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ABSTRACT

Rainfall prediction is crucial for agricultural planning and water resource management, as Bangladesh’s agriculture
heavily depends on rainfed irrigation. Existing forecasting models are complex and costly, both budgetarily and computa-
tionally. As a result, our study evaluates the comparative performance of forecasting models, comprising two traditional
time series models (Exponential Smoothing (ES) and Seasonal Autoregressive Integrated Moving Average (SARIMA)),
and one machine learning model (Long Short-Term Memory (LSTM)). The monthly rainfall data for Barishal, Bangladesh,
spanning the period from 1970 to 2022, were obtained from the Bangladesh Meteorological Department. The models’
performance was assessed using root mean square error (RMSE), mean absolute error (MAE), correlation coefficient (R),
Nash-Sutcliffe efficiency coefficient (NSEC), and Kling-Gupta Efficiency (KGE). The ES and SARIMA models perform
closely. With RMSE, MAE, R, NSEC, and KGE values of 109.35, 73.60, 0.79, 0.62, and 0.74, respectively, the ES model
performs better than the SARIMA model. On the other hand, the machine learning model LSTM struggled with the test
data, resulting in a higher RMSE (150.34), MAE (100.95), and lower R (0.60), NSEC (0.27), and KGE (0.60) values. This
indicates that for the small dataset, the LSTM machine learning model is less effective. Therefore, our suggestion is to
use a statistical model, especially the ES model, to forecast monthly rainfall in the Barishal division, as it is effective and
computationally efficient. These findings are beneficial for policy development, the pesticide industry, tourism, event

management, water conservation, and predicting floods and droughts.

*CORRESPONDING AUTHOR:
Istiak Ahmed, Agricultural Statistics & ICT Division, Bangladesh Agricultural Research Institute (BARI), Gazipur 1701, Bangladesh;
Email: istiak@bari.gov.bd

ARTICLE INFO
Received: 3 November 2025 | Revised: 22 December 2025 | Accepted: 29 December 2025 | Published Online: 5 January 2026
DOI: https://doi.org/10.30564/jasr.v9i1.12738

CITATION

Chandra, S., Ahmed, I., Rashed, M.S.U., 2026. Comparative Analysis of Traditional and Machine Learning Models for Rainfall Forecasting in
Barishal District of Bangladesh. Journal of Atmospheric Science Research. 9(1): 16-29. DOI: https://doi.org/10.30564/jasr.v9i1.12738

COPYRIGHT

Copyright © 2026 by the author(s). Published by Bilingual Publishing Group. This is an open access article under the Creative Commons
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License (https://creativecommons.org/licenses/by-nc/4.0/).

16


https://orcid.org/0009-0006-2684-0077
https://orcid.org/0000-0002-1760-2994
https://orcid.org/0009-0003-9903-7910

Journal of Atmospheric Science Research | Volume 09 | Issue 01 | January 2026

Keywords: Time Series Analysis; Exponential Smoothing; ARIMA; SARIMA; LSTM

1. Introduction

Rainfall is one of the most significant meteorological
variables, which is used for the prediction of floods and mon-
itoring pollutant concentration!?1. Also, the prediction of
rainfall is a significant concern globally due to its impact
on various economic sectors, including agriculture, fishing,
tourism, infrastructure, and water resource management3-71.
The forecasting of rainfall is challenging because of the dy-
namic behavior and complex patterns (®.

Bangladesh is an agricultural country. Rice, wheat,
maize, and barley are the main cereals grown here, while
jute, tobacco, sugarcane, cotton, and tea are the key cash
crops™®). Accurate rainfall forecasting is crucial, as it signifi-
cantly impacts agricultural productivity. Adequate rainfall
can serve as an alternative to irrigation, influencing the yield
of crops like sugarcane, rainfed rice, and boro rice!!%-13],
Conversely, untimely rains can reduce the effectiveness of
insecticides, leading to decreased agricultural output. Rain-
fall in Bangladesh varies by season and location. The country
experiences four distinct seasons: a warm winter from De-
cember to February, a hot pre-monsoon summer from March
to May, a rainy season from June to September, and an au-
tumnal post-monsoon period from October to November[!4],
Therefore, predicting accurate rainfall will be handy in vari-
ous ways.

The

ARIMA model is a widely used method for forecasting the

Various methods are used to predict rainfall.

rainfall data in different regions of the world">~'®], while
multiple linear regression was applied to predict monthly
rainfall in Assam['). The comparative analysis of ARIMA
and ANN was used for forecasting the rainfall in Hyderabad,
Indial®%!. Traditional statistical and physically-based models
have long been the standard for weather prediction, but they
face several inherent limitations that constrain their effective-
ness in modern applications. Conventional statistical models
can be computationally intensive and costly to implement,
both in terms of processing power and budget!(!!. The re-
lationships governing rainfall are fundamentally non-linear.
This makes it difficult for conventional linear models, such as

Autoregressive Integrated Moving Average (ARIMA) and its

seasonal variant SARIMA, to accurately capture the dynam-

1211 Physically-based models demand a

ics of precipitation|
profound understanding of the water cycle and require de-
tailed geophysical data, such as soil profiles and land use
characteristics. This information is often laborious to collect
and may be unavailable for many regions?!l.

In contrast, data-driven machine learning techniques
have emerged as a powerful alternative, overcoming many
of the drawbacks of traditional methods. ML models excel
at identifying and learning complex, non-linear relationships
directly from historical data without requiring explicit pro-
gramming of the physical processes involved. This makes
them more flexible and often less expensive to develop and
deploy, as they do not necessitate deep, a priori knowledge of

1211 The demonstrated

the underlying hydrological system!
superiority of ML in handling the stochastic and dynamic na-
ture of weather data has led to extensive research into various
model architectures to further refine forecasting accuracy.
In recent times, machine learning and deep learning meth-
ods are widely used by researchers to predict rainfall using
different algorithms such as feedforward neural networks,
recurrent neural networks, long short-term memory (LSTM),
gradient boosting, extreme gradient boosting, and linear sup-
port vector regressor 22241 The core strength of Recurrent
Neural Networks (RNNs) and their advanced variant, Long
Short-Term Memory (LSTM) networks, lies in their inherent
ability to process sequential data. By maintaining an internal
state or “memory,” they can learn from past observations and
identify long-term dependencies, making them exceptionally

1251 However,

well-suited for time-series forecasting tasks
their practical performance varies significantly based on the
specific application and dataset characteristics. In a study
forecasting hourly rainfall across five UK cities, models
based on LSTM, Stacked-LSTM, and Bidirectional-LSTM
networks demonstrated the best performance, outperforming
both a robust XGBoost model and an AutoML-generated
ensemble. Notably, the top-performing architectures were a
Stacked-LSTM with two hidden layers and a Bidirectional-
LSTM, suggesting that excessive model complexity is not
always beneficial!l. In contrast, a study of four Jordanian
cities found that a standard RNN model outperformed both
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LSTM and a hybrid CNN-RNN. This outcome highlights
the importance of matching model complexity to data char-
acteristics. The researchers reasoned that because the data
was recorded hourly, the long-term dependencies that the
LSTM leverages may be less salient or insufficient to en-
hance its performance. The RNN's simpler architecture was
better aligned with the short-to-medium term patterns in
the datal®!. For a data-scarce basin in Kenya, an LSTM
model marginally outperformed a Wavelet Neural Network
(WNN) for both rainfall and runoff prediction, showcasing

its utility even when data is limited 2%,

Thus, the appli-
cation of machine learning (ML) and deep learning (DL)
has fundamentally advanced the field of rainfall and hydro-
logical forecasting, establishing a new state-of-the-art. A
comprehensive review of recent studies indicates that deep
learning models—specifically Long Short-Term Memory
(LSTM), Recurrent Neural Networks (RNN), and Convo-
lutional Neural Networks (CNN)—consistently outperform
traditional statistical methods like ARIMA and SARIMA in
accuracy and their ability to model complex, non-linear sys-
tems!?!l. However, there is no universally superior model;
performance is highly context-dependent and varies signif-
icantly with geographical location, climate type, and data

characteristics 1%

1. A critical, cross-cutting finding is that
multivariate models, which incorporate a range of meteoro-
logical variables such as temperature, humidity, and wind
speed, are demonstrably more effective than univariate ap-
proaches that rely solely on past rainfall data>>?71. Despite
these advancements, persistent challenges remain, including
poor model generalization to new data, difficulty in accu-
rately predicting extreme weather events, and a tendency for
systematic underestimation of total precipitation '8,

In Bangladesh, several studies have focused on rain-
fall prediction. Global climate models were used to predict
rainfall during the Rabi and Kharif-II seasons!>**°l. For the
Dhaka and Sylhet divisions, the ARIMA model has been
used to forecast the precipitation '3, Historical data from
Barishal for the period 1961-2019 shows a clear warming
trend, with the yearly average maximum temperature increas-
ing at a rate of 0.0055 °C/year and the minimum at 0.0087
°Cl/year. During the same period, annual total rainfall in
the region showed a declining trend of —0.18488 mm/year,
while relative humidity rose sharply!33. Future projections
for the mid-century (2040-2060), derived from ensembles

of Global Climate Models (GCMs), forecast continued and
significant changes, particularly in rainfall patterns. During
the Kharif-II season (Mid-July to Mid-October), precipita-
tion is expected to increase in July, September, and October,
but may decrease in August. Similarly, during the Rabi
season (January to April), precipitation is projected to in-
crease from January through March but decrease in April
compared to the 2010-2018 baseline?*3". Regional dispar-
ities are pronounced. The Mymensingh and Sylhet divisions
are projected to experience dramatic increases in precipi-
tation during the Kharif-II season, while the north-eastern
region (Sylhet) consistently shows the highest rainfall and the
western region (Rajshahi) the lowest during the Rabi season.
These regional variations underscore the need for localized
adaptation strategies. Statistical forecasting tools, such as the
Autoregressive Integrated Moving Average (ARIMA) model,
have proven effective for predicting monthly rainfall in urban
centers like Dhaka and Sylhet, providing valuable data for
water resource management, urban planning, and flood miti-
gation*1:32] The combined findings confirm Bangladesh's
high vulnerability to climate change and highlight the critical
importance of these projections for safeguarding agriculture,
ensuring food security, and managing natural disaster risks.

To the best of our knowledge, there is no compara-
tive study of statistical and machine learning algorithms
used to forecast rainfall in the Barishal region. The accurate
rainfall forecasting plays a critical role for regions like Bar-
ishal, where agriculture, water resource management, and
disaster preparedness are directly affected by climatic vari-
ability. Monthly rainfall prediction is essential for planning
and mitigating adverse impacts of droughts, floods, and ir-
regular rainfall patterns. The presence of strong additive
seasonality in the available historical rainfall data necessi-
tates methodological approaches that can effectively capture
periodic fluctuations and enhance medium-term predictive
accuracy. By comparing the performance of Exponential
Smoothing, SARIMA, and LSTM models, this study aims
not only to identify suitable forecasting tools tailored to the
unique seasonal properties of Barishal’s rainfall but also to
highlight the strengths and limitations of classical statisti-
cal models versus emerging deep learning approaches in
real-world, data-constrained scenarios. Furthermore, the
study provides actionable insights for local authorities and
stakeholders by revealing the practical reliability and diag-
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nostic transparency of interpretable models, while critically
examining the potential and requirements of more advanced
neural networks. This approach ensures that the research
addresses both methodological advancement and practical
utility, justifying its relevance for improved climate adapta-
tion, agricultural planning, and resource optimization in the

Barishal region.

2. Materials and Methods

2.1. Data Sources and Data Preprocessing

The monthly rainfall data used in this study were
obtained from the Bangladesh Meteorological Depart-
ment (BMD) for the Barishal station, representing ground-
based gauge observations following WMO standards. The
dataset provides continuous monthly records for the period
1970-2022, with no major gaps in observation. Measure-
ment accuracy is 0.1 mm according to BMD specifications.
Prior to analysis, the dataset was checked for missing values,
outliers, and temporal consistency. Outliers were validated
using BMD reports to distinguish extreme events from er-
roneous measurements. No missing data were present. The
final quality-controlled dataset was used for model develop-
ment. The dataset was divided into two parts: training data
and testing data. The training part consists of 80 percent of
our total datasets, and the testing part consists of 20 percent
of our total datasets. After dividing our data into two parts,
we fit a model on the training data and forecast for the next
20 percent of the dataset.

2.2. Exponential Smoothing (ES) Model

ES is a well-known time series forecasting model. It
assumes that future patterns will be similar to the recent
past data. The mathematical formula of simple exponential
smoothing is given in Equation (1):

Yepnjt = aye + (1 — )l (1)

where [, is the level of the series at time ¢, « is the smoothing
parameter 34!, Holt and Winters extended the exponential
method to capture seasonality [*>3¢]. Hyndman et al. suggest
24 variations of the exponential smoothing model 7], Since
the data are monthly and exhibit consistent seasonality across

time, we used the Holt—Winters additive ES model with a

seasonal period of 12 to capture monthly seasonality.

2.3. (Seasonal) Autoregressive Integrated Mov-
ing Average (ARIMA) Model

The ARIMA model is also called Box—Jenkins’s
methodology, which comprises four steps: model identi-
fication, estimation, validation, and forecasting[3%]. A sea-
sonal ARIMA (SARIMA) model is formed by including
additional seasonal terms in the ARIMA model. It can be
written as SARIMA (p, d, q) (P, D, Q).,, where (p,
d, q) represent the non-seasonal autoregressive, differenc-
ing, and moving average orders and (P, D, Q) the seasonal
autoregressive, differencing, and moving average orders of
the model, and m is the seasonal period. The formula of
SARIMA (p, d, q) (P, D, Q),, model is given in Equa-
tion (2):

(1— ¢1B—...— ¢B") (1 —®B™ — ®pB"™)
(1=B)(1=B™)"yt = c+
(1+ 6:B+6:B...+ 0,B9)
(1+O©B™ + ...+ 0gB) e

where B is the backshift notation, ¢, ®, 6, and © are the pa-
rameters of the model. We used the autocorrelation function
(ACF) and partial autocorrelation function (PACF) to deter-
mine the order of the SARIMA model**). The final model
was selected based on the lowest AIC value, and parame-

2

ters were estimated using maximum likelihood. Residual
diagnostics were performed to ensure normality, absence of
autocorrelation, and homoscedasticity before producing the
final forecasts.

2.4. Long-Short Term Memory (LSTM)

The LSTM model is a very popular model for time se-
ries forecasting and was proposed by Hochreiter and Schmid-
huber in 1997191 It consists of a cell, and three gates—
forget gate, input gate, and output gate—which can handle
the vanishing gradient problem and give more control over
the context. The equation for forget, input, and output gate

are given in Equations (3)—(5):

Je=0Wp. {hi—1, x¢} + ) (3)
iy =0 (Wi {he—1, x¢} + by) 4)
o =0 (Wo. {hi—1, 2t} + bo) (5)

where W represents the weight matrix associated with gate,

{h,_, x} denotes the concatenation of the current input and
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the previous hidden state, b represents bias with the gate,
and o is the sigmoid activation function. The details can be
found in the given references =1,

In the LSTM model, normalization is required because
it performs the best when input values are within a small,
consistent range due to the use of activation functions such
as tanh and sigmoid. In our study, minimax normalization
was applied using the formula (6). In our LSTM model,
we normalize the entire training and testing data, but before
calculating accuracy metrics, we transform the data into its

original form.

X — Xmin
Kmax — Xmin

Xsclaled = (6)

In order to define model, we use a sequential construc-
tor. The model consists of a single visible layer with 64
LSTM neurons and one output dense layer. We use the Adam
optimizer with a learning rate of 0.01 and the loss function
as the mean square error to compile the model. In the model
fitting procedure, we use 300 epochs. An epoch refers to
one complete pass through the entire training dataset dur-
ing the training process of a machine learning model. Also,
we use a batch size equal to 32. The batch size refers to
the number of training examples utilized in one iteration (or
step) of the training process. We set verbose equal to 0 to
hide the progress in the animated bar. After we fit the model,
we make predictions for training and testing data. Then we
calculate the root mean square error for the training and test
data.

2.5. Model Selection Criteria

To select the best model among the set of models, we
use Akaike’s Information Criterion (AIC). To compare the
performance of ES, SARIMA, and LSTM model we use
Root Mean Square Error (RMSE), mean absolute error, cor-
relation coefficient, Nash—Sutcliffe efficiency coefficient,
and Kling—Gupta Efficiency.

2.5.1. Akaike’s Information Criterion (AIC)

In AIC, we impose a penalty for adding regressors to
the model, which has been carried further in the AIC crite-
rion, which is defined as: AIC = 2k — 21n (f) Where k

is the number of estimated parameters in the model and Lis
the maximized value of the likelihood function.

2.5.2. Root Mean Square Error (RMSE)

The error is the difference between the observed value
and the predicted value. The square of this error is called the
square error, and the mean of this square error is called the
mean square error. After taking the square root of the mean
square error, we get RMSE. The formula for RMSE is given
in Equation (7):

RMSE = |2 5° (3, — §)°

i=1

()

Where, n is the number of observations in the model,

y; are the observed values, y; are the predicted values.
2.5.3. Mean Absolute Error (MAE)

Mean absolute error is the sum of the absolute errors
divided by the total number of observations. The formula

for MAE is given in Equation (8).

MAE:M ®

Where, n is the number of observations in the model,

y; are the observed values, g; are the predicted values.
2.5.4. Correlation Coefficient R

In our study, we showed the relationship between ob-
served values and predicted values. The formula for the
correlation coefficient is given in Equation (9).

> (yi—9) (G- yl)

\ (yi— \/ vL UL

Where, n is the number of observations in the model,

)

y; are the observed values, ; are the predicted values, 3 is
the mean of observed values, and 7; is the mean of predicted

values.

2.5.5. Nash-Sutcliffe
(NSEC)

Efficiency Coefficient

NSCE proposed by Nash and Sutcliffe is used to mea-
sure how well the predicted values match the exact values [6].
The formula for NSCE is given in Equation (10).

NSEC — 1 — Zimawi=i)?
:gl(yifg)z

(10)

Where, y; are the observed values, 3; are the predicted

values, and 7 is the mean of observed values.
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2.5.6. Kling-Gupta Efficiency (KGE)

The KGE model is used to measure the prediction effi-

ciency#’l. The formula is given in Equation (11).

KGE=1-/(R-12+(a—12+(B-1)2 (1D
Where R is the correlation coefficient, « is a variability
of prediction errors, and [ is the bias term.

2.6. Software and Programming Language

In our study, to analyze our data, we used Python
3.10.12. Also, the Google Colaboratory and the Jupyter
notebook from the Anaconda distribution integrated develop-
ment environment (IDE) were used. To make our work easier
and more efficient, we use different Python libraries such
as numpy, pandas, math, datetime, matplotlib, statsmodels,

sklearn, tensorflow, keras, etc.

3. Results

Here, we use Exponential Smoothing, SARIMA, and
LSTM to forecast the monthly rainfall of the Barishal re-
gion. To analyze our data, we use the Python programming
language.

3.1. Result Analysis of Exponential Smoothing
(ES) Model

Figure 1 shows the training and testing data for the
rainfall variable. From the graph, we can see that rainfall is
at its maximum in the middle of the year and at its minimum
at the end of the year. It's repeated every year. So, there is
seasonality in the time-series variable rainfall. But there is no
trend in the rainfall data. It is a sign of additive seasonality.
Since our data shows seasonality with no trend, we chose
additive seasonality in the model fitting procedure. Also, our

data is monthly, so we use a seasonality parameter equal to 12.

1000

800 4

600 4

400 4

Total monthly Rainfall (mm)

200 4

—— Training Data
Testing Data

1970 1980 1990

2000 2010

Year

2020

Figure 1. Rainfall training and testing data.

After that, we fit the exponential smoothing model with
parameters seasonal equal, additive, and seasonal periods
equal 12. Using this model, we forecast for the next 127 steps
of rainfall data, which is the same as the test data length. Fi-
nally, we compare these forecasted values with the test data
values and calculate the different accuracy metrics such as
RMSE, MAE, R, NSEC, and KGE. Figure 2 illustrates rain-
fall data alongside predicted values. The training data is
depicted in blue, the testing data in orange, and forecasted

values in green.

3.2. Result Analysis of SARIMA Model

3.2.1. Model Identification and Estimation of
Parameter

The Seasonal Autoregressive Integrated Moving Aver-
age (SARIMA) model is an extension of the ARIMA model.
It is used for time series forecasting and analysis, particularly
when the data exhibits both trend and seasonality. Figure 1
shows the rainfall in the Barishal region from 1970 to 2022.

We used 80 percent of the data for model development and
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20 percent of the data for validation purposes. Since our
dataset shows seasonality, we take seasonal differences into

account to make the data stationary. Figure 3 shows the first
seasonal difference in the rainfall.

—— Training Data
1000 —— Testing Data
Forecasted data
800+
-
E
3
€ 600
o
[- 4
>
£
T
=]
E 400
]
]
' J
200 1
? m il I
19r70 19’30 19‘90 ZObO 20‘10 2020
Year
Figure 2. Train, test, and forecast values with the ES model.
750 4
500 <
250 4
E
£ \
= o4
g
E

~250 {

=500 4

=750 1

1970 1975 1980 1985 1990

1995 2000 2005 2010

Year

Figure 3. First-order seasonal difference of training data.

After taking into account the seasonal differences, the
data does not repeat over the same time period. In order to
determine the appropriate order for the SARIMA model, we
can use autocorrelation and partial autocorrelation function
plots. The PACF plot helps determine the autoregressive
order, i.e., p and P, and the ACF plot helps determine the
moving average order, i.e., q and Q. The ACF plot in Figure
4 shows that one seasonal lag, i.e., 12, has significant spikes,
which indicates Q = 1, and there are three significant spikes
for non-seasonal lag that indicate q = 3. The PACF plot in

Figure 5 shows that more than four seasonal lags, i.c., 12,
24, 36..., have significant spikes, which indicates P = 0, and
there are three significant spikes for non-seasonal lag that
indicate p = 3. We use the seasonal difference once to make
the time series stationary. It suggests D = 1. Therefore, the
SARIMA model becomes: SARIMA (3, 0, 3)(0,1,1);2.
We use a maximum likelihood estimator in order to estimate
the parameters of the SARIMA model. Table 1 shows the

estimated parameters.
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Figure 4. ACF for 1* seasonal difference.
1.00
0.75 A
0.50 1
0.25 1
5 I
Y 0.00
&
—0.25 4
—0.50 1
—-0.75 1
_100 T T T T T T
0 10 20 30 40 50
Lag
Figure 5. PACF for 1% seasonal difference.
Table 1. SARIMA model estimated parameter with standard error and p-value.

Parameters Coefficient Std Error p-Value
AR (1) —0.9966 2.452 0.684
AR (2) 0.9988 4912 0.839
AR (3) 0.9978 2.464 0.685
MA (1) —0.9971 3.356 0.766
MA (2) —0.9989 6.819 0.884
MA (3) —0.9980 3.468 0.774

Seasonal MA (1) —0.9997 1.719 0.561
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3.2.2. Diagnostic Checking

To determine whether the model accurately represents
the pattern of the underlying data, we must assess the model's
performance. A well-fitted model's residuals should be nor-
mally distributed in the absence of autocorrelation and het-
eroscedasticity. In order to determine it, we illustrate the
residual plot in Figure 6, where the histogram in the top right
position looks like a normal distribution. Also, the normal

Standardized residual for "T"

Q-Q plot looks like a straight line, which is a sign of residual
normality. On the other hand, the bottom right position of
Figure 6 is ACF, and all the spikes inside the significance line
indicate the absence of autocorrelation. Standardized residu-
als in the top left of Figure 6 are scattered around the ideal
line, which indicate homoscedasticity. Since the residuals of
our model show normality and the absence of autocorrelation
and heteroscedasticity, we can forecast using this model.

Histogram plus estimated density

0 160 ‘0 460

200 3
NormaIQ-(g
2 0
w 6 .
o
g 49
s
5
e 2
[=3
g 01
wr
=24
-2 -1 0 1 2

Theoretical Quantiles

0.5 1

0.0 v -

-1.0

Figure 6. First-order seasonal difference of training data.

3.2.3. Forecasting

We forecast the data for the same length as the training
data. Finally, we compare these forecasted values with the
test data values and calculate the different accuracy metrics

such as RMSE, MAE, R, NSEC, and KGE. Figure 7 displays
rainfall data with forecasted values. The training data is de-
picted in blue, the testing data in orange, and the forecasted

values in green.

1000 4

800

600

400 4

Total monthly Rainfall {(mm)

200 1

. i

- Training Data
—— Testing Data
Forecasted data

Il

1970 1980 19%0

2000 2010 2020

Year

Figure 7. Train, test, and forecasted values with the SARIMA model.
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3.3. Result Analysis of the LSTM Model

3.3.1. Data Preprocessing

We divide our dataset into two parts: the training part
consists of 80 percent of our total datasets (509 observations),
and the testing part consists of 20 percent of our total datasets
(127 observations). Because of the small dataset size, no
validation set was used for hyperparameter tuning, as has
been done in several related studies ?®#3). The LSTM model
requires special preprocessing of the data. LSTM requires
a three-dimensional dataset, i.e., samples, time steps, and
features. For the case of model building, we use samples
equal to 509, timesteps equal to 12, and the number of fea-
tures equal to 1. Also, LSTM is sensitive to the scaling of the
dataset. We use the MinMax scalar to transform the values
between 0 and 1.

3.3.2. LSTM Model Fit and Evaluation

These steps consist of defining, fitting, predicting, fore-
casting, and finally evaluating the model's performance. In
our LSTM model, we define a sequential constructor with
a visible layer of 64 LSTM neurons and one output dense
layer. After that, we fit the model and forecast for the testing
data. To evaluate the performance of the model, we calculate
the evaluation metrics RMSE, MAE, R, NSEC, and KGE.
The values for these metrices are represented in the Table
2 and the values are 150.34, 100.95, 0.60, 0.27, and 0.60,
respectively. Figure 8 depicts the forecasted values along
with training and testing data. The blue line represents the
training data, the line in orange represents the testing data,
and the green line indicates forecasted values. Due to the
use of a 12-month time stamp, the forecasted series begins

after the first 12 months of the testing period.

Table 2. Accuracy metrices for ES, SARIMA, and LSTM models.

Model RMSE MAE R NSEC KGE
ES 109.35 73.60 0.79 0.62 0.74
SARIMA 109.49 73.69 0.79 0.62 0.74
LSTM 150.34 100.95 0.60 0.27 0.60

1000

800

600

Total monthly Rainfall (mm)

200

Training Data
Testing Data
—— Forecasted data

1970 1980 1990

2000 2010 2020

Year

Figure 8. Train, test, and predict train and test values with LSTM model.

4. Discussion

The current analysis evaluates the forecasting perfor-
mance of three models—Exponential Smoothing, SARIMA,
and LSTM—for predicting monthly rainfall in the Barishal
region. The evaluation metrics (RMSE, MAE, R, NSEC, and

KGE) suggest that classical statistical models outperform
deep learning models in this study. The Exponential Smooth-
ing model achieved the lowest forecast error, as measured by
an RMSE of 109.35 and an MAE of 73.60. The SARIMA
model, benefiting from the inclusion of seasonal and non-
seasonal autoregressive and moving average terms, produced
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a nearly similar RMSE of 109.49 and MAE of 73.69. This
result suggests that ES and SARIMA effectively captured
the seasonal behavior and overall temporal pattern. Also, in
literature, it is found that statistical models are really useful
to predict the temperature[!>18:311,

The LSTM neural network, which requires more com-
plex data preparation and is sensitive to feature scaling, pro-
duced a higher RMSE (150.34), MAE (100.95), and lower
R (0.60), NSEC (0.27), and KGE (0.60), indicating potential
overfitting and the need for larger datasets or more advanced
tuning. For our dataset, the statistical model performs better
than the machine learning method, but many studies found
that machine learning algorithms perform better in terms of

#3451 The superior performance of the

predicting rainfalll
ES model can be explained by its stable additive seasonality.
The Holt—Winters additive formulation explicitly decom-
poses the time series into level and seasonal components,
enabling it to efficiently capture recurring monsoon-driven
rainfall patterns with relatively constant amplitude over time.
Because of the absence of a strong long-term trend and the
dominance of seasonal variation, the ES model provides an
effective representation of the underlying data-generating
process. Its reliance on a limited number of parameters re-
duces the risk of overfitting, making it particularly robust in
data-constrained environments.

Similarly, the SARIMA model demonstrates reliable
forecasting performance due to its stochastic structure and
well-established diagnostic framework. By incorporating
both seasonal and non-seasonal autoregressive and moving
average components, SARIMA effectively models serial de-
pendence and seasonal persistence inherent in rainfall time
series. An important advantage of SARIMA lies in its diag-
nostic transparency, allowing for systematic verification of
model assumptions through residual analysis. The confir-
mation of residual normality, homoscedasticity, and absence
of autocorrelation in this study indicates that the model ade-
quately captures the temporal dynamics of rainfall variability,
thereby supporting the reliability of forecasting.

In contrast, the Long Short-Term Memory (LSTM)
model exhibits inferior performance in this application, pri-
marily due to its high data requirements and sensitivity to
sample size. Although LSTM networks are capable of learn-
ing complex non-linear relationships and long-term depen-

dencies, their effectiveness is contingent upon the availabil-

ity of large and information-rich datasets. The univariate
monthly rainfall series used in this study provides limited
training samples, increasing the likelihood of overfitting and
reducing generalization capability. Furthermore, unlike clas-
sical statistical models, LSTM does not inherently encode
seasonal structure, requiring either extensive data, architec-
tural modifications, or additional explanatory variables to
adequately capture periodic behavior. Consequently, under
the constraints of limited data and the absence of exogenous
predictors, the LSTM model fails to outperform simpler sta-
tistical approaches.

A limitation shared by all models is the absence of
exogenous predictors such as climate indices or meteorolog-
ical measurements, which could provide a richer context and
improve forecast accuracy, particularly for extreme events.
One can extend the study by expanding the dataset, inte-
grating exogenous variables such as temperature, relative
humidity, wind speed, and spatial rainfall interactions, and
exploring ensemble or hybrid modeling approaches, which
could substantially enhance the reliability and applicability
of forecasts. Additionally, adapting model evaluation meth-
ods to prioritize practical needs—such as warning for flood
risks, rather than just reducing average error—would make
future research even more meaningful to local stakeholders
and disaster risk management efforts. Overall, while classi-
cal statistical approaches remain robust and interpretable for
this rainfall forecasting task, the adoption of advanced deep
learning models, such as LSTM, warrants further investi-
gation, given adequate data and methodological enhance-
ments.

5. Conclusions

The comparative analysis of ES, SARIMA, and LSTM
models for monthly rainfall forecasting in Barishal re-
veals that both classical statistical approaches—ES and
SARIMA—are highly effective in capturing the underly-
ing seasonal patterns found in the rainfall data. The RMSE
values obtained (around 109 for both models on the test set)
demonstrate their strong predictive ability and suitability for
regional applications. SARIMA’s strength lies not only in its
performance but also in its diagnostic clarity, as its residuals
exhibit normal distribution, homoscedasticity, and a lack of

autocorrelation, ensuring its forecasts are unbiased and reli-
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able. On the other hand, the LSTM neural network, while
demonstrating the capacity for complex pattern recognition
and yielding very low error on the training data, struggled
with generalization, as evidenced by its higher test RMSE
(150.34). This suggests that advanced deep learning models
may require larger datasets, more features, and sophisticated
tuning to outperform classical methods in this context.

Importantly, all models were limited by the absence
of exogenous variables; the inclusion of climate indices or
meteorological observations could potentially enhance fore-
cast accuracy and practical relevance, especially for extreme
events. The reliance on RMSE as the sole metric means the
models’ proficiency in detecting unusual rainfall events or
anomalies is not fully evaluated. For future work, expand-
ing the scope to include additional predictors, longer and
richer time series, or hybrid model ensembles could improve
forecast reliability and robustness. Moreover, tailoring eval-
uation metrics to reflect the practical needs of stakeholders—
such as providing actionable flood warnings—can increase
the societal value of these models.

Overall, for the Barishal region, SARIMA and Expo-
nential Smoothing emerge as robust, interpretable, and ac-
cessible tools for monthly rainfall forecasting, while the
promise of deep learning approaches remains contingent on
addressing data and methodological challenges. The findings
guide practitioners and policymakers in favoring classical
approaches under current data constraints, while also encour-
aging ongoing innovation and methodological refinement to

meet evolving climate forecasting demands.
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