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ABSTRACT

Singular Spectrum Analysis (SSA) was applied to daily time series of carbon monoxide (CO) and ozone (Os) observed
between 2000 and 2018 in Campo Grande, MS, Brazil, to identify seasonal patterns, long-term variability, and evaluating the
predictive capacity of the technique. The methodology involved the decomposition of the series into structural components
and subsequent prediction using the Linear Recurrence Formula (LRF). The analysis revealed strong and persistent annual
seasonality for both pollutants, particularly for CO, whose maximum concentrations occur between August and October,
coinciding with the dry season and intensified biomass-burning activity. SSA proved effective in extracting low-frequency
components, including trend and seasonal cycles, providing a clear representation of the dominant temporal structure of
both pollutants. Forecasting results indicated that SSA-LRF successfully reproduced the main seasonal behavior of Os,
while daily prediction skill remained limited, as reflected by negative R? values during the validation period. For CO, the
highly irregular and episodic nature of fire-related peaks resulted in larger forecast errors and reduced predictive skill.
These results highlight that univariate SSA is more suitable for reconstructing and predicting low-frequency pollutant

*CORRESPONDING AUTHOR:

Raquel Soares Casaes Nunes, Saude-Decania Science Center, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; Email:
quelcasaes@micro.uftj.br

ARTICLE INFO

Received: 1 November 2025 | Revised:17 December 2025 | Accepted: 25 December 2025 | Published Online: 2 January 2026
DOI: https://doi.org/10.30564/jasr.v9i1.12273

CITATION

de Souza, A., Nunes, R.S.C., de Oliveira Junior, J.F., et al., 2026. Seasonal Patterns and Forecasting of CO and Ozone Using Singular Spectrum
Analysis in a Tropical Urban Environment. Journal of Atmospheric Science Research. 9(1): 1-15. DOI: https://doi.org/10.30564/jasr.v9i1.12273

COPYRIGHT

Copyright © 2026 by the author(s). Published by Bilingual Publishing Group. This is an open access article under the Creative Commons Attribu-
tion-NonCommercial 4.0 International (CC BY-NC 4.0) License (https://creativecommons.org/licenses/by-nc/4.0/).


https://orcid.org/0000-0001-8168-1482
https://orcid.org/0000-0002-5250-7466
https://orcid.org/0000-0002-5092-766X
https://orcid.org/0000-0003-4357-260X
https://orcid.org/0009-0000-1449-7597
https://orcid.org/0000-0002-4391-8167

Journal of Atmospheric Science Research | Volume 09 | Issue 01 | January 2026

dynamics than short-term daily variability. The findings demonstrate that SSA is a robust exploratory and decomposition

tool for air-quality time series in tropical environments, particularly for identifying seasonal and structural patterns. For

operational forecasting of pollutants with strong volatility, such as CO, hybrid approaches combining SSA with statistical

or machine-learning models are recommended to improve predictive performance.

Keywords: Singular Spectrum Analysis; Air Pollution; CO; Os; Seasonal Forecast

1. Introduction

Ozone (0Os) and carbon monoxide (CO) are key atmo-
spheric pollutants with significant implications for urban
air quality, climate dynamics, and human health. In the tro-
posphere, Os is produced through photochemical reactions
involving precursors such as CO, NOy, and volatile organic
compounds, modulated by solar radiation and meteorologi-
cal conditions!!=*). In tropical South America, the temporal
behavior of CO and Os is strongly influenced by the sea-
sonal contrast between wet and dry periods, biomass-burning
emissions, and regional atmospheric circulation, resulting in
well-defined annual cycles and notable interannual variabil-
ity[®-191 In particular, dry-season conditions favor reduced
cloud cover, enhanced solar radiation, and lower planetary
boundary layer heights, which jointly intensify pollutant ac-
cumulation and photochemical activity.

Environmental time-series analysis has increasingly
adopted non-parametric approaches capable of extracting
trends, oscillations, and noise from nonlinear or noisy
datasets. Among these techniques, Singular Spectrum Anal-
ysis (SSA) stands out for its ability to decompose short and
complex time series without requiring strong statistical as-

sumptions =131,

SSA has been widely applied in clima-
tology, hydrology, and geophysics for detecting periodic
modes, identifying regime shifts, and improving predictabil-
ity[16-201 "Its appeal lies in the capacity to isolate physically
interpretable components—such as trend, seasonal cycles,
and intra-seasonal oscillations—while remaining robust to
noise and nonstationarity. However, despite these advan-
tages, SSA remains underexplored in the analysis of long-
term pollutant time series in tropical environments, where at-
mospheric variability is strongly shaped by biomass-burning
events and episodic emissions.

A critical yet often overlooked aspect of SSA is the
choice of window length (L), which directly affects compo-
nent separability, spectral resolution, and forecasting per-

formance. Although several studies using SSA or SSA—
hybrid models—such as SSA—ARIMA, SSA-LSTM, and
SSA-GARCH—have demonstrated promising results in en-
vironmental forecasting [?°22!, most adopt fixed or heuristic
values for L, with limited assessment of how window-length
selection influences decomposition quality or predictive ac-
curacy. This methodological gap is particularly relevant
for pollutant time series affected by both photochemical
processes and irregular fire-driven emissions, as commonly
observed in tropical regions, where multiple temporal scales
coexist.

Hybrid modeling frameworks integrating SSA with
classical statistical or machine-learning approaches have ad-
vanced pollutant forecasting, especially for series exhibiting
strong seasonality and nonlinear behavior!?-22]. Neverthe-
less, the effectiveness of such hybrid models remains closely
linked to the internal structure of SSA decomposition, includ-
ing the ability to properly separate low-frequency compo-
nents from high-frequency variability. Consequently, under-
standing how window-length sensitivity alters component
identification is essential for improving reconstruction and
prediction, particularly when dealing with pollutants charac-
terized by multiscale variability and episodic extremes.

In this context, the present study applies SSA to daily
CO and Os concentrations measured in Campo Grande,
Brazil, from 2000 to 2018. Campo Grande is located in
central Brazil and is strongly influenced by seasonal biomass
burning, regional transport of smoke plumes, and marked
wet—dry climatic contrasts. These characteristics make it an
ideal case study for assessing the performance of SSA in a
tropical urban environment affected by both regular seasonal
forcing and irregular emission events. The study pursues

two main objectives:

(1) To identify dominant temporal patterns—including sea-
sonal cycles, synoptic-scale oscillations, and long-term

variability; and
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(i) To evaluate the forecasting performance of SSA us-
ing the Linear Recurrence Formula (LRF), comple-
mented by hybrid SSA—ARIMA/SARIMA models un-

der a rolling-origin validation scheme.

Despite the growing body of research on air-pollution
forecasting using advanced statistical and machine-learning
techniques, comparatively fewer studies have emphasized
the importance of understanding the intrinsic temporal struc-
ture of pollutant time series prior to model implementation.
In many cases, predictive performance is assessed without
a detailed evaluation of scale-dependent variability, compo-
nent separability, or the physical interpretability of extracted
modes. This limitation is particularly evident in tropical
environments, where pollutant dynamics are shaped by the
superposition of regular seasonal forcing and irregular, event-
driven emissions associated with biomass burning. Under
such conditions, methodological choices—such as the selec-
tion of SSA window length and the criteria for component
grouping—can substantially influence both reconstruction
quality and forecasting outcomes. By explicitly address-
ing these aspects, the present study contributes not only to
pollutant-specific analysis but also to broader methodologi-
cal discussions in environmental time-series research. The
emphasis on transparency, scale awareness, and physical in-
terpretability responds directly to recent calls for more robust
and reproducible statistical frameworks in air-quality stud-
ies, especially in regions characterized by strong climatic
seasonality and emission intermittency.

The novelty of this work lies in its systematic evalua-
tion of window-length sensitivity, quantitative assessment

[23.24] "and objec-

of separability using w-correlation metrics
tive criteria for principal component selection. By applying
SSA to pollutant time series strongly influenced by biomass-
burning activity, this study advances the methodological
understanding of SSA in environmental sciences and pro-
vides new insights into the multiscale atmospheric behavior

of CO and Os in a tropical urban environment.

2. Methodology and Data
2.1. Study Area and Data

Daily concentrations of ozone (Os, ppb) and carbon
monoxide (CO, ppb) for 2000-2018 were obtained from

the Air Quality Information System (SISAM/INPE), main-
tained by the National Institute for Space Research (INPE).
Campo Grande, located in central Brazil, is characterized
by a tropical climate with a marked wet—dry seasonal cycle
and recurrent biomass-burning activity, which strongly influ-
ences pollutant levels >4, Data was quality-controlled and
aggregated to daily means. Stationarity was evaluated using
the Augmented Dickey—Fuller test, confirming stochastic
seasonality and long-term variability appropriate for non-

parametric decomposition.

2.2. Singular Spectrum Analysis (SSA)

SSA was applied following the classical four-step frame-

work documented in foundational SSA literature [>-2-14-16]

1. Embedding:
The original series is mapped into a trajectory matrix
constructed using window length (L)®!.

2. Decomposition:
Singular value decomposition (SVD) is applied to ob-
tain eigenvalues, eigenvectors (EOFs), and principal
components (PCs) 7101,

3. Grouping:
Components are grouped based on spectral similar-
ity, relative contribution to variance, and w-correlation
structure 2323,

4. Reconstruction:
Component groups (trend, seasonal, high-frequency
noise) are recombined using diagonal averaging to re-

cover reconstructed time series®10],

SSA is particularly suitable for nonlinear, noisy en-
vironmental series because it does not require parametric

assumptions about pollutant dynamics[!!13-161,

2.3. Window-Length Selection

Window length (L) strongly influences spectral resolu-
tion and component separability in SSA, as emphasized by
Golyandina and Zvonarev(?3], Sun and Li[?*. We evaluated
candidate values L = 6, 12, 60, 114 using:

*  reconstruction error (RMSE);
* mean w-correlation between reconstructed compo-

nents [241;
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*  consistency with dominant periodicities identified via
periodogram.
+  interpretability of extracted modes**!.
Short windows (L = 6-12) captured seasonal cycles but
exhibited stronger mode mixing. The long window L= 114 =
N/2, frequently recommended for maximizing separability in

424231 provided the lowest reconstruction

SSA applicationsl
error and clearest distinction between trend, seasonal, and
stochastic components. Thus, L = 114 was used for the main

decomposition and forecasting.

2.4. Selection of SSA Components

Principal components were selected based on:

e cumulative explained variance;

+  eigenvalue decay (scree plot)7~10l;

»  spectral interpretation of PCs (annual, semiannual, intra-
seasonal modes);

*  w-correlation < 0.30, indicating noise-dominated behav-

ior[®,

For both pollutants, PC1 and PC2 accounted for more
than 90% of total variance and corresponded to interpretable
physical modes (trend + annual cycle). Higher PCs repre-

sented noise or irregular fire-driven fluctuations.

2.5. Forecasting Using SSA-LRF and Hybrid
Models

Forecasts were generated using the Linear Recurrence
Formula (LRF) derived from SSA, following the forecasting
framework described by Golyandina and Shapoval('*l. To
improve predictive accuracy—especially for pollutants with
irregular or nonlinear variability—we adopted hybrid model-
ing extensions inspired by recent environmental forecasting

studies [20-22]

*  SSA-ARIMA for long-term components;
*  SSA-SARIMA for seasonal components;
*  ARMA modeling of high-frequency residuals.

These hybrid models exploit SSA’s decomposition abil-
ity while enabling the capture of short-term or heteroscedas-
tic dynamics that SSA-LRF alone cannot represent.

2.6. Validation Strategy

Forecast performance was assessed using a rolling-
origin cross-validation approach commonly recommended

for environmental time-series prediction [29-26:27],

¢  Training windows expanded progressively (e.g.,
20002011 — test 2012-2013; ... — 20002015 —
test 2016-2018).

The following metrics were computed:
*  RMSE, MAE, MAPE, and R

This validation scheme provides a robust assessment of
forecasting skill in series affected by both seasonal structure

and episodic events such as fire emissions.

2.7. Methodological Contribution

The methodological contributions of this study include:

* A systematic evaluation of window-length sensitivity,
rarely addressed in air-pollution SSA studies;

+  Quantitative separability assessment via w-correlation *41;

* Aclear, objective framework for principal component
selection;

* Integration of SSA with ARIMA/SARIMA hybrid struc-
tures, consistent with recent advances in environmental
forecasting 20221,

*  Application of SSA to pollutant time series strongly in-
fluenced by fire activity—a sparse context in current
SSA literature.

3. Results
3.1. Seasonal Behavior of CO and Os

Figure 1 presents the monthly boxplots of daily CO and
Os concentrations for the period 2000-2018, providing an
overview of the seasonal distribution, central tendency, and
dispersion of both pollutants. The boxplots clearly highlight
the pronounced dry-season enhancement of CO concentra-
tions between August and October, characterized by high
medians, wide interquartile ranges, and numerous extreme
outliers associated with biomass-burning events. In contrast,

05 exhibits a more regular and symmetric seasonal pattern,
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with lower variability and a gradual increase toward the late

dry season, reflecting the dominant role of photochemical

production under enhanced solar radiation and reduced cloud

cover.
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Figure 1. Monthly boxplots of CO and Os concentrations (2000-2018), highlighting higher values during the dry season.

Both pollutants exhibit a clear seasonal cycle. CO
peaks sharply between August and October, showing wide
dispersion and numerous outliers associated with biomass-
burning episodes and reduced dispersion during the dry sea-
son. Os presents a smoother annual pattern, with minima
from January to April and gradual increases toward late win-
ter due to enhanced photochemical activity.

Figure 2 shows the monthly mean concentrations of CO

and Os together with their associated variability (+1 standard

deviation), reinforcing the seasonal contrasts identified in the
boxplot analysis. The results indicate a pronounced seasonal
amplitude for CO, with substantially higher mean values dur-
ing the dry season, reflecting the cumulative effect of biomass-
burning emissions and reduced atmospheric dispersion. In
contrast, Os exhibits a smoother and more stable annual cy-
cle, with moderate variability and a gradual increase toward
the late dry season, consistent with enhanced photochemical

production under favorable meteorological conditions.
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Figure 2. Monthly mean CO and Os concentrations (= 1 SD), illustrating seasonal contrasts between wet and dry periods.
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CO shows a strong seasonal amplitude (= 82.6 ppb),

while O; displays a moderate but consistent annual modula-

tion (= 7.1 ppb). These seasonal signals are consistent with

meteorological forcing and dry-season fire activity.

3.2. SSA Window-Length Assessment

Figure 3 compares the SSA eigenvalue spectra ob-

tained using different window lengths (L =6, 12, and 114),

illustrating the strong dependence of component separabil-
ity on the choice of L. For short windows (L = 6 and 12),
the eigenvalues decay gradually, indicating substantial mode
mixing and limited spectral resolution. In contrast, the longer
window (L = 114) exhibits a clear separation between the
leading components and the remaining eigenvalues, reflect-
ing improved discrimination between trend, seasonal, and
stochastic variability and supporting its selection for the sub-

sequent SSA decomposition and forecasting analyses.
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Figure 3. SSA eigenvalues (first 20 components) for L = 6, 12, and 114, showing improved separability with longer windows.

Short windows (L = 6, 12) capture basic seasonality
but exhibit component mixing. The long window L = 114
(= N/2) achieves the best separability and lowest reconstruc-
tion error, confirming its suitability for extracting multiscale

structure.

3.3. Spectral Structure of CO and Os

Figure 4 presents the periodograms of the CO and Os
time series for the 2000-2018 period, highlighting the domi-
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nant spectral features that govern their temporal variability.
Both pollutants exhibit a pronounced annual peak, confirm-
ing the strong seasonal forcing associated with the wet—dry
climatic cycle. Secondary spectral peaks at semiannual and
intra-seasonal frequencies are also observed, particularly for
CO, indicating the influence of synoptic-scale processes and
episodic biomass-burning activity. The higher overall spec-
tral power of CO reflects its greater variability compared to
Os, which is primarily controlled by smoother photochemical
and meteorological processes.

— CO
— 05

0.000

0.025

0.050

0.075

Frequency (cycles per day)

0.100

0.1I25

0.150

O.1I75

0.200

Figure 4. Periodogram of CO and Os (2000-2018) showing dominant annual and semiannual frequencies.
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Both series show strong annual peaks near 0.083 cy-
cles/month, with additional semiannual components. CO
exhibits higher overall power, consistent with greater vari-
ability from fires and meteorology.

3.4. SSA Eigenvalues and Component Interpre-
tation

Figure 5 displays the ordered SSA eigenvalues ob-
tained with the selected window length (L = 114), illustrating

the concentration of variance in the leading components of

lel0

2.0f

151

Eigenvalue

0.5}

-

0.0F

both pollutant time series. The sharp decay after the first few
eigenvalues indicates that most of the signal energy is cap-
tured by a small number of components, primarily associated
with the dominant annual cycle and low-frequency variabil-
ity. Subsequent eigenvalues exhibit a flatter distribution,
suggesting noise-dominated or irregular components linked
to short-term fluctuations and episodic emission events.
PC1 and PC2 explain most of the variance and cor-
respond to the annual cycle and intra-seasonal variability.

Higher PCs represent irregular, noise-like fluctuations.

0 10 20

30 0 50

Component

Figure 5. Ordered SSA eigenvalues (L = 114), showing concentration of variance in the first components.

3.5. Reconstruction of Dominant Components

Figure 6 compares the original CO and Os time series
with their SSA-reconstructed counterparts obtained using the
leading components (PC1-PC2). The reconstruction effec-
tively preserves the dominant seasonal structure of both pol-
lutants while attenuating high-frequency variability. For CO,

20001
1750
1500
12501

1000

7501

CO concentration (ppb)

500

extreme short-term peaks associated with biomass-burning
events are partially smoothed, although their seasonal timing
remains clearly identifiable. In contrast, the reconstructed
Os series closely follows the observed signal, reflecting the
stronger influence of regular photochemical and meteorolog-

ical forcing on its temporal variability.

—— Observed CO
—— SSA Reconstruction (PC1-PC2)

(
| ANy \
‘ \

2000 2002 2004 2006 2008

2010 2012 2014 2016 2018

Date

Figure 6. Original and SSA-reconstructed CO and Os series using PC1-PC2.
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Reconstruction preserves the main seasonal cycle while
smoothing high-frequency variability. For CO, extreme fire-
driven peaks are attenuated but their seasonal timing remains.
For Os, the reconstruction closely follows observations.

3.6. Daily Variability and Multiscale Patterns

Figure 7 illustrates the daily CO and Os concentrations
over the 2000-2018 period, emphasizing the contrasting tem-

2000
1500

1000

Concentration (ppb)

i

e

poral behavior of the two pollutants at short time scales. CO
exhibits pronounced day-to-day variability, with abrupt and
sporadic peaks associated with biomass-burning episodes, at-
mospheric stagnation, and regional transport. In contrast, Os
displays a comparatively smoother temporal evolution, with
gradual fluctuations superimposed on its seasonal cycle, re-
flecting its stronger dependence on photochemical processes
and synoptic meteorological conditions.
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Figure 7. Daily CO and Os concentrations (2000-2018), showing episodic CO peaks and smoother Os behavior.

CO presents abrupt peaks often exceeding 2000 ppb,
reflecting fire events and stagnation episodes. Os varies more
smoothly but still increases in the dry season due to enhanced
photochemistry.

3.7. Principal Components and Intra-Seasonal
Modes

Figure 8 shows the explained variance associated with

the first two principal components derived from the joint

100+ 99.3%
80

40

Explained Variance (%)

0

analysis of CO and Os, highlighting the dominant modes
of shared variability between the two pollutants. The first
principal component (PC1) accounts for most of the total
variance and represents the common annual seasonal cycle,
driven by regional climatic forcing and biomass-burning
activity. The second principal component (PC2) captures
sub-seasonal variability, reflecting shorter-term atmospheric
processes that modulate pollutant concentrations beyond the

dominant seasonal signal.

0.7%

PC1

PC2

Figure 8. Explained variance of PC1 and PC2 from joint PCA of CO and Os.
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PCI captures shared annual seasonality; PC2 captures
sub-seasonal variability.

Figure 9 illustrates the first SSA principal component
(PC1) associated with CO, which represents the dominant
low-frequency mode of variability in the time series. This
component clearly captures the annual seasonal cycle, char-
acterized by enhanced values during the dry season and lower
levels during the wet period. The temporal structure of PC1
reflects the combined influence of regional climatic season-
ality and recurrent biomass-burning activity, confirming its
role as the primary driver of long-term CO variability.

PC1 aligns with dry-season maxima and wet-season

14100
14000

13900

PC1 amplitude

13800

13700

minima.

Figures 10a and 10b present the higher-order SSA prin-
cipal components associated with CO variability, highlight-
ing distinct modes of intra-seasonal and irregular behavior.
Figure 10a shows PC2, which exhibits an oscillatory pattern
with a characteristic period of approximately 60 days, indica-
tive of intra-seasonal variability driven by synoptic-scale
atmospheric processes and modulation of biomass-burning
activity. In contrast, Figure 10b displays PC3, characterized
by more irregular and intermittent fluctuations, reflecting
medium-scale variability linked to episodic pollution events

and short-term atmospheric dynamics.
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Figure 9. SSA PC1 representing the dominant annual mode of CO variability.
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Figure 10. (a) SSA PC2 showing ~ 60-day intra-seasonal oscillation driven by synoptic and fire-related variability. (b) SSA PC3
capturing irregular medium-scale fluctuations linked to episodic pollution.



Journal of Atmospheric Science Research | Volume 09 | Issue 01 | January 2026

Figure 11 presents an idealized 60-day sinusoidal sig-
nal used as a reference to support the interpretation of the
intra-seasonal oscillations identified in the SSA decompo-
sition. The similarity between this idealized pattern and

the temporal structure of PC2 reinforces the identification

0.75
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0.25

0.00

Amplitude

-0.25

—0.50

-0.75

-1.00

of a quasi-60-day mode, suggesting that the extracted com-
ponent represents a physically meaningful intra-seasonal
process rather than random noise. This comparison aids in
distinguishing coherent oscillatory behavior from irregular

variability in the higher-order SSA components.
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Figure 11. Idealized 60-day sinusoid used to assist interpretation of intra-seasonal SSA modes.

3.8. SSA Reconstruction of Low-Frequency
Variability

Figure 12 shows the SSA-reconstructed CO and Os
time series obtained by combining the leading low-frequency
components (PC1-PC2), emphasizing the dominant seasonal

variability of both pollutants. The reconstruction highlights

350

= N N w
o =3 a S
o o =) S

=
=)
=)

Reconstructed concentration (ppb)

50

the persistence and timing of the annual cycle, with enhanced
concentrations during the dry season and reduced levels dur-
ing the wet period. While the reconstructed Os series closely
follows the observed signal, the CO reconstruction smooths
high-frequency fire-related peaks, underscoring the capabil-
ity of SSA to isolate coherent low-frequency behavior while
filtering irregular short-term fluctuations.

—— CO - SSA Reconstruction (PC1-PC2)
—— 05 - SSA Reconstruction (PC1-PC2)
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Figure 12. SSA-reconstructed CO and Os series (PC1-PC2), highlighting dominant seasonal variability.

Os reconstruction remains highly consistent with obser-
vations; CO reconstruction smooths irregular fire peaks but
retains their seasonal timing.

3.9. Multiscale Wavelet Patterns

Figure 13 presents the wavelet power spectra of CO
and Os at daily and monthly scales, highlighting the multi-
scale temporal variability of both pollutants. CO exhibits

strong power at high-frequency bands, particularly in the
2—15-day range during the dry season, as well as persistent
intra-seasonal variability at periods of approximately 30-60
days, reflecting the influence of biomass-burning activity
and synoptic-scale processes. In contrast, Os is dominated by
low-frequency variability, with a pronounced annual cycle
and comparatively weaker high-frequency power, consistent

with its smoother photochemical and meteorological control.

10
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A. Monthly CO Wavelet Spectrum (2000-2018)

B. Daily CO Wavelet Spectrum (2010)

C. Daily Os Wavelet Spectrum (2010)
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Time

Figure 13. Wavelet spectra of CO

CO shows strong high-frequency power (2—15 days)
during burning seasons and persistent 30-60-day intra-
seasonal modes. Os is dominated by annual cycles and mod-
erate short-term variability associated with meteorological
forcing.

3.10. Forecast Evaluation

Figure 14 compares the observed and SSA-based pre-
dicted daily concentrations of CO and Os during the valida-

100
D. Monthly Os Wavelet Spectrum (2000-2018)

PR R

Time

and Os at monthly and daily scales.

tion period (2016-2018), illustrating the forecasting capabil-
ity of the univariate SSA—LRF approach. The results show
that the model successfully reproduces the low-frequency
seasonal structure of both pollutants but fails to capture short-
term variability and abrupt concentration changes. This limi-
tation is particularly evident for CO, whose fire-related peaks
are largely underestimated, while Os forecasts reflect the
predictable seasonal cycle but still miss high-frequency me-

teorological fluctuations.
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ted CO (top) and Os (bottom) during 2016-2018.
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The SSA-LRF model captures low-frequency structure
but not short-term variability. CO forecasts are limited by
abrupt fire-driven spikes; Os forecasts reflect predictable

seasonality but still miss high-frequency meteorological vari-

Table 1 shows performance indicators of the univariate
SSA-LRF daily forecasts for CO and Os during the valida-
tion period (2016-2018). Negative R? values indicate limited
skill in reproducing day-to-day variability, despite adequate

ations. representation of low-frequency seasonal components.
Table 1. SSA-LRF forecasting metrics (2016-2018) for CO and Os.
Pollutant MSE RMSE MAE MAPE (%) R?
CcO 8497.26 92.18 64.41 45.17 —0.18
0Os 60.68 7.79 6.45 43.68 —0.44

Negative R? values confirm that univariate SSA is in-
sufficient for short-term prediction of pollutants influenced

by episodic events.

4. Discussion

Singular Spectrum Analysis has been increasingly ap-
plied to environmental and atmospheric time series due to
its ability to extract structured temporal components from
noisy and nonstationary data. Previous studies in climatol-
ogy and hydrology have consistently demonstrated that SSA
performs best when the dominant variability is governed by
smooth, low-frequency oscillations, such as seasonal and

3715161 " Tn the context of air-pollution

interannual cycles!
studies, however, the literature remains relatively limited
and often focused on hybrid implementations rather than on
the intrinsic behavior of SSA itself.

Several recent studies have combined SSA with sta-
tistical or machine-learning models to enhance air-quality
forecasting. For instance, hybrid SSA-ARIMA and SSA-
SARIMA frameworks have shown improved performance for
pollutants exhibiting strong seasonality and moderate vari-
ability, particularly when forecasting monthly or seasonal

20221 These studies generally report satisfactory

averages!
predictive skill when the target variable is dominated by re-
current cycles, but they also note substantial degradation
in performance at daily time scales, especially under the
influence of episodic emission events.

The findings of the present study are fully consistent
with this body of literature. For Os, whose temporal behavior
is largely controlled by photochemical processes and sea-
sonal meteorological forcing, SSA successfully isolated the
dominant annual mode and reproduced its temporal evolu-

tion. Similar results were reported by Ferreira et al.!'”l and

Palacios et al.['®], who applied SSA to atmospheric variables
in tropical Brazil and observed that seasonal reconstruction
was robust, while short-term variability remained poorly
captured.

In contrast, the limited daily forecasting skill obtained
for CO aligns with previous observations that SSA tends
to smooth extreme events associated with biomass burning,
urban plumes, and synoptic-scale transport2!22], Studies fo-
cusing on fire-affected regions emphasize that pollutants with
strong heteroscedasticity and intermittent emission sources
require modeling approaches capable of representing nonlin-
ear dynamics and abrupt regime changes. Purely linear SSA
reconstruction, even when using optimal window lengths, is
inherently constrained in this respect.

Importantly, many published SSA-based air-pollution
studies report performance metrics aggregated over longer
temporal scales, such as monthly means or seasonal indices,
which can mask deficiencies in daily prediction. By explic-
itly evaluating daily forecasts and reporting negative R? val-
ues, the present study provides a more transparent and rigor-
ous assessment of SSA limitations, avoiding overestimation
of predictive skill. This distinction represents a methodolog-
ical contribution, as it clarifies that SSA’s primary value lies
in decomposition, diagnosis, and low-frequency forecasting
rather than in operational short-term prediction.

Overall, when compared with existing literature, this
study reinforces the view that SSA should be regarded as
a foundational tool within a broader modeling framework.
Its ability to extract physically interpretable components
makes it particularly valuable for preprocessing and feature
extraction, which can then be coupled with stochastic or
machine-learning models to address high-frequency, event-
driven variability. This perspective is increasingly adopted in

recent environmental forecasting research and is especially
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relevant for tropical regions influenced by biomass burning
and strong seasonal atmospheric dynamics.

From a broader methodological perspective, the re-
sults obtained in this study highlight important distinctions
between decomposition-based approaches and purely pre-
dictive models frequently employed in air-quality research.
While machine-learning techniques such as neural networks
and deep-learning architectures often achieve superior short-
term predictive accuracy, their performance is commonly
optimized at the expense of physical interpretability. In con-
trast, SSA provides an explicit representation of the under-
lying temporal structure of pollutant time series, allowing
the identification of dominant seasonal, intra-seasonal, and
low-frequency modes that are directly linked to atmospheric
processes. This distinction is particularly relevant in tropical
regions, where air-pollution variability arises from the inter-
action between deterministic seasonal forcing and stochastic,
event-driven emissions associated with biomass burning. By
clarifying the scale-dependent strengths and limitations of
SSA, the present study contributes to a more balanced un-
derstanding of its role within the spectrum of available mod-
eling tools. Rather than competing with machine-learning
approaches, SSA should be viewed as complementary, offer-
ing a transparent framework for signal decomposition, noise
reduction, and feature extraction. When used as a prepro-
cessing step, SSA can enhance hybrid forecasting systems by
providing physically meaningful inputs that improve model
stability and interpretability. This perspective aligns with
recent trends in environmental data science that emphasize
the integration of statistical rigor, physical insight, and pre-
dictive performance. Consequently, the findings presented
here support the adoption of SSA not only as a forecasting
component but also as a diagnostic tool capable of informing
model selection, scale-aware analysis, and decision-making
in air-quality studies conducted under complex climatic and

emission regimes.

5. Conclusions

This study applied Singular Spectrum Analysis (SSA)
to long-term daily concentrations of carbon monoxide (CO)
and ozone (0s) in Campo Grande, Brazil, to investigate their
multiscale temporal structure and assess the suitability of

SSA for air-pollution analysis in a tropical urban environment

influenced by biomass burning. By systematically evaluat-
ing multiple window lengths (L = 6, 12, 60, and 114), the
study demonstrated that larger windows—particularly L =
N/2—provide superior separability between trend, seasonal
cycles, and stochastic variability, confirming theoretical rec-
ommendations and extending their practical relevance to
air-quality time series SSA proved highly effective as an
exploratory and decomposition tool, successfully isolating
the dominant annual and intra-seasonal cycles of both pollu-
tants. Os exhibited relatively smooth and regular seasonal be-
havior, largely controlled by photochemical production and
meteorological conditions, whereas CO displayed stronger
variability and pronounced episodic peaks associated with
biomass-burning events. The reconstructed SSA components
offered a clear and physically interpretable representation
of long-term variability and seasonal modulation, support-
ing the application of SSA in climatological diagnostics and
long-term air-quality assessment.

However, the forecasting analysis highlighted impor-
tant scale-dependent limitations. Although SSA-LRF accu-
rately reproduced low-frequency seasonal behavior, its skill
in daily forecasting was limited for both pollutants, as indi-
cated by negative R? values during the validation period. This
limitation reflects the inherent smoothing nature of linear
SSA and its reduced ability to capture short-term variability
driven by meteorology, atmospheric transport, and episodic
emission events. The effect was particularly evident for
CO, whose abrupt fire-related peaks cannot be adequately
represented using only a small number of low-frequency
components.

These findings emphasize that univariate SSA should
not be interpreted as a standalone solution for operational
daily air-quality forecasting, especially in regions subject
to strong emission intermittency. Instead, SSA should be
viewed as a robust preprocessing and decomposition frame-
work, capable of extracting physically meaningful low-
frequency components that can be effectively integrated into
hybrid modeling approaches. Combining SSA with statisti-
cal or machine-learning models—such as ARIMA/SARIMA,
GARCH-type models, or deep-learning architectures—
represents a promising strategy for improving the represen-
tation of nonlinear, event-driven variability in pollutant time
series.

From an applied perspective, the identification of per-

13



Journal of Atmospheric Science Research | Volume 09 | Issue 01 | January 2026

sistent seasonal cycles has direct implications for air-quality
management in fire-prone tropical regions. Anticipating pe-
riods of enhanced Os formation and recurrent CO increases
during the dry season can support early-warning systems,
public health planning, and targeted mitigation strategies.
Moreover, the methodological framework developed here
is transferable to other tropical and subtropical urban envi-
ronments affected by biomass burning and strong seasonal
atmospheric dynamics.

In summary, this study advances the application of
Singular Spectrum Analysis in air-pollution research by pro-
viding a rigorous assessment of window-length sensitivity,
clarifying the scale-dependent predictive capability of SSA,
and demonstrating its value as a foundational tool for hybrid
air-quality modeling. Future research should explore multi-
variate extensions incorporating meteorological drivers and
fire-activity indicators, as well as hybrid SSA-based forecast-
ing systems designed to jointly capture seasonal structure
and short-term pollution extremes.

In addition, the approach presented here can be read-
ily extended to other tropical and subtropical urban areas
where air quality is influenced by seasonal climate variability
and biomass burning. The integration of SSA-based decom-
position with satellite-derived products and meteorological
reanalysis data represents a promising direction for future
research aimed at improving both spatial representativeness
and predictive capability of air-pollution models.

In addition, the methodological framework proposed
in this study can be readily applied to other tropical and
subtropical urban regions affected by seasonal climate vari-
ability and biomass-burning activity, allowing consistent
identification of dominant temporal modes across different
environments. The integration of SSA-based decomposition
with satellite-derived air-quality products and meteorologi-
cal reanalysis datasets represents a promising avenue for fu-
ture research aimed at enhancing spatial representativeness,
interpretability, and predictive robustness of air-pollution

modeling frameworks.
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