stable

during months that are important for biological life. The post-

monsoon season, on the other hand, has the least volatility,

with a score of 0.46.

Figure 3. Temperature pattern of the study areas for the past 24 years, (a) yearly average LST, (b) monthly average temperature data,

and (c) average seasonal Temperature.
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The dendrogram in Figure 4 shows a cluster analysis

of the months based on 24 years of average temperature data.

It illustrates the complexity of temperature patterns in the

study areas during different seasons. The research reveals

four main clusters, each representing a distinct seasonal and

transitional period in the area. January and December, which

are both dry-season months, form their own group since their

temperatures are similar. February is different from the other

months in this group since it does not fit with the dry season

months. This shows that there are small changes. March,

April, and May were all in the same group of months be-

fore the monsoon season. This indicates that the monthly

temperature ranges stayed relatively constant during the pre-

monsoon season. September, October, and June made up

another group with similar temperature ranges. This is likely

due to changing weather patterns, as these months typically

mark the start or end of the rainy season. This is why they

are all in the same group. The cluster that includes July and

August, which are usually thought of as monsoon months, is

the most interesting part of the dendrogram. These months

share a temperature cluster with February and November,

which are typically considered dry or post-monsoon months.

The low temperatures during the monsoon are very different

from what is usually expected, and they may be connected

to how rain and humidity change the Temperature. This

outlier cluster suggests that seasonal patterns are becom-

ing less distinct, likely due to the effects of climate change,

which can lead to unusual phenomena such as increased

rainfall and temperature fluctuations. This change in Tem-

perature between seasons shows that the climate is changing

more broadly. Even while seasonal categories are common,

monthly temperature trends in the Coastal islands are more

variable, with one big exception: the pre-monsoon months,

which are relatively stable.

Figure 4. Cluster analysis of the monthly average Temperature of the study areas.

The study area encompasses three sub-districts and two

districts in Bangladesh: Sandwip, Maheshkhali, and Kutub-

dia. In general, Sandwip always has the highest temperatures,

whereas Kutubdia always has the lowest. The pre-monsoon

season is the hottest time of year in all areas, with an aver-

age temperature of 27.35 ℃. The dry season, on the other

hand, has the mildest weather, with an average temperature

of 22.09 ℃. Sandwip has the greatest average Temperature

during the dry season, at 22.59 ℃, while Kutubdia has the

lowest average Temperature, at 21.79 ℃. The temperature

differences stay the same all year long. For example, in the

pre-monsoon season, the temperatures are similar (Sandwip:

27.84 ℃, Maheskhali: 27.11 ℃, Kutubdia: 27.11 ℃). In the

monsoon season, the temperatures are also identical (Sand-

wip: 26.20 ℃, Maheskhali: 25.61 ℃, Kutubdia: 24.87 ℃).

In the post-monsoon season, the temperatures are also sim-

ilar (Sandwip: 24.94 ℃, Maheskhali: 24.33 ℃, Kutubdia:

24.05 ℃).
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The average Temperature in all three regions is 25.15

℃. Sandwip has the highest average at 25.66 ℃, and Kutub-

dia has the lowest at 24.73 ℃.

The eastward temperature gradient shows that the Land

Surface Temperature (LST) is getting lower as you go from

west to east throughout the Coastal islands. Changes in land

cover also affect how much the temperature changes. The

amount and variety of tree species in these areas have a sig-

nificant effect on temperature changes, as shown by the data

in Figure 5. These changes show how climate change could

alter local ecosystems. For example, temperature changes

can change the kind of organisms that live in the Coastal

islands, how quickly they grow back, and the balance of the

ecosystem.

Figure 5. Trend analysis of the Temperature of the study areas: the average seasonal temperature trend.

The authors used the Mann-Kendall test to find steady

temperature changes in the study areas over four different

seasons: dry, pre-monsoon, monsoon, and post-monsoon.

This statistical method is essential for understanding temper-

ature changes, which could be a sign of bigger problems with

the climate. The results of this study are shown in Figure 5,

which shows how temperature patterns change over time.

Before the monsoon season, the Mann-Kendall (MK)

statistic is 1.03, and the p-value is 0.303. This means that

the Temperature has been going up steadily over this time

period. There is an apparent temperature rise (0.035 ℃ each

year according to Sen’s slope), but this shift does not meet

the criterion for being statistically significant. Still, this rise

could be an early symptom of climate change, which can

affect the health of forests and the behaviour of animals in

the area.

During the monsoon season, the MK value is 0.555,

and the p-value is 0.579. This means that the temperature

trend is not statistically significant, but it is still increasing.

The Sen’s slope shows that the Temperature rises by 0.008

℃ per year, which is the least of the four seasons. This slow

rise could be linked to changes in rainfall patterns, which

could disrupt the established monsoon dynamics that have

traditionally controlled water supply and ecological cycles

in the Coastal islands.

After the monsoon season, the MK value is −1.558, and

the p-value is 0.119. This means that the temperature trend is

significantly lowering, although not as much as it was during

the dry season. The measured temperature drop of −0.017℃

per year lacks statistical significance, yet it aligns with cli-

mate models that predict cooling effects during transitional

stages. This cooling could affect how animals move, how

plants grow, and how carbon is stored in the Coastal islands’

ecosystems, making the area more vulnerable to long-term

climatic stress.

During the dry season, the MK statistic of −0.554 and

a p-value of 0.579 show that the Temperature drops slightly

during the dry season, with Sen’s slope showing a yearly

decreasing rate of 0.014 ℃. These little drops, while not

statistically significant, could have an impact on water stress,

animal behaviour, and the health of forests during the dry

months.

The average Temperature over the course of the year

did not go up by a significant amount. The Mann-Kendall

(MK) value of 0.132 and the p-value of 0.895 show that the

average Temperature rose by 0.0054 ℃ each year, although

this change was not statistically significant. These results

show that even while there are clear patterns in how tem-

peratures change, they do not match the requirements for

statistical significance in the dataset that was studied. The
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results of the Mann-Kendall test indicate that the tempera-

ture variations are not significant enough to be definitively

linked to long-term climate changes, despite being detectable

(Figure 5).

The monthly trend analysis (Figure 6) shows that sev-

eral months, such as November, August, July, June, May,

April, and March, have big Temperature rises. These tenden-

cies suggest climate change, but they lack sufficient statisti-

cal significance. May has the highest average temperature

rise, 0.051 ℃ per year, which could mean that the weather is

more stressful during this month. August, on the other hand,

has the smallest rise, just 0.008 ℃. This could be because

more rain makes temperature extremes less extreme. The

months of October, September, February, and January, on

the other hand, tended to get cooler, but this trend was not

statistically significant. December stands out because it has

a statistically significant annual temperature drop of −0.0409

℃ (MK value of −2.614, p-value of 0.008). This could be

due to changes in seasonal cycles or the effects of changing

weather patterns in the area. These numbers illustrate the

complex and far-reaching consequences of climate change

on the region’s monthly temperature patterns.

Figure 6. Trend analysis of the Temperature of the study areas - the average monthly temperature trend.

Different predictive models were used to guess how

temperaturesmight change in the Coastal islands in the future,

with a focus on accuracy and model fit. We used the Ljung-

Box test, PD-MAPE (Predicted Data Mean Absolute Per-

centage Error), and PD-RMSE (Predicted Data Root Mean

Square Error) to see how well the models worked. All of

them were very good at predicting monthly average temper-

atures, with an accuracy rate of 98% (Table 1).

All of the predicted models had very low PD-MAPE

(Predicted Data Mean Absolute Percentage Error) and PD-

RMSE (PredictedData RootMean Square Error). On average,

all of the models were able to predict the monthly average

Temperature with 98% accuracy. Therefore, the best model

for predicting Temperature will depend on how well it fits the

data, the Ljung-Box test, and the residuals. All of the model

significance levels are more than 0.05, which means that they

all support the hypothesis perfectly for making predictions.

The model with the lowest BIC score is considered the

best; however, you cannot simply look at BIC to determine

that a model is the best. So, after looking at the residuals of

all the models, the (1,0,0) (0,1,1) model at the 24th period-

icity level is the only one that does not have any significant

residuals in either autocorrelation or partial correlation. This

means that this model is more accurate than all the other mod-

els that were evaluated. In addition, this model has the lowest

PD-MAPE (1.86) and PD-RMSE (0.56) values while still

having an acceptable level of R-squared, MD-RMSE (Model

data Root Mean Square Error), and MD-MAPE (Model data

Mean Absolute Percentage Error). So, at the 24th period-

icity level, (1,0,1) (0,1,1) is the best model for predicting

the Temperature in the Coastal islands. Figure 7 shows all

of the anticipated and observed data for all of the models.

The temperature trend continues the pattern established in

previous years.
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Table 1. All tested models’ fitness of prediction and model data.

Predicted Data Model Data Ljung-Box Test

Model
Periodicity

Level
PD-MAPE PD-RMSE R-Squared MD-RMSE MD-MAPE

Normalized

BIC
Statistics Sig.

(1,0,1) (0,1,1) 12 2.04 0.66 0.83 0.98 3.05 0.04 24.73 0.05

(1,0,0) (0,1,1) 12 2.04 0.67 0.83 0.98 3.05 0.01 26.08 0.05

(1,0,1) (1,1,1) 24 2 0.59 0.81 1.03 3.19 0.17 21.33 0.09

(1,0,1) (0,1,1) 24 1.86 0.56 0.81 1.03 3.17 0.15 23.89 0.07

Figure 7. Prediction model for forecasting the Coastal islands’ Temperature, (a) predicted and observed data, and (b) residual of (1,0,0)

(0,1,1) at the 24th periodicity level model.

The authors used Landsat images with a resolution of

30 meters to do a detailed assessment of land use and land

cover (LULC) in the Coastal islands. The study primarily

focused on the forest and wetland areas of the region, as

there were no residential or agricultural regions. The kappa

coefficient for classifying images was quite reliable, with

values between 0.90 and 0.95 when compared to historical

data from Google Earth Pro. The study examined only two

main types of land (forests and aquatic bodies), yet it still

identified clear patterns in how land cover changed. Figure

8 shows how much the forest area has shrunk. On average,

it has been shrinking by 26.36 square kilometres every year.

There is a statistically significant trend, with a Mann-Kendall

value of −2.067 and a p-value of 0.0388. This supports the

idea that climate change and human activities are putting

stress on this unique ecosystem.

On the other hand, the size of bodies of water has been

steadily growing at a rate of about 23.44 square kilometres

per year. The Mann-Kendall value of 2.0665 and the p-value

of 0.0388 show that this increase in waterbody coverage is

statistically significant. From 2002 to 2022, the amount of

aquatic bodies grew by 41.61%, while the amount of forest

cover shrank by 2.86% (110.71 square kilometers). The find-

ings show that the Coastal islands are changing, with rising

sea levels and erosion making the region’s ecosystem more

vulnerable. This is likely due to climate change. The LULC

map (Figure 8) shows how land cover has changed a lot in

the last 20 years. This study highlights the importance of

initiating conservation projects and adaptation techniques

to mitigate the adverse effects of both natural and human-

induced stresses on coastal islands.

The study focused on four main tree species in the

Coastal islands: Heritiera fomes, Excoecaria agallocha, Son-

neratia apetala, and Ceriops decandra. The goal was to find

out how the distribution of these species relates to the land

surface temperature (LST) in the area, which is an integral

part of understanding how the climate changes in the area.

Figure 9 shows the distribution of various tree species, giv-

ing a complete picture of how they are spread out across the

Coastal islands. The correlation study revealed a substantial

relationship between the number of trees and Temperature

in different seasons (Table 2). All of the correlation values

were statistically significant at the 0.01 level, which means

that they were essential. The study shows that the correla-

tion coefficients for the dry, pre-monsoon, monsoon, and

post-monsoon seasons are 0.613, 0.460, 0.440, and 0.650,

respectively. Even while some seasons have smaller correla-

tion values, the high statistical significance shows that there

is a strong link between tree distribution and temperature

changes, notably before and during the monsoon. There were
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strong and vital links between the dry and post-monsoon sea-

sons and the land surface temperature in the Coastal islands.

This shows that tree distribution patterns had a significant

effect. There was a strong relationship between the dry and

pre-monsoon seasons (0.777), which got stronger during the

post-monsoon season (0.911). This illustrates how tree dis-

tribution directly impacts temperature patterns during these

critical periods.

Figure 8. Land use and land cover (LULC) change over 24 years in the Coastal islands.

Figure 9. Negative feedback loop caused by extreme temperature fluctuation.

Table 2. Correlation between seasonal Temperature and tree distribution.

Correlations

Tree Dry Pre-Monsoon Monsoon Post-Monsoon

Tree 1

Dry 0.613** 1

Pre-monsoon 0.460** 0.777** 1

Monsoon 0.440** 0.567** 0.528** 1

Post-monsoon 0.650** 0.911** 0.628** 0.660** 1

** Correlation is significant at the 0.01 level (2-tailed).
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The results show how important plants are in keeping

the Temperature in the Coastal islands from changing too

much from season to season. The existence and distribution

of some tree species have a significant impact on the local

climate, especially when it comes to keeping temperatures

from getting too hot or too cold. Because of this, it is essen-

tial to protect these species to maintain the area’s balance

and help regulate the Temperature.

Further study showed that there were significant differ-

ences in how the Temperature was spread out between areas

with different types of trees. The highest LST is in Sandwip

(annual average 25.66 ℃), followed by Maheskhali (annual

average 25.05℃), and the lowest is in Kutubdia (annual aver-

age 24.73 ℃). This is true for all seasons. Ceriops decandra

(Goran), primarily found in Sandwip, has the highest land

surface temperature (LST) with a yearly average of 26.15 ℃.

This made it the warmest place all year. The Exocoecaria

agallocha (Gewa) areas had the second-highest Tempera-

ture, with an average of 25.85 ℃ each year (Figure 10).

The average annual Temperature of the land surface in areas

with Sonneratia apetala (Keora) was somewhat lower, at

25.79 ℃. The areas with the most Heritiera fomes (Sundari)

trees, which make up most of the Sundarban, had the lowest

average annual Temperature of 25.30 ℃ (Figure 10). The

trend stays the same across many seasons. The Sundari tree

zones always have the lowest average Temperature during

the dry season, which is 21.88 ℃. This means that Heritiera

fomes has a significant impact on temperature control during

the warmer months, as it is so prevalent in the area. The

results confirm the idea that tree species, especially Ceriops

decandra and Exocoecaria agallocha, which are common in

the warmer parts of Sandwip, make the land surface temper-

ature higher. On the other hand, Heritiera fomes, which is

common in the cooler parts of Kutubdia, helps keep the Tem-

perature down by acting as a natural temperature regulator.

This demonstrates the importance of maintaining a diverse

range of tree species in coastal islands to help stabilize the

Temperature and the environment as a whole.

Figure 10. Land surface temperature (LST) of the Coastal islands based on tree species.
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4. Discussion

This study discusses the intricate climate-vegetation

feedback mechanisms influencing the Coastal islands ecosys-

tem, wherein increasing and variable temperatures interact

with alterations in land cover, hydrological stress, and species

redistribution. Over the past 24 years, the Coastal islands

have undergone not only a warming trend but also a ther-

mal reconfiguration; seasonal extremes have intensified, and

established ecological balances are being disrupted.

Long-term Land Surface Temperature (LST) data from

the present study demonstrate considerable annual variabil-

ity, with the minimum values observed in 2000 and 2022.

From 2000 to 2009, a consistent increase in Temperature is

noted, succeeded by irregular fluctuations from 2010 to 2015

and a period of relative cooling until 2022. These trends cor-

respond with the established effects of the El Niño–Southern

Oscillation (ENSO), which affects the Temperature of both

LST and SST [57]. Furthermore, the Indian Ocean Dipole

(IOD) modifies these thermal dynamics and influences the

Bay of Bengal cyclone activity [58]. Temporal temperature

analysis of the present study reveals significant fluctuations

within the Coastal islands region, particularly on a monthly

and seasonal basis during the pre-monsoon and monsoon

periods. The ecological significance of these fluctuations is

pronounced, particularly during the pre-monsoon and mon-

soon phases. These rapid intra-seasonal shifts alter the ther-

mal niche of specific zonal clusters, making mangroves more

vulnerable to environmental extremes. Moreover, shifts in

monsoon circulation patterns exacerbate thermal instability,

leading to erratic rainfall and evaporation cycles [25]. These

findings are consistent with previous zonal and seasonal anal-

yses, which confirm that the Coastal islands are experiencing

accelerated climatic disequilibrium [21,26].

The trend analysis reveals an asymmetric seasonal pat-

tern in LST changes. Pre-monsoon and monsoon temper-

atures are increasing, while post-monsoon and dry season

temperatures are decreasing (Figure 5). The post-monsoon

and dry seasons exhibited similar rates of temperature de-

cline; however, the rising trend in the pre-monsoon season

is twice the rate of decline, signifying an increasing seasonal

temperature differential in a monthly scenario, a significant

declining tendency was discovered for December (−0.041

℃/year) and minor declines in October, September, January,

and February. In contrast, all other months exhibit warm-

ing trends. These patterns reflect global SST warming along

71.6% of the world’s coastlines [1], a trend also observed along

the Bangladeshi coast [10,26]. An increasing trend of SST was

also observed on the Bangladesh coast, where SSTs have in-

creased by 0.10–0.16 ℃ per decade (daytime) and 0.18–0.27

℃ per decade (nighttime) [24]. Kelvin wave activity from

the Ganges-Brahmaputra inflow during the southwest mon-

soon raises SSTs by 0.5–1 ℃ along the northeastern Indian

coast [23]. Local LST studies confirm this asymmetric warm-

ing, where one study found that January LST dropped by

~1.85 ℃ over several decades, and another reported a 0.005

℃annual winter cooling trend [10,12]. These concerning trends

are also found in this study analysis. The conflicting seasonal

trends exacerbate thermal amplitude, heightening ecologi-

cal stress and disrupting mangrove metabolic rhythms [33], a

finding further validated by our study.

Land cover changes aggravate the climatic effects. Sea-

level rise, sediment dynamics, and fluvial processes have

all contributed to coastal erosion, which has dramatically al-

tered the region’s geomorphology. Between 1991 and 2021,

800.72 sq. km of land was lost [59], while 129 sq. km of forest

cover vanished between 2000 and 2023 due to coastal re-

treat [12], which rate aligns with our research findings within

the coastal area. This deforestation disrupts the local energy

balance. Whereas dense forest once provided evapotranspi-

rative cooling, newly exposed water bodies now absorb and

re-radiate solar energy, affecting surface thermal dynamics.

Water bodies have higher thermal inertia than terrestrial sur-

faces. In the dry season, they function as heat sinks, absorb-

ing excess heat throughout the day and releasing it at night

to mitigate temperature extremes [22]. During the dry sea-

son, when water is scarce, forests with intact vegetation can

maintain higher moisture levels through their root systems,

retaining water in the soil. However, due to the low moisture

content during the dry season, trees tend to have a higher

evapotranspiration rate, which further cools the surrounding

environment [28].

Furthermore, the loss of canopy cover during the dry

season removes the shade offered by trees, exposing the land

surface directly to solar radiation. This enhances solar energy

absorption, which causes higher surface temperatures in the

summer [28]. So, land erosion has an impact on the LST of

coastal islands, and a decrease in forest area contributes to

significant temperature variations, causing them to be in a
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negative feedback loop (Figure 9).

The Coastal islands have not only become warmer over

the past 24 years, but they have also changed how they

heat up. Seasonal extremes have gotten worse, and estab-

lished ecological balances are being thrown off. Long-term

Land Surface Temperature (LST) data (Figure 3a) show that

temperatures change significantly from year to year, with

the lowest recorded in 2000 and 2022. There was a steady

rise in Temperature from 2000 to 2009, followed by unpre-

dictable changes from 2010 to 2015 and a period of relative

cooling until 2022. These patterns are in line with what

we know about the El Niño–Southern Oscillation (ENSO),

which changes the Temperature of both LST and SST [57].

The Indian Ocean Dipole (IOD) also changes these thermal

dynamics and affects the activity of cyclones in the Bay of

Bengal [58]. Additionally, changes in monsoon circulation

patterns exacerbate thermal instability, resulting in unpre-

dictable cycles of rain and evaporation [25]. These results are

in line with other zonal and seasonal studies that show the

Coastal islands are experiencing faster climate change [21,26].

These temperature changes have significant effects on

the environment. Studies show that even a 2 ℃ rise in dry

mangrove areas lowers production, biomass, and survival,

and also changes the types of species and their phenological

rhythms [33]. When temperatures rise too high and there is not

enough freshwater flowing in, mangrove systems become

even more stressed, leading to biodiversity loss and changes

in dominance [29].

In the Coastal islands, higher vapor pressure deficits

hurt photosynthesis and water productivity, which lowers the

health and ability to grow back of mangroves [33].

The trend analysis reveals that LST variations occur

unevenly throughout the seasons. Temperatures are rising

before and during the monsoon, but falling after the monsoon

and throughout the dry season. The Temperature dropped

at the same pace during the post-monsoon and dry seasons.

However, the Temperature rose at twice the rate during the

pre-monsoon season, which means that the temperature dif-

ference between the seasons is getting bigger. In a monthly

scenario, there was a significant drop in Temperature for

December (−0.041 ℃/year) and small drops for October,

September, January, and February. All other months, on

the other hand, show warmer trends. These trends show

that the sea surface temperature (SST) is rising along 71.6%

of the world’s coastlines [1]. This is also happening along

the coast of Bangladesh [10,26]. On the coast of Bangladesh,

SSTs have likewise been rising, by 0.10–0.16 ℃ per decade

during the day and 0.18–0.27℃ per decade at night [24]. Dur-

ing the southwest monsoon, the Ganges-Brahmaputra influx

causes Kelvin waves to move, which boosts SSTs over the

northeastern Indian coast by 0.5–1 ℃ [23]. This study also

shows these worrying patterns. The different seasonal trends

make the thermal amplitude worse, which puts more stress

on the ecosystem and throws off the metabolic rhythms of

mangroves, as their study also found [59].

Predictive modeling adds a new layer to this compli-

cated scenario. LASSO, MSTL, ALLSSA, and wavelet

analysis are all advanced methods that work well with cli-

mate datasets that have a lot of dimensions and variables.

SARIMA is the best model for forecasting univariate LST

time series [60,61]. It properly reflects how trends and sea-

sons change, and it can predict with about 98% accuracy.

SARIMA’s forecasts indicate that seasonal LST divergence

will continue and intensify in the future, leading to increased

thermal stress. At this rate, the difference in Temperature

between seasons will keep getting bigger.

Changes in land cover make the effects of climate

change worse. The region’s geomorphology has undergone

significant changes due to coastal erosion, which is caused

by rising sea levels, altered sediment, and river processes.

Between 1991 and 2021, 800.72 square km of land were lost,

including 129 square km of forest cover between 2000 and

2023 due to shore retreat [22]. This rate of land loss aligns

with our findings in the coastal area [62]. The cutting down

of trees disrupts the local energy balance. In the past, dense

forests cooled things down by evaporating and transpiring.

Now, freshly exposed water bodies absorb and re-radiate

solar radiation, which changes how heat moves around on

the surface. Water bodies have more thermal inertia than

land surfaces. During the dry season, they act as heat sinks,

taking in more heat during the day and releasing it at night to

keep temperatures from being too hot or too cold [22]. Forests

with healthy vegetation can retain more moisture in the soil

during the dry season, when water is hard to come by. This

is because the trees’ roots hold onto water, but because the

air is so dry, trees tend to lose more water through evapotran-

spiration, which cools the area even more [28]. Also, when

the canopy cover goes away during the dry season, the trees’
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shade goes away, leaving the ground directly exposed to the

sun. This makes it easier for solar energy to be absorbed,

which makes the surface temperatures greater in the sum-

mer [28]. Land erosion affects the Coastal islands’ LST, and

a loss of forest area causes significant Temperature, putting

them in a negative feedback loop.

These changes in the weather and the shape of the land

are changing where mangrove species live. According to our

analysis, the continuous moderate to strong El Niño presence

from 2002 to 2016, which influenced the global temperature

rise, was followed by a weak El Niño that lasted until 2022.

This period correlates with the LST of Coastal islands [60,62].

While the spread of C. decandra is associated with the higher

LST, better suited to thermal stress, has proliferated in the

warmer areas of Maheskhali and Sandwip, with Kutubdia

being the only exception [35]. On the other hand, S. During

this time, apetala grew in all areas. E. In Maheskhali and

Kutubdia, C. agallocha was on the rise, but not in the hotter

regions of Sandwip [35]. At the current rate, temperature rises

will change species distribution and composition, with vary-

ing effects on productivity and reproductive phenology [31],

which is consistent with the findings of this study. As LST

rise persists, thermally sensitive species such as H. fomes

may experience local extinction (Suitable habitat will de-

cline by 45% by 2100). In contrast, heat-tolerant species like

C. decandra are likely to expand their ecological niche [61].

Comparable poleward transitions have been noted in the Gulf

of Mexico, where mangroves are supplanting temperate salt

marshes [32]. Nevertheless, the Coastal islands lack the spatial

continuity necessary for such migration. The expansion of

mangroves to the north is physically limited by agricultural

land and fragmented aquatic areas, indicating a forthcoming

reduction in total forest area.

Islam et al. [63] stated that temperature rise is a con-

cern for future agriculture in different regions of the globe.

The statistical downscaling climate model (SimCLIM) was

used for downscaling and to ensemble temperature pro-

jections (Tmax and Tmin) for the near (2021–2060) and

far (2071–2100) periods compared to the base period

(1986–2005). They found that the northern and northwest-

ern parts of the country would experience the highest rise

in maximum temperature (Tmax) and minimum temperature

(Tmin), which have traditionally been exposed to tempera-

ture extremes. In contrast, the southeastern coastal region

of Bangladesh would experience the least rise in Tempera-

ture. A higher increase in Tmin than Tmax was detected for all

timescales, signifying a future decrease in the diurnal tem-

perature range (DTR). This study suggests that the Coastal

islands are ensnared in a detrimental climatic negative feed-

back loop. Increasing pre-monsoon and monsoon temper-

atures, in contrast to cooling during the post-monsoon and

dry seasons, are disrupting the region’s ecological patterns.

These modifications diminish photosynthetic efficiency, dis-

rupt species interactions, and weaken forest resilience. Land

degradation and species displacement exacerbate environ-

mental susceptibility. In the absence of targeted mitigation,

these trends may lead to irreversible harm to the world’s

largest mangrove ecosystem.

Despite these ongoing efforts, there is still room for

improvement, particularly in aligning climate policy with the

biophysical realities of a rapidly warming Coastal islands.

Adaptive zoning, modeled after dynamic frameworks such

as Australia’s Great Barrier Reef Marine Park, could use

thermal mapping to inform seasonal restrictions on tourism

and extraction, thereby protecting biodiversity hotspots [64,65].

Infrastructure policy should shift toward ecosystem-based

engineering, replacing polders and embankments with man-

grove bioshields and sediment-based restoration to mitigate

the hydrological disruption caused by rigid development [66].

Furthermore, predictive tools validated in this study, such

as SARIMA, should be integrated into national early warn-

ing systems, as demonstrated by examples from Vietnam’s

Mekong Delta, where machine learning forecasts support

real-time agricultural planning [67]. Finally, policies should

emphasize local knowledge and participation. Nepal’s buffer

zone forestry model exemplifies how decentralized gover-

nance can integrate community priorities with conservation

objectives [67]. Without such bottom-up participation, climate

resilience efforts risk becoming technocratic and unsustain-

able. A future-proof coastal islands policy must combine

ecological science, engineering innovation, and grassroots

stewardship before thermal feedback depletes the system’s

regenerative potential.

5. Conclusions

The Coastal island’s mangrove forest is recognized

as a biodiversity hotspot and serves as a vital provider of
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ecosystem services. However, according to an analysis of

data spanning 24 years, it is evident that the ecological equi-

librium of the coastal islands is under jeopardy, notably in

terms of LST dynamics. This study provides a thorough

assessment of the complex trend analysis of temperature

fluctuations and their correlation with tree species on coastal

islands. Notably, during the pre-monsoon and monsoon sea-

sons, the Coastal islands region faces significant temperature

variability, along with a rising temperature trend. In contrast,

during the Dry and post-monsoon seasons, the Temperature

decreases, indicating increased ecological stress and poten-

tial disturbances to species acclimated to specific temperature

niches. Cluster analysis, which delves deeper into temporal

patterns, demonstrates the non-linear nature of LST varia-

tions between months. Between 2002 and 2022, water body

area increased by 41.61% while forest cover decreased by

2.86%, highlighting the extent of land cover change and its

implications for temperature dynamics. Predictive modeling

projections underscore the persistence of current temperature

trends, indicating a future with wider temperature differen-

tials between seasons. This forecast insight underscores the

importance of taking early actions to reduce temperature

extremes and protect the Coastal islands’ ecological integrity.

The relationship between tree canopy and LST distribution

demonstrates the critical function that vegetation plays in

modifying microclimates throughout the region. This growth

pattern, along with the rising LST from 2000 to 2015, has

been correlated with El Niño and La Niña. From 2000 to

2015, El Niño influenced global weather patterns and con-

tributed to rising temperatures. Its impact on the LST of

Coastal islands is also visible. As climate change is pre-

dicted to result in temperatures in the future, this may lead to

a further increase in the population of C. decandra on coastal

islands, while H. Fomes may decrease as they prefer lower

LST. ULC analysis corroborates ecological degradation, in-

dicating accelerated deforestation and the encroachment of

aquatic systems, thereby reinforcing adverse thermal feed-

back loops.

Conservation initiatives must consequently extend be-

yond conventional forest preservation. Adaptive strategies,

including the promotion of thermally resilient mangrove

species, the integration of land-use and land-cover monitor-

ing into early warning systems, and the revision of climate

action policies to align with microclimatic conditions, are

crucial. Without prompt intervention, the Coastal islands

may shift from a protective barrier against climate extremes

to a casualty of their declining resilience. Future manage-

ment must synchronize scientific research, community en-

gagement, and policy to ensure the ecological integrity of

this globally significant mangrove forest. In essence, this

study underscores the urgent need for proactive measures to

mitigate temperature extremes and preserve the ecological

integrity of the coastal islands. With each passing year, the

stakes rise, necessitating swift action to protect this priceless

natural heritage.
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