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ABSTRACT

Singular SpectrumAnalysis (SSA) was applied to daily time series of carbon monoxide (CO) and ozone (O₃) observed

between 2000 and 2018 in Campo Grande, MS, Brazil, to identify seasonal patterns, long-term variability, and evaluating the

predictive capacity of the technique. The methodology involved the decomposition of the series into structural components

and subsequent prediction using the Linear Recurrence Formula (LRF). The analysis revealed strong and persistent annual

seasonality for both pollutants, particularly for CO, whose maximum concentrations occur between August and October,

coinciding with the dry season and intensified biomass-burning activity. SSA proved effective in extracting low-frequency

components, including trend and seasonal cycles, providing a clear representation of the dominant temporal structure of

both pollutants. Forecasting results indicated that SSA-LRF successfully reproduced the main seasonal behavior of O₃,

while daily prediction skill remained limited, as reflected by negative R² values during the validation period. For CO, the

highly irregular and episodic nature of fire-related peaks resulted in larger forecast errors and reduced predictive skill.

These results highlight that univariate SSA is more suitable for reconstructing and predicting low-frequency pollutant
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dynamics than short-term daily variability. The findings demonstrate that SSA is a robust exploratory and decomposition

tool for air-quality time series in tropical environments, particularly for identifying seasonal and structural patterns. For

operational forecasting of pollutants with strong volatility, such as CO, hybrid approaches combining SSAwith statistical

or machine-learning models are recommended to improve predictive performance.

Keywords: Singular SpectrumAnalysis; Air Pollution; CO; O₃; Seasonal Forecast

1. Introduction

Ozone (O₃) and carbon monoxide (CO) are key atmo-

spheric pollutants with significant implications for urban

air quality, climate dynamics, and human health. In the tro-

posphere, O₃ is produced through photochemical reactions

involving precursors such as CO, NOₓ, and volatile organic

compounds, modulated by solar radiation and meteorologi-

cal conditions [1–5]. In tropical South America, the temporal

behavior of CO and O₃ is strongly influenced by the sea-

sonal contrast between wet and dry periods, biomass-burning

emissions, and regional atmospheric circulation, resulting in

well-defined annual cycles and notable interannual variabil-

ity [6–10]. In particular, dry-season conditions favor reduced

cloud cover, enhanced solar radiation, and lower planetary

boundary layer heights, which jointly intensify pollutant ac-

cumulation and photochemical activity.

Environmental time-series analysis has increasingly

adopted non-parametric approaches capable of extracting

trends, oscillations, and noise from nonlinear or noisy

datasets. Among these techniques, Singular SpectrumAnal-

ysis (SSA) stands out for its ability to decompose short and

complex time series without requiring strong statistical as-

sumptions [11–15]. SSA has been widely applied in clima-

tology, hydrology, and geophysics for detecting periodic

modes, identifying regime shifts, and improving predictabil-

ity [16–20]. Its appeal lies in the capacity to isolate physically

interpretable components—such as trend, seasonal cycles,

and intra-seasonal oscillations—while remaining robust to

noise and nonstationarity. However, despite these advan-

tages, SSA remains underexplored in the analysis of long-

term pollutant time series in tropical environments, where at-

mospheric variability is strongly shaped by biomass-burning

events and episodic emissions.

A critical yet often overlooked aspect of SSA is the

choice of window length (L), which directly affects compo-

nent separability, spectral resolution, and forecasting per-

formance. Although several studies using SSA or SSA–

hybrid models—such as SSA–ARIMA, SSA–LSTM, and

SSA–GARCH—have demonstrated promising results in en-

vironmental forecasting [20–22], most adopt fixed or heuristic

values for L, with limited assessment of how window-length

selection influences decomposition quality or predictive ac-

curacy. This methodological gap is particularly relevant

for pollutant time series affected by both photochemical

processes and irregular fire-driven emissions, as commonly

observed in tropical regions, where multiple temporal scales

coexist.

Hybrid modeling frameworks integrating SSA with

classical statistical or machine-learning approaches have ad-

vanced pollutant forecasting, especially for series exhibiting

strong seasonality and nonlinear behavior [20–22]. Neverthe-

less, the effectiveness of such hybrid models remains closely

linked to the internal structure of SSAdecomposition, includ-

ing the ability to properly separate low-frequency compo-

nents from high-frequency variability. Consequently, under-

standing how window-length sensitivity alters component

identification is essential for improving reconstruction and

prediction, particularly when dealing with pollutants charac-

terized by multiscale variability and episodic extremes.

In this context, the present study applies SSA to daily

CO and O₃ concentrations measured in Campo Grande,

Brazil, from 2000 to 2018. Campo Grande is located in

central Brazil and is strongly influenced by seasonal biomass

burning, regional transport of smoke plumes, and marked

wet–dry climatic contrasts. These characteristics make it an

ideal case study for assessing the performance of SSA in a

tropical urban environment affected by both regular seasonal

forcing and irregular emission events. The study pursues

two main objectives:

(i) To identify dominant temporal patterns—including sea-

sonal cycles, synoptic-scale oscillations, and long-term

variability; and
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(ii) To evaluate the forecasting performance of SSA us-

ing the Linear Recurrence Formula (LRF), comple-

mented by hybrid SSA–ARIMA/SARIMAmodels un-

der a rolling-origin validation scheme.

Despite the growing body of research on air-pollution

forecasting using advanced statistical and machine-learning

techniques, comparatively fewer studies have emphasized

the importance of understanding the intrinsic temporal struc-

ture of pollutant time series prior to model implementation.

In many cases, predictive performance is assessed without

a detailed evaluation of scale-dependent variability, compo-

nent separability, or the physical interpretability of extracted

modes. This limitation is particularly evident in tropical

environments, where pollutant dynamics are shaped by the

superposition of regular seasonal forcing and irregular, event-

driven emissions associated with biomass burning. Under

such conditions, methodological choices—such as the selec-

tion of SSAwindow length and the criteria for component

grouping—can substantially influence both reconstruction

quality and forecasting outcomes. By explicitly address-

ing these aspects, the present study contributes not only to

pollutant-specific analysis but also to broader methodologi-

cal discussions in environmental time-series research. The

emphasis on transparency, scale awareness, and physical in-

terpretability responds directly to recent calls for more robust

and reproducible statistical frameworks in air-quality stud-

ies, especially in regions characterized by strong climatic

seasonality and emission intermittency.

The novelty of this work lies in its systematic evalua-

tion of window-length sensitivity, quantitative assessment

of separability using w-correlation metrics [23,24], and objec-

tive criteria for principal component selection. By applying

SSA to pollutant time series strongly influenced by biomass-

burning activity, this study advances the methodological

understanding of SSA in environmental sciences and pro-

vides new insights into the multiscale atmospheric behavior

of CO and O₃ in a tropical urban environment.

2. Methodology and Data

2.1. Study Area and Data

Daily concentrations of ozone (O₃, ppb) and carbon

monoxide (CO, ppb) for 2000–2018 were obtained from

the Air Quality Information System (SISAM/INPE), main-

tained by the National Institute for Space Research (INPE).

Campo Grande, located in central Brazil, is characterized

by a tropical climate with a marked wet–dry seasonal cycle

and recurrent biomass-burning activity, which strongly influ-

ences pollutant levels [3,4]. Data was quality-controlled and

aggregated to daily means. Stationarity was evaluated using

the Augmented Dickey–Fuller test, confirming stochastic

seasonality and long-term variability appropriate for non-

parametric decomposition.

2.2. Singular SpectrumAnalysis (SSA)

SSAwas applied following the classical four-step frame-

work documented in foundational SSA literature [5–9,14–16]:

1. Embedding:

The original series is mapped into a trajectory matrix

constructed using window length (L) [8].

2. Decomposition:

Singular value decomposition (SVD) is applied to ob-

tain eigenvalues, eigenvectors (EOFs), and principal

components (PCs) [7–10].

3. Grouping:

Components are grouped based on spectral similar-

ity, relative contribution to variance, and w-correlation

structure [23,25].

4. Reconstruction:

Component groups (trend, seasonal, high-frequency

noise) are recombined using diagonal averaging to re-

cover reconstructed time series [8,10].

SSA is particularly suitable for nonlinear, noisy en-

vironmental series because it does not require parametric

assumptions about pollutant dynamics [11,15,16].

2.3. Window-Length Selection

Window length (L) strongly influences spectral resolu-

tion and component separability in SSA, as emphasized by

Golyandina and Zvonarev [23], Sun and Li [24]. We evaluated

candidate values L = 6, 12, 60, 114 using:

• reconstruction error (RMSE);

• mean w-correlation between reconstructed compo-

nents [24];
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• consistency with dominant periodicities identified via

periodogram.

• interpretability of extracted modes [24].

Short windows (L = 6–12) captured seasonal cycles but

exhibited stronger mode mixing. The long window L= 114 ≈

N/2, frequently recommended for maximizing separability in

SSA applications [4,24,25], provided the lowest reconstruction

error and clearest distinction between trend, seasonal, and

stochastic components. Thus, L = 114 was used for the main

decomposition and forecasting.

2.4. Selection of SSAComponents

Principal components were selected based on:

• cumulative explained variance;

• eigenvalue decay (scree plot) [7–10];

• spectral interpretation of PCs (annual, semiannual, intra-

seasonal modes);

• w-correlation < 0.30, indicating noise-dominated behav-

ior [23].

For both pollutants, PC1 and PC2 accounted for more

than 90% of total variance and corresponded to interpretable

physical modes (trend + annual cycle). Higher PCs repre-

sented noise or irregular fire-driven fluctuations.

2.5. Forecasting Using SSA-LRF and Hybrid

Models

Forecasts were generated using the Linear Recurrence

Formula (LRF) derived from SSA, following the forecasting

framework described by Golyandina and Shapoval [13]. To

improve predictive accuracy—especially for pollutants with

irregular or nonlinear variability—we adopted hybrid model-

ing extensions inspired by recent environmental forecasting

studies [20–22]:

• SSA–ARIMA for long-term components;

• SSA–SARIMA for seasonal components;

• ARMAmodeling of high-frequency residuals.

These hybrid models exploit SSA’s decomposition abil-

ity while enabling the capture of short-term or heteroscedas-

tic dynamics that SSA-LRF alone cannot represent.

2.6. Validation Strategy

Forecast performance was assessed using a rolling-

origin cross-validation approach commonly recommended

for environmental time-series prediction [20,26,27].

• Training windows expanded progressively (e.g.,

2000–2011 → test 2012–2013; … → 2000–2015 →

test 2016–2018).

The following metrics were computed:

• RMSE, MAE, MAPE, and R².

This validation scheme provides a robust assessment of

forecasting skill in series affected by both seasonal structure

and episodic events such as fire emissions.

2.7. Methodological Contribution

The methodological contributions of this study include:

• A systematic evaluation of window-length sensitivity,

rarely addressed in air-pollution SSA studies;

• Quantitative separability assessment via w-correlation [24];

• A clear, objective framework for principal component

selection;

• Integration of SSAwithARIMA/SARIMAhybrid struc-

tures, consistent with recent advances in environmental

forecasting [20–22];

• Application of SSA to pollutant time series strongly in-

fluenced by fire activity—a sparse context in current

SSA literature.

3. Results

3.1. Seasonal Behavior of CO and O₃

Figure 1 presents the monthly boxplots of daily CO and

O₃ concentrations for the period 2000–2018, providing an

overview of the seasonal distribution, central tendency, and

dispersion of both pollutants. The boxplots clearly highlight

the pronounced dry-season enhancement of CO concentra-

tions between August and October, characterized by high

medians, wide interquartile ranges, and numerous extreme

outliers associated with biomass-burning events. In contrast,

O₃ exhibits a more regular and symmetric seasonal pattern,
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with lower variability and a gradual increase toward the late

dry season, reflecting the dominant role of photochemical

production under enhanced solar radiation and reduced cloud

cover.

Figure 1. Monthly boxplots of CO and O₃ concentrations (2000–2018), highlighting higher values during the dry season.

Both pollutants exhibit a clear seasonal cycle. CO

peaks sharply between August and October, showing wide

dispersion and numerous outliers associated with biomass-

burning episodes and reduced dispersion during the dry sea-

son. O₃ presents a smoother annual pattern, with minima

from January to April and gradual increases toward late win-

ter due to enhanced photochemical activity.

Figure 2 shows the monthly mean concentrations of CO

and O₃ together with their associated variability (±1 standard

deviation), reinforcing the seasonal contrasts identified in the

boxplot analysis. The results indicate a pronounced seasonal

amplitude for CO, with substantially higher mean values dur-

ing the dry season, reflecting the cumulative effect of biomass-

burning emissions and reduced atmospheric dispersion. In

contrast, O₃ exhibits a smoother and more stable annual cy-

cle, with moderate variability and a gradual increase toward

the late dry season, consistent with enhanced photochemical

production under favorable meteorological conditions.

Figure 2. Monthly mean CO and O₃ concentrations (± 1 SD), illustrating seasonal contrasts between wet and dry periods.
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CO shows a strong seasonal amplitude (≈ 82.6 ppb),

while O₃ displays a moderate but consistent annual modula-

tion (≈ 7.1 ppb). These seasonal signals are consistent with

meteorological forcing and dry-season fire activity.

3.2. SSAWindow-Length Assessment

Figure 3 compares the SSA eigenvalue spectra ob-

tained using different window lengths (L = 6, 12, and 114),

illustrating the strong dependence of component separabil-

ity on the choice of L. For short windows (L = 6 and 12),

the eigenvalues decay gradually, indicating substantial mode

mixing and limited spectral resolution. In contrast, the longer

window (L = 114) exhibits a clear separation between the

leading components and the remaining eigenvalues, reflect-

ing improved discrimination between trend, seasonal, and

stochastic variability and supporting its selection for the sub-

sequent SSA decomposition and forecasting analyses.

Figure 3. SSA eigenvalues (first 20 components) for L = 6, 12, and 114, showing improved separability with longer windows.

Short windows (L = 6, 12) capture basic seasonality

but exhibit component mixing. The long window L = 114

(≈ N/2) achieves the best separability and lowest reconstruc-

tion error, confirming its suitability for extracting multiscale

structure.

3.3. Spectral Structure of CO and O₃

Figure 4 presents the periodograms of the CO and O₃

time series for the 2000–2018 period, highlighting the domi-

nant spectral features that govern their temporal variability.

Both pollutants exhibit a pronounced annual peak, confirm-

ing the strong seasonal forcing associated with the wet–dry

climatic cycle. Secondary spectral peaks at semiannual and

intra-seasonal frequencies are also observed, particularly for

CO, indicating the influence of synoptic-scale processes and

episodic biomass-burning activity. The higher overall spec-

tral power of CO reflects its greater variability compared to

O₃, which is primarily controlled by smoother photochemical

and meteorological processes.

Figure 4. Periodogram of CO and O₃ (2000–2018) showing dominant annual and semiannual frequencies.
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Both series show strong annual peaks near 0.083 cy-

cles/month, with additional semiannual components. CO

exhibits higher overall power, consistent with greater vari-

ability from fires and meteorology.

3.4. SSAEigenvalues and Component Interpre-

tation

Figure 5 displays the ordered SSA eigenvalues ob-

tained with the selected window length (L = 114), illustrating

the concentration of variance in the leading components of

both pollutant time series. The sharp decay after the first few

eigenvalues indicates that most of the signal energy is cap-

tured by a small number of components, primarily associated

with the dominant annual cycle and low-frequency variabil-

ity. Subsequent eigenvalues exhibit a flatter distribution,

suggesting noise-dominated or irregular components linked

to short-term fluctuations and episodic emission events.

PC1 and PC2 explain most of the variance and cor-

respond to the annual cycle and intra-seasonal variability.

Higher PCs represent irregular, noise-like fluctuations.

Figure 5. Ordered SSA eigenvalues (L = 114), showing concentration of variance in the first components.

3.5. Reconstruction of Dominant Components

Figure 6 compares the original CO and O₃ time series

with their SSA-reconstructed counterparts obtained using the

leading components (PC1–PC2). The reconstruction effec-

tively preserves the dominant seasonal structure of both pol-

lutants while attenuating high-frequency variability. For CO,

extreme short-term peaks associated with biomass-burning

events are partially smoothed, although their seasonal timing

remains clearly identifiable. In contrast, the reconstructed

O₃ series closely follows the observed signal, reflecting the

stronger influence of regular photochemical and meteorolog-

ical forcing on its temporal variability.

Figure 6. Original and SSA-reconstructed CO and O₃ series using PC1–PC2.
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Reconstruction preserves the main seasonal cycle while

smoothing high-frequency variability. For CO, extreme fire-

driven peaks are attenuated but their seasonal timing remains.

For O₃, the reconstruction closely follows observations.

3.6. Daily Variability and Multiscale Patterns

Figure 7 illustrates the daily CO and O₃ concentrations

over the 2000–2018 period, emphasizing the contrasting tem-

poral behavior of the two pollutants at short time scales. CO

exhibits pronounced day-to-day variability, with abrupt and

sporadic peaks associated with biomass-burning episodes, at-

mospheric stagnation, and regional transport. In contrast, O₃

displays a comparatively smoother temporal evolution, with

gradual fluctuations superimposed on its seasonal cycle, re-

flecting its stronger dependence on photochemical processes

and synoptic meteorological conditions.

Figure 7. Daily CO and O₃ concentrations (2000–2018), showing episodic CO peaks and smoother O₃ behavior.

CO presents abrupt peaks often exceeding 2000 ppb,

reflecting fire events and stagnation episodes. O₃ varies more

smoothly but still increases in the dry season due to enhanced

photochemistry.

3.7. Principal Components and Intra-Seasonal

Modes

Figure 8 shows the explained variance associated with

the first two principal components derived from the joint

analysis of CO and O₃, highlighting the dominant modes

of shared variability between the two pollutants. The first

principal component (PC1) accounts for most of the total

variance and represents the common annual seasonal cycle,

driven by regional climatic forcing and biomass-burning

activity. The second principal component (PC2) captures

sub-seasonal variability, reflecting shorter-term atmospheric

processes that modulate pollutant concentrations beyond the

dominant seasonal signal.

Figure 8. Explained variance of PC1 and PC2 from joint PCA of CO and O₃.
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PC1 captures shared annual seasonality; PC2 captures

sub-seasonal variability.

Figure 9 illustrates the first SSA principal component

(PC1) associated with CO, which represents the dominant

low-frequency mode of variability in the time series. This

component clearly captures the annual seasonal cycle, char-

acterized by enhanced values during the dry season and lower

levels during the wet period. The temporal structure of PC1

reflects the combined influence of regional climatic season-

ality and recurrent biomass-burning activity, confirming its

role as the primary driver of long-term CO variability.

PC1 aligns with dry-season maxima and wet-season

minima.

Figures 10a and 10b present the higher-order SSAprin-

cipal components associated with CO variability, highlight-

ing distinct modes of intra-seasonal and irregular behavior.

Figure 10a shows PC2, which exhibits an oscillatory pattern

with a characteristic period of approximately 60 days, indica-

tive of intra-seasonal variability driven by synoptic-scale

atmospheric processes and modulation of biomass-burning

activity. In contrast, Figure 10b displays PC3, characterized

by more irregular and intermittent fluctuations, reflecting

medium-scale variability linked to episodic pollution events

and short-term atmospheric dynamics.

Figure 9. SSA PC1 representing the dominant annual mode of CO variability.

(a)

(b)

Figure 10. (a) SSA PC2 showing ≈ 60-day intra-seasonal oscillation driven by synoptic and fire-related variability. (b) SSA PC3

capturing irregular medium-scale fluctuations linked to episodic pollution.
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Figure 11 presents an idealized 60-day sinusoidal sig-

nal used as a reference to support the interpretation of the

intra-seasonal oscillations identified in the SSA decompo-

sition. The similarity between this idealized pattern and

the temporal structure of PC2 reinforces the identification

of a quasi-60-day mode, suggesting that the extracted com-

ponent represents a physically meaningful intra-seasonal

process rather than random noise. This comparison aids in

distinguishing coherent oscillatory behavior from irregular

variability in the higher-order SSA components.

Figure 11. Idealized 60-day sinusoid used to assist interpretation of intra-seasonal SSAmodes.

3.8. SSA Reconstruction of Low-Frequency

Variability

Figure 12 shows the SSA-reconstructed CO and O₃

time series obtained by combining the leading low-frequency

components (PC1–PC2), emphasizing the dominant seasonal

variability of both pollutants. The reconstruction highlights

the persistence and timing of the annual cycle, with enhanced

concentrations during the dry season and reduced levels dur-

ing the wet period. While the reconstructed O₃ series closely

follows the observed signal, the CO reconstruction smooths

high-frequency fire-related peaks, underscoring the capabil-

ity of SSA to isolate coherent low-frequency behavior while

filtering irregular short-term fluctuations.

Figure 12. SSA-reconstructed CO and O₃ series (PC1–PC2), highlighting dominant seasonal variability.

O₃ reconstruction remains highly consistent with obser-

vations; CO reconstruction smooths irregular fire peaks but

retains their seasonal timing.

3.9. Multiscale Wavelet Patterns

Figure 13 presents the wavelet power spectra of CO

and O₃ at daily and monthly scales, highlighting the multi-

scale temporal variability of both pollutants. CO exhibits

strong power at high-frequency bands, particularly in the

2–15-day range during the dry season, as well as persistent

intra-seasonal variability at periods of approximately 30–60

days, reflecting the influence of biomass-burning activity

and synoptic-scale processes. In contrast, O₃ is dominated by

low-frequency variability, with a pronounced annual cycle

and comparatively weaker high-frequency power, consistent

with its smoother photochemical and meteorological control.
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Figure 13. Wavelet spectra of CO and O₃ at monthly and daily scales.

CO shows strong high-frequency power (2–15 days)

during burning seasons and persistent 30–60-day intra-

seasonal modes. O₃ is dominated by annual cycles and mod-

erate short-term variability associated with meteorological

forcing.

3.10. Forecast Evaluation

Figure 14 compares the observed and SSA-based pre-

dicted daily concentrations of CO and O₃ during the valida-

tion period (2016–2018), illustrating the forecasting capabil-

ity of the univariate SSA–LRF approach. The results show

that the model successfully reproduces the low-frequency

seasonal structure of both pollutants but fails to capture short-

term variability and abrupt concentration changes. This limi-

tation is particularly evident for CO, whose fire-related peaks

are largely underestimated, while O₃ forecasts reflect the

predictable seasonal cycle but still miss high-frequency me-

teorological fluctuations.

Figure 14. Observed versus SSA-based predicted CO (top) and O₃ (bottom) during 2016–2018.
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The SSA-LRF model captures low-frequency structure

but not short-term variability. CO forecasts are limited by

abrupt fire-driven spikes; O₃ forecasts reflect predictable

seasonality but still miss high-frequency meteorological vari-

ations.

Table 1 shows performance indicators of the univariate

SSA–LRF daily forecasts for CO and O₃ during the valida-

tion period (2016–2018). Negative R² values indicate limited

skill in reproducing day-to-day variability, despite adequate

representation of low-frequency seasonal components.

Table 1. SSA-LRF forecasting metrics (2016–2018) for CO and O₃.

Pollutant MSE RMSE MAE MAPE (%) R²

CO 8497.26 92.18 64.41 45.17 −0.18

O₃ 60.68 7.79 6.45 43.68 −0.44

Negative R² values confirm that univariate SSA is in-

sufficient for short-term prediction of pollutants influenced

by episodic events.

4. Discussion

Singular SpectrumAnalysis has been increasingly ap-

plied to environmental and atmospheric time series due to

its ability to extract structured temporal components from

noisy and nonstationary data. Previous studies in climatol-

ogy and hydrology have consistently demonstrated that SSA

performs best when the dominant variability is governed by

smooth, low-frequency oscillations, such as seasonal and

interannual cycles [5,7,15,16]. In the context of air-pollution

studies, however, the literature remains relatively limited

and often focused on hybrid implementations rather than on

the intrinsic behavior of SSA itself.

Several recent studies have combined SSA with sta-

tistical or machine-learning models to enhance air-quality

forecasting. For instance, hybrid SSA–ARIMA and SSA–

SARIMAframeworks have shown improved performance for

pollutants exhibiting strong seasonality and moderate vari-

ability, particularly when forecasting monthly or seasonal

averages [20–22]. These studies generally report satisfactory

predictive skill when the target variable is dominated by re-

current cycles, but they also note substantial degradation

in performance at daily time scales, especially under the

influence of episodic emission events.

The findings of the present study are fully consistent

with this body of literature. For O₃, whose temporal behavior

is largely controlled by photochemical processes and sea-

sonal meteorological forcing, SSA successfully isolated the

dominant annual mode and reproduced its temporal evolu-

tion. Similar results were reported by Ferreira et al. [17] and

Palacios et al. [18], who applied SSA to atmospheric variables

in tropical Brazil and observed that seasonal reconstruction

was robust, while short-term variability remained poorly

captured.

In contrast, the limited daily forecasting skill obtained

for CO aligns with previous observations that SSA tends

to smooth extreme events associated with biomass burning,

urban plumes, and synoptic-scale transport [21,22]. Studies fo-

cusing on fire-affected regions emphasize that pollutants with

strong heteroscedasticity and intermittent emission sources

require modeling approaches capable of representing nonlin-

ear dynamics and abrupt regime changes. Purely linear SSA

reconstruction, even when using optimal window lengths, is

inherently constrained in this respect.

Importantly, many published SSA-based air-pollution

studies report performance metrics aggregated over longer

temporal scales, such as monthly means or seasonal indices,

which can mask deficiencies in daily prediction. By explic-

itly evaluating daily forecasts and reporting negative R² val-

ues, the present study provides a more transparent and rigor-

ous assessment of SSA limitations, avoiding overestimation

of predictive skill. This distinction represents a methodolog-

ical contribution, as it clarifies that SSA’s primary value lies

in decomposition, diagnosis, and low-frequency forecasting

rather than in operational short-term prediction.

Overall, when compared with existing literature, this

study reinforces the view that SSA should be regarded as

a foundational tool within a broader modeling framework.

Its ability to extract physically interpretable components

makes it particularly valuable for preprocessing and feature

extraction, which can then be coupled with stochastic or

machine-learning models to address high-frequency, event-

driven variability. This perspective is increasingly adopted in

recent environmental forecasting research and is especially
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relevant for tropical regions influenced by biomass burning

and strong seasonal atmospheric dynamics.

From a broader methodological perspective, the re-

sults obtained in this study highlight important distinctions

between decomposition-based approaches and purely pre-

dictive models frequently employed in air-quality research.

While machine-learning techniques such as neural networks

and deep-learning architectures often achieve superior short-

term predictive accuracy, their performance is commonly

optimized at the expense of physical interpretability. In con-

trast, SSA provides an explicit representation of the under-

lying temporal structure of pollutant time series, allowing

the identification of dominant seasonal, intra-seasonal, and

low-frequency modes that are directly linked to atmospheric

processes. This distinction is particularly relevant in tropical

regions, where air-pollution variability arises from the inter-

action between deterministic seasonal forcing and stochastic,

event-driven emissions associated with biomass burning. By

clarifying the scale-dependent strengths and limitations of

SSA, the present study contributes to a more balanced un-

derstanding of its role within the spectrum of available mod-

eling tools. Rather than competing with machine-learning

approaches, SSA should be viewed as complementary, offer-

ing a transparent framework for signal decomposition, noise

reduction, and feature extraction. When used as a prepro-

cessing step, SSAcan enhance hybrid forecasting systems by

providing physically meaningful inputs that improve model

stability and interpretability. This perspective aligns with

recent trends in environmental data science that emphasize

the integration of statistical rigor, physical insight, and pre-

dictive performance. Consequently, the findings presented

here support the adoption of SSA not only as a forecasting

component but also as a diagnostic tool capable of informing

model selection, scale-aware analysis, and decision-making

in air-quality studies conducted under complex climatic and

emission regimes.

5. Conclusions

This study applied Singular SpectrumAnalysis (SSA)

to long-term daily concentrations of carbon monoxide (CO)

and ozone (O₃) in Campo Grande, Brazil, to investigate their

multiscale temporal structure and assess the suitability of

SSAfor air-pollution analysis in a tropical urban environment

influenced by biomass burning. By systematically evaluat-

ing multiple window lengths (L = 6, 12, 60, and 114), the

study demonstrated that larger windows—particularly L ≈

N/2—provide superior separability between trend, seasonal

cycles, and stochastic variability, confirming theoretical rec-

ommendations and extending their practical relevance to

air-quality time series SSA proved highly effective as an

exploratory and decomposition tool, successfully isolating

the dominant annual and intra-seasonal cycles of both pollu-

tants. O₃ exhibited relatively smooth and regular seasonal be-

havior, largely controlled by photochemical production and

meteorological conditions, whereas CO displayed stronger

variability and pronounced episodic peaks associated with

biomass-burning events. The reconstructed SSAcomponents

offered a clear and physically interpretable representation

of long-term variability and seasonal modulation, support-

ing the application of SSA in climatological diagnostics and

long-term air-quality assessment.

However, the forecasting analysis highlighted impor-

tant scale-dependent limitations. Although SSA-LRF accu-

rately reproduced low-frequency seasonal behavior, its skill

in daily forecasting was limited for both pollutants, as indi-

cated by negative R² values during the validation period. This

limitation reflects the inherent smoothing nature of linear

SSA and its reduced ability to capture short-term variability

driven by meteorology, atmospheric transport, and episodic

emission events. The effect was particularly evident for

CO, whose abrupt fire-related peaks cannot be adequately

represented using only a small number of low-frequency

components.

These findings emphasize that univariate SSA should

not be interpreted as a standalone solution for operational

daily air-quality forecasting, especially in regions subject

to strong emission intermittency. Instead, SSA should be

viewed as a robust preprocessing and decomposition frame-

work, capable of extracting physically meaningful low-

frequency components that can be effectively integrated into

hybrid modeling approaches. Combining SSAwith statisti-

cal or machine-learning models—such asARIMA/SARIMA,

GARCH-type models, or deep-learning architectures—

represents a promising strategy for improving the represen-

tation of nonlinear, event-driven variability in pollutant time

series.

From an applied perspective, the identification of per-
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sistent seasonal cycles has direct implications for air-quality

management in fire-prone tropical regions. Anticipating pe-

riods of enhanced O₃ formation and recurrent CO increases

during the dry season can support early-warning systems,

public health planning, and targeted mitigation strategies.

Moreover, the methodological framework developed here

is transferable to other tropical and subtropical urban envi-

ronments affected by biomass burning and strong seasonal

atmospheric dynamics.

In summary, this study advances the application of

Singular SpectrumAnalysis in air-pollution research by pro-

viding a rigorous assessment of window-length sensitivity,

clarifying the scale-dependent predictive capability of SSA,

and demonstrating its value as a foundational tool for hybrid

air-quality modeling. Future research should explore multi-

variate extensions incorporating meteorological drivers and

fire-activity indicators, as well as hybrid SSA-based forecast-

ing systems designed to jointly capture seasonal structure

and short-term pollution extremes.

In addition, the approach presented here can be read-

ily extended to other tropical and subtropical urban areas

where air quality is influenced by seasonal climate variability

and biomass burning. The integration of SSA-based decom-

position with satellite-derived products and meteorological

reanalysis data represents a promising direction for future

research aimed at improving both spatial representativeness

and predictive capability of air-pollution models.

In addition, the methodological framework proposed

in this study can be readily applied to other tropical and

subtropical urban regions affected by seasonal climate vari-

ability and biomass-burning activity, allowing consistent

identification of dominant temporal modes across different

environments. The integration of SSA-based decomposition

with satellite-derived air-quality products and meteorologi-

cal reanalysis datasets represents a promising avenue for fu-

ture research aimed at enhancing spatial representativeness,

interpretability, and predictive robustness of air-pollution

modeling frameworks.
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