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ABSTRACT

Rainfall prediction is crucial for agricultural planning and water resource management, as Bangladesh’s agriculture

heavily depends on rainfed irrigation. Existing forecasting models are complex and costly, both budgetarily and computa-

tionally. As a result, our study evaluates the comparative performance of forecasting models, comprising two traditional

time series models (Exponential Smoothing (ES) and Seasonal Autoregressive Integrated Moving Average (SARIMA)),

and one machine learning model (Long Short-Term Memory (LSTM)). The monthly rainfall data for Barishal, Bangladesh,

spanning the period from 1970 to 2022, were obtained from the Bangladesh Meteorological Department. The models’

performance was assessed using root mean square error (RMSE), mean absolute error (MAE), correlation coefficient (R),

Nash-Sutcliffe efficiency coefficient (NSEC), and Kling-Gupta Efficiency (KGE). The ES and SARIMAmodels perform

closely. With RMSE, MAE, R, NSEC, and KGE values of 109.35, 73.60, 0.79, 0.62, and 0.74, respectively, the ES model

performs better than the SARIMAmodel. On the other hand, the machine learning model LSTM struggled with the test

data, resulting in a higher RMSE (150.34), MAE (100.95), and lower R (0.60), NSEC (0.27), and KGE (0.60) values. This

indicates that for the small dataset, the LSTM machine learning model is less effective. Therefore, our suggestion is to

use a statistical model, especially the ES model, to forecast monthly rainfall in the Barishal division, as it is effective and

computationally efficient. These findings are beneficial for policy development, the pesticide industry, tourism, event

management, water conservation, and predicting floods and droughts.
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1. Introduction

Rainfall is one of the most significant meteorological

variables, which is used for the prediction of floods and mon-

itoring pollutant concentration [1,2]. Also, the prediction of

rainfall is a significant concern globally due to its impact

on various economic sectors, including agriculture, fishing,

tourism, infrastructure, and water resource management [3–7].

The forecasting of rainfall is challenging because of the dy-

namic behavior and complex patterns [8].

Bangladesh is an agricultural country. Rice, wheat,

maize, and barley are the main cereals grown here, while

jute, tobacco, sugarcane, cotton, and tea are the key cash

crops [9]. Accurate rainfall forecasting is crucial, as it signifi-

cantly impacts agricultural productivity. Adequate rainfall

can serve as an alternative to irrigation, influencing the yield

of crops like sugarcane, rainfed rice, and boro rice [10–13].

Conversely, untimely rains can reduce the effectiveness of

insecticides, leading to decreased agricultural output. Rain-

fall in Bangladesh varies by season and location. The country

experiences four distinct seasons: a warm winter from De-

cember to February, a hot pre-monsoon summer from March

to May, a rainy season from June to September, and an au-

tumnal post-monsoon period from October to November [14].

Therefore, predicting accurate rainfall will be handy in vari-

ous ways.

Various methods are used to predict rainfall. The

ARIMAmodel is a widely used method for forecasting the

rainfall data in different regions of the world [15–18], while

multiple linear regression was applied to predict monthly

rainfall in Assam [19]. The comparative analysis of ARIMA

and ANN was used for forecasting the rainfall in Hyderabad,

India [20]. Traditional statistical and physically-based models

have long been the standard for weather prediction, but they

face several inherent limitations that constrain their effective-

ness in modern applications. Conventional statistical models

can be computationally intensive and costly to implement,

both in terms of processing power and budget [1]. The re-

lationships governing rainfall are fundamentally non-linear.

This makes it difficult for conventional linear models, such as

Autoregressive Integrated MovingAverage (ARIMA) and its

seasonal variant SARIMA, to accurately capture the dynam-

ics of precipitation [1,21]. Physically-based models demand a

profound understanding of the water cycle and require de-

tailed geophysical data, such as soil profiles and land use

characteristics. This information is often laborious to collect

and may be unavailable for many regions [21].

In contrast, data-driven machine learning techniques

have emerged as a powerful alternative, overcoming many

of the drawbacks of traditional methods. ML models excel

at identifying and learning complex, non-linear relationships

directly from historical data without requiring explicit pro-

gramming of the physical processes involved. This makes

them more flexible and often less expensive to develop and

deploy, as they do not necessitate deep, a priori knowledge of

the underlying hydrological system [1,21]. The demonstrated

superiority of ML in handling the stochastic and dynamic na-

ture of weather data has led to extensive research into various

model architectures to further refine forecasting accuracy.

In recent times, machine learning and deep learning meth-

ods are widely used by researchers to predict rainfall using

different algorithms such as feedforward neural networks,

recurrent neural networks, long short-term memory (LSTM),

gradient boosting, extreme gradient boosting, and linear sup-

port vector regressor [1,22–24]. The core strength of Recurrent

Neural Networks (RNNs) and their advanced variant, Long

Short-Term Memory (LSTM) networks, lies in their inherent

ability to process sequential data. By maintaining an internal

state or “memory,” they can learn from past observations and

identify long-term dependencies, making them exceptionally

well-suited for time-series forecasting tasks [1,25]. However,

their practical performance varies significantly based on the

specific application and dataset characteristics. In a study

forecasting hourly rainfall across five UK cities, models

based on LSTM, Stacked-LSTM, and Bidirectional-LSTM

networks demonstrated the best performance, outperforming

both a robust XGBoost model and an AutoML-generated

ensemble. Notably, the top-performing architectures were a

Stacked-LSTM with two hidden layers and a Bidirectional-

LSTM, suggesting that excessive model complexity is not

always beneficial [1]. In contrast, a study of four Jordanian

cities found that a standard RNN model outperformed both
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LSTM and a hybrid CNN-RNN. This outcome highlights

the importance of matching model complexity to data char-

acteristics. The researchers reasoned that because the data

was recorded hourly, the long-term dependencies that the

LSTM leverages may be less salient or insufficient to en-

hance its performance. The RNN's simpler architecture was

better aligned with the short-to-medium term patterns in

the data [25]. For a data-scarce basin in Kenya, an LSTM

model marginally outperformed a Wavelet Neural Network

(WNN) for both rainfall and runoff prediction, showcasing

its utility even when data is limited [26]. Thus, the appli-

cation of machine learning (ML) and deep learning (DL)

has fundamentally advanced the field of rainfall and hydro-

logical forecasting, establishing a new state-of-the-art. A

comprehensive review of recent studies indicates that deep

learning models—specifically Long Short-Term Memory

(LSTM), Recurrent Neural Networks (RNN), and Convo-

lutional Neural Networks (CNN)—consistently outperform

traditional statistical methods like ARIMA and SARIMA in

accuracy and their ability to model complex, non-linear sys-

tems [21]. However, there is no universally superior model;

performance is highly context-dependent and varies signif-

icantly with geographical location, climate type, and data

characteristics [1,25]. A critical, cross-cutting finding is that

multivariate models, which incorporate a range of meteoro-

logical variables such as temperature, humidity, and wind

speed, are demonstrably more effective than univariate ap-

proaches that rely solely on past rainfall data [25,27]. Despite

these advancements, persistent challenges remain, including

poor model generalization to new data, difficulty in accu-

rately predicting extreme weather events, and a tendency for

systematic underestimation of total precipitation [1,28].

In Bangladesh, several studies have focused on rain-

fall prediction. Global climate models were used to predict

rainfall during the Rabi and Kharif-II seasons [29,30]. For the

Dhaka and Sylhet divisions, the ARIMA model has been

used to forecast the precipitation [31,32]. Historical data from

Barishal for the period 1961–2019 shows a clear warming

trend, with the yearly average maximum temperature increas-

ing at a rate of 0.0055 ºC/year and the minimum at 0.0087

ºC/year. During the same period, annual total rainfall in

the region showed a declining trend of −0.18488 mm/year,

while relative humidity rose sharply [33]. Future projections

for the mid-century (2040–2060), derived from ensembles

of Global Climate Models (GCMs), forecast continued and

significant changes, particularly in rainfall patterns. During

the Kharif-II season (Mid-July to Mid-October), precipita-

tion is expected to increase in July, September, and October,

but may decrease in August. Similarly, during the Rabi

season (January to April), precipitation is projected to in-

crease from January through March but decrease in April

compared to the 2010–2018 baseline [29,30]. Regional dispar-

ities are pronounced. The Mymensingh and Sylhet divisions

are projected to experience dramatic increases in precipi-

tation during the Kharif-II season, while the north-eastern

region (Sylhet) consistently shows the highest rainfall and the

western region (Rajshahi) the lowest during the Rabi season.

These regional variations underscore the need for localized

adaptation strategies. Statistical forecasting tools, such as the

Autoregressive Integrated MovingAverage (ARIMA) model,

have proven effective for predicting monthly rainfall in urban

centers like Dhaka and Sylhet, providing valuable data for

water resource management, urban planning, and flood miti-

gation [31,32]. The combined findings confirm Bangladesh's

high vulnerability to climate change and highlight the critical

importance of these projections for safeguarding agriculture,

ensuring food security, and managing natural disaster risks.

To the best of our knowledge, there is no compara-

tive study of statistical and machine learning algorithms

used to forecast rainfall in the Barishal region. The accurate

rainfall forecasting plays a critical role for regions like Bar-

ishal, where agriculture, water resource management, and

disaster preparedness are directly affected by climatic vari-

ability. Monthly rainfall prediction is essential for planning

and mitigating adverse impacts of droughts, floods, and ir-

regular rainfall patterns. The presence of strong additive

seasonality in the available historical rainfall data necessi-

tates methodological approaches that can effectively capture

periodic fluctuations and enhance medium-term predictive

accuracy. By comparing the performance of Exponential

Smoothing, SARIMA, and LSTM models, this study aims

not only to identify suitable forecasting tools tailored to the

unique seasonal properties of Barishal’s rainfall but also to

highlight the strengths and limitations of classical statisti-

cal models versus emerging deep learning approaches in

real-world, data-constrained scenarios. Furthermore, the

study provides actionable insights for local authorities and

stakeholders by revealing the practical reliability and diag-
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nostic transparency of interpretable models, while critically

examining the potential and requirements of more advanced

neural networks. This approach ensures that the research

addresses both methodological advancement and practical

utility, justifying its relevance for improved climate adapta-

tion, agricultural planning, and resource optimization in the

Barishal region.

2. Materials and Methods

2.1. Data Sources and Data Preprocessing

The monthly rainfall data used in this study were

obtained from the Bangladesh Meteorological Depart-

ment (BMD) for the Barishal station, representing ground-

based gauge observations following WMO standards. The

dataset provides continuous monthly records for the period

1970–2022, with no major gaps in observation. Measure-

ment accuracy is ±0.1 mm according to BMD specifications.

Prior to analysis, the dataset was checked for missing values,

outliers, and temporal consistency. Outliers were validated

using BMD reports to distinguish extreme events from er-

roneous measurements. No missing data were present. The

final quality-controlled dataset was used for model develop-

ment. The dataset was divided into two parts: training data

and testing data. The training part consists of 80 percent of

our total datasets, and the testing part consists of 20 percent

of our total datasets. After dividing our data into two parts,

we fit a model on the training data and forecast for the next

20 percent of the dataset.

2.2. Exponential Smoothing (ES) Model

ES is a well-known time series forecasting model. It

assumes that future patterns will be similar to the recent

past data. The mathematical formula of simple exponential

smoothing is given in Equation (1):

ŷt+h|t = αyt + (1− α)lt−1 (1)

where lt is the level of the series at time t, α is the smoothing

parameter [34]. Holt and Winters extended the exponential

method to capture seasonality [35,36]. Hyndman et al. suggest

24 variations of the exponential smoothing model [37]. Since

the data are monthly and exhibit consistent seasonality across

time, we used the Holt–Winters additive ES model with a

seasonal period of 12 to capture monthly seasonality.

2.3. (Seasonal) Autoregressive Integrated Mov-

ing Average (ARIMA) Model

The ARIMA model is also called Box–Jenkins’s

methodology, which comprises four steps: model identi-

fication, estimation, validation, and forecasting [38]. A sea-

sonal ARIMA (SARIMA) model is formed by including

additional seasonal terms in the ARIMA model. It can be

written as SARIMA (p, d, q) (P, D, Q)m, where (p,

d, q) represent the non-seasonal autoregressive, differenc-

ing, and moving average orders and (P, D, Q) the seasonal

autoregressive, differencing, and moving average orders of

the model, and m is the seasonal period. The formula of

SARIMA (p, d, q) (P, D, Q)m model is given in Equa-

tion (2):

(1− φ1B − . . .− φpB
p)

(
1− Φ1B

m − ΦPB
Pm

)
(1−B)d (1−Bm)D yt = c+
(1 + θ1B + θ2B . . .+ θqB

q)(
1 + ΘBm + . . .+ θQB

Qm
)
εt

(2)

where B is the backshift notation, φ, Φ, θ, andΘ are the pa-

rameters of the model. We used the autocorrelation function

(ACF) and partial autocorrelation function (PACF) to deter-

mine the order of the SARIMAmodel [39]. The final model

was selected based on the lowest AIC value, and parame-

ters were estimated using maximum likelihood. Residual

diagnostics were performed to ensure normality, absence of

autocorrelation, and homoscedasticity before producing the

final forecasts.

2.4. Long-Short Term Memory (LSTM)

The LSTM model is a very popular model for time se-

ries forecasting and was proposed by Hochreiter and Schmid-

huber in 1997 [40]. It consists of a cell, and three gates—

forget gate, input gate, and output gate—which can handle

the vanishing gradient problem and give more control over

the context. The equation for forget, input, and output gate

are given in Equations (3)–(5):

ft = σ (Wf . {ht−1, xt}+ bf ) (3)

it = σ (Wi. {ht−1, xt}+ bi) (4)

ot = σ (Wo. {ht−1, xt}+ bo) (5)

whereW represents the weight matrix associated with gate,

{ht−1,xt} denotes the concatenation of the current input and
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the previous hidden state, b represents bias with the gate,

and σ is the sigmoid activation function. The details can be

found in the given references [41–45].

In the LSTM model, normalization is required because

it performs the best when input values are within a small,

consistent range due to the use of activation functions such

as tanh and sigmoid. In our study, minimax normalization

was applied using the formula (6). In our LSTM model,

we normalize the entire training and testing data, but before

calculating accuracy metrics, we transform the data into its

original form.

Xsclaled = X−Xmin

Xmax−Xmin
(6)

In order to define model, we use a sequential construc-

tor. The model consists of a single visible layer with 64

LSTM neurons and one output dense layer. We use theAdam

optimizer with a learning rate of 0.01 and the loss function

as the mean square error to compile the model. In the model

fitting procedure, we use 300 epochs. An epoch refers to

one complete pass through the entire training dataset dur-

ing the training process of a machine learning model. Also,

we use a batch size equal to 32. The batch size refers to

the number of training examples utilized in one iteration (or

step) of the training process. We set verbose equal to 0 to

hide the progress in the animated bar. After we fit the model,

we make predictions for training and testing data. Then we

calculate the root mean square error for the training and test

data.

2.5. Model Selection Criteria

To select the best model among the set of models, we

use Akaike’s Information Criterion (AIC). To compare the

performance of ES, SARIMA, and LSTM model we use

Root Mean Square Error (RMSE), mean absolute error, cor-

relation coefficient, Nash–Sutcliffe efficiency coefficient,

and Kling–Gupta Efficiency.

2.5.1. Akaike’s Information Criterion (AIC)

In AIC, we impose a penalty for adding regressors to

the model, which has been carried further in the AIC crite-

rion, which is defined as: AIC = 2k − 2 ln
(
L̂
)
. Where k

is the number of estimated parameters in the model and L̂ is

the maximized value of the likelihood function.

2.5.2. Root Mean Square Error (RMSE)

The error is the difference between the observed value

and the predicted value. The square of this error is called the

square error, and the mean of this square error is called the

mean square error. After taking the square root of the mean

square error, we get RMSE. The formula for RMSE is given

in Equation (7):

RMSE =

√
1
n

n∑
i=1

(yi − ŷi)
2

(7)

Where, n is the number of observations in the model,

yi are the observed values, ŷi are the predicted values.

2.5.3. Mean Absolute Error (MAE)

Mean absolute error is the sum of the absolute errors

divided by the total number of observations. The formula

for MAE is given in Equation (8).

MAE =
∑n

i=1|yi−ŷi|
n

(8)

Where, n is the number of observations in the model,

yi are the observed values, ŷi are the predicted values.

2.5.4. Correlation Coefficient R

In our study, we showed the relationship between ob-

served values and predicted values. The formula for the

correlation coefficient is given in Equation (9).

R =
∑n

i=1 (yi−y)(ŷl−ŷi)√
(yi−y)2

√(
yi−ŷi

)2 (9)

Where, n is the number of observations in the model,

yi are the observed values, ŷi are the predicted values, y is

the mean of observed values, and ŷi is the mean of predicted

values.

2.5.5. Nash-Sutcliffe Efficiency Coefficient

(NSEC)

NSCE proposed by Nash and Sutcliffe is used to mea-

sure how well the predicted values match the exact values [46].

The formula for NSCE is given in Equation (10).

NSEC = 1−
∑n

i=1(yi−ŷi)
2∑n

i=1(yi−y)2
(10)

Where, yi are the observed values, ŷi are the predicted

values, and y is the mean of observed values.
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2.5.6. Kling-Gupta Efficiency (KGE)

The KGE model is used to measure the prediction effi-

ciency [47]. The formula is given in Equation (11).

KGE = 1−
√

(R− 1)2 + (α− 1)2 + (β − 1)2 (11)

Where R is the correlation coefficient, α is a variability

of prediction errors, and β is the bias term.

2.6. Software and Programming Language

In our study, to analyze our data, we used Python

3.10.12. Also, the Google Colaboratory and the Jupyter

notebook from theAnaconda distribution integrated develop-

ment environment (IDE) were used. To make our work easier

and more efficient, we use different Python libraries such

as numpy, pandas, math, datetime, matplotlib, statsmodels,

sklearn, tensorflow, keras, etc.

3. Results

Here, we use Exponential Smoothing, SARIMA, and

LSTM to forecast the monthly rainfall of the Barishal re-

gion. To analyze our data, we use the Python programming

language.

3.1. Result Analysis of Exponential Smoothing

(ES) Model

Figure 1 shows the training and testing data for the

rainfall variable. From the graph, we can see that rainfall is

at its maximum in the middle of the year and at its minimum

at the end of the year. It's repeated every year. So, there is

seasonality in the time-series variable rainfall. But there is no

trend in the rainfall data. It is a sign of additive seasonality.

Since our data shows seasonality with no trend, we chose

additive seasonality in the model fitting procedure. Also, our

data is monthly, so we use a seasonality parameter equal to 12.

Figure 1. Rainfall training and testing data.

After that, we fit the exponential smoothing model with

parameters seasonal equal, additive, and seasonal periods

equal 12. Using this model, we forecast for the next 127 steps

of rainfall data, which is the same as the test data length. Fi-

nally, we compare these forecasted values with the test data

values and calculate the different accuracy metrics such as

RMSE, MAE, R, NSEC, and KGE. Figure 2 illustrates rain-

fall data alongside predicted values. The training data is

depicted in blue, the testing data in orange, and forecasted

values in green.

3.2. Result Analysis of SARIMAModel

3.2.1. Model Identification and Estimation of

Parameter

The Seasonal Autoregressive Integrated Moving Aver-

age (SARIMA) model is an extension of the ARIMAmodel.

It is used for time series forecasting and analysis, particularly

when the data exhibits both trend and seasonality. Figure 1

shows the rainfall in the Barishal region from 1970 to 2022.

We used 80 percent of the data for model development and
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20 percent of the data for validation purposes. Since our

dataset shows seasonality, we take seasonal differences into

account to make the data stationary. Figure 3 shows the first

seasonal difference in the rainfall.

Figure 2. Train, test, and forecast values with the ES model.

Figure 3. First-order seasonal difference of training data.

After taking into account the seasonal differences, the

data does not repeat over the same time period. In order to

determine the appropriate order for the SARIMAmodel, we

can use autocorrelation and partial autocorrelation function

plots. The PACF plot helps determine the autoregressive

order, i.e., p and P, and the ACF plot helps determine the

moving average order, i.e., q and Q. The ACF plot in Figure

4 shows that one seasonal lag, i.e., 12, has significant spikes,

which indicates Q = 1, and there are three significant spikes

for non-seasonal lag that indicate q = 3. The PACF plot in

Figure 5 shows that more than four seasonal lags, i.e., 12,

24, 36..., have significant spikes, which indicates P = 0, and

there are three significant spikes for non-seasonal lag that

indicate p = 3. We use the seasonal difference once to make

the time series stationary. It suggests D = 1. Therefore, the

SARIMAmodel becomes: SARIMA (3, 0, 3)(0, 1, 1)12.

We use a maximum likelihood estimator in order to estimate

the parameters of the SARIMAmodel. Table 1 shows the

estimated parameters.
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Figure 4. ACF for 1st seasonal difference.

Figure 5. PACF for 1st seasonal difference.

Table 1. SARIMAmodel estimated parameter with standard error and p-value.

Parameters Coefficient Std Error p-Value

AR (1) −0.9966 2.452 0.684

AR (2) 0.9988 4.912 0.839

AR (3) 0.9978 2.464 0.685

MA (1) −0.9971 3.356 0.766

MA (2) −0.9989 6.819 0.884

MA (3) −0.9980 3.468 0.774

Seasonal MA (1) −0.9997 1.719 0.561
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3.2.2. Diagnostic Checking

To determine whether the model accurately represents

the pattern of the underlying data, we must assess the model's

performance. Awell-fitted model's residuals should be nor-

mally distributed in the absence of autocorrelation and het-

eroscedasticity. In order to determine it, we illustrate the

residual plot in Figure 6, where the histogram in the top right

position looks like a normal distribution. Also, the normal

Q-Q plot looks like a straight line, which is a sign of residual

normality. On the other hand, the bottom right position of

Figure 6 isACF, and all the spikes inside the significance line

indicate the absence of autocorrelation. Standardized residu-

als in the top left of Figure 6 are scattered around the ideal

line, which indicate homoscedasticity. Since the residuals of

our model show normality and the absence of autocorrelation

and heteroscedasticity, we can forecast using this model.

Figure 6. First-order seasonal difference of training data.

3.2.3. Forecasting

We forecast the data for the same length as the training

data. Finally, we compare these forecasted values with the

test data values and calculate the different accuracy metrics

such as RMSE, MAE, R, NSEC, and KGE. Figure 7 displays

rainfall data with forecasted values. The training data is de-

picted in blue, the testing data in orange, and the forecasted

values in green.

Figure 7. Train, test, and forecasted values with the SARIMAmodel.
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3.3. Result Analysis of the LSTMModel

3.3.1. Data Preprocessing

We divide our dataset into two parts: the training part

consists of 80 percent of our total datasets (509 observations),

and the testing part consists of 20 percent of our total datasets

(127 observations). Because of the small dataset size, no

validation set was used for hyperparameter tuning, as has

been done in several related studies [28,45]. The LSTM model

requires special preprocessing of the data. LSTM requires

a three-dimensional dataset, i.e., samples, time steps, and

features. For the case of model building, we use samples

equal to 509, timesteps equal to 12, and the number of fea-

tures equal to 1. Also, LSTM is sensitive to the scaling of the

dataset. We use the MinMax scalar to transform the values

between 0 and 1.

3.3.2. LSTMModel Fit and Evaluation

These steps consist of defining, fitting, predicting, fore-

casting, and finally evaluating the model's performance. In

our LSTM model, we define a sequential constructor with

a visible layer of 64 LSTM neurons and one output dense

layer. After that, we fit the model and forecast for the testing

data. To evaluate the performance of the model, we calculate

the evaluation metrics RMSE, MAE, R, NSEC, and KGE.

The values for these metrices are represented in the Table

2 and the values are 150.34, 100.95, 0.60, 0.27, and 0.60,

respectively. Figure 8 depicts the forecasted values along

with training and testing data. The blue line represents the

training data, the line in orange represents the testing data,

and the green line indicates forecasted values. Due to the

use of a 12-month time stamp, the forecasted series begins

after the first 12 months of the testing period.

Table 2. Accuracy metrices for ES, SARIMA, and LSTM models.

KGENSECRMAERMSEModel

0.740.620.7973.60109.35ES

0.740.620.7973.69109.49SARIMA

0.600.270.60100.95150.34LSTM

Figure 8. Train, test, and predict train and test values with LSTM model.

4. Discussion

The current analysis evaluates the forecasting perfor-

mance of three models—Exponential Smoothing, SARIMA,

and LSTM—for predicting monthly rainfall in the Barishal

region. The evaluation metrics (RMSE, MAE, R, NSEC, and

KGE) suggest that classical statistical models outperform

deep learning models in this study. The Exponential Smooth-

ing model achieved the lowest forecast error, as measured by

an RMSE of 109.35 and an MAE of 73.60. The SARIMA

model, benefiting from the inclusion of seasonal and non-

seasonal autoregressive and moving average terms, produced
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a nearly similar RMSE of 109.49 and MAE of 73.69. This

result suggests that ES and SARIMA effectively captured

the seasonal behavior and overall temporal pattern. Also, in

literature, it is found that statistical models are really useful

to predict the temperature [15,18,31].

The LSTM neural network, which requires more com-

plex data preparation and is sensitive to feature scaling, pro-

duced a higher RMSE (150.34), MAE (100.95), and lower

R (0.60), NSEC (0.27), and KGE (0.60), indicating potential

overfitting and the need for larger datasets or more advanced

tuning. For our dataset, the statistical model performs better

than the machine learning method, but many studies found

that machine learning algorithms perform better in terms of

predicting rainfall [43,45]. The superior performance of the

ES model can be explained by its stable additive seasonality.

The Holt–Winters additive formulation explicitly decom-

poses the time series into level and seasonal components,

enabling it to efficiently capture recurring monsoon-driven

rainfall patterns with relatively constant amplitude over time.

Because of the absence of a strong long-term trend and the

dominance of seasonal variation, the ES model provides an

effective representation of the underlying data-generating

process. Its reliance on a limited number of parameters re-

duces the risk of overfitting, making it particularly robust in

data-constrained environments.

Similarly, the SARIMAmodel demonstrates reliable

forecasting performance due to its stochastic structure and

well-established diagnostic framework. By incorporating

both seasonal and non-seasonal autoregressive and moving

average components, SARIMA effectively models serial de-

pendence and seasonal persistence inherent in rainfall time

series. An important advantage of SARIMA lies in its diag-

nostic transparency, allowing for systematic verification of

model assumptions through residual analysis. The confir-

mation of residual normality, homoscedasticity, and absence

of autocorrelation in this study indicates that the model ade-

quately captures the temporal dynamics of rainfall variability,

thereby supporting the reliability of forecasting.

In contrast, the Long Short-Term Memory (LSTM)

model exhibits inferior performance in this application, pri-

marily due to its high data requirements and sensitivity to

sample size. Although LSTM networks are capable of learn-

ing complex non-linear relationships and long-term depen-

dencies, their effectiveness is contingent upon the availabil-

ity of large and information-rich datasets. The univariate

monthly rainfall series used in this study provides limited

training samples, increasing the likelihood of overfitting and

reducing generalization capability. Furthermore, unlike clas-

sical statistical models, LSTM does not inherently encode

seasonal structure, requiring either extensive data, architec-

tural modifications, or additional explanatory variables to

adequately capture periodic behavior. Consequently, under

the constraints of limited data and the absence of exogenous

predictors, the LSTM model fails to outperform simpler sta-

tistical approaches.

A limitation shared by all models is the absence of

exogenous predictors such as climate indices or meteorolog-

ical measurements, which could provide a richer context and

improve forecast accuracy, particularly for extreme events.

One can extend the study by expanding the dataset, inte-

grating exogenous variables such as temperature, relative

humidity, wind speed, and spatial rainfall interactions, and

exploring ensemble or hybrid modeling approaches, which

could substantially enhance the reliability and applicability

of forecasts. Additionally, adapting model evaluation meth-

ods to prioritize practical needs—such as warning for flood

risks, rather than just reducing average error—would make

future research even more meaningful to local stakeholders

and disaster risk management efforts. Overall, while classi-

cal statistical approaches remain robust and interpretable for

this rainfall forecasting task, the adoption of advanced deep

learning models, such as LSTM, warrants further investi-

gation, given adequate data and methodological enhance-

ments.

5. Conclusions

The comparative analysis of ES, SARIMA, and LSTM

models for monthly rainfall forecasting in Barishal re-

veals that both classical statistical approaches—ES and

SARIMA—are highly effective in capturing the underly-

ing seasonal patterns found in the rainfall data. The RMSE

values obtained (around 109 for both models on the test set)

demonstrate their strong predictive ability and suitability for

regional applications. SARIMA’s strength lies not only in its

performance but also in its diagnostic clarity, as its residuals

exhibit normal distribution, homoscedasticity, and a lack of

autocorrelation, ensuring its forecasts are unbiased and reli-
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able. On the other hand, the LSTM neural network, while

demonstrating the capacity for complex pattern recognition

and yielding very low error on the training data, struggled

with generalization, as evidenced by its higher test RMSE

(150.34). This suggests that advanced deep learning models

may require larger datasets, more features, and sophisticated

tuning to outperform classical methods in this context.

Importantly, all models were limited by the absence

of exogenous variables; the inclusion of climate indices or

meteorological observations could potentially enhance fore-

cast accuracy and practical relevance, especially for extreme

events. The reliance on RMSE as the sole metric means the

models’ proficiency in detecting unusual rainfall events or

anomalies is not fully evaluated. For future work, expand-

ing the scope to include additional predictors, longer and

richer time series, or hybrid model ensembles could improve

forecast reliability and robustness. Moreover, tailoring eval-

uation metrics to reflect the practical needs of stakeholders—

such as providing actionable flood warnings—can increase

the societal value of these models.

Overall, for the Barishal region, SARIMA and Expo-

nential Smoothing emerge as robust, interpretable, and ac-

cessible tools for monthly rainfall forecasting, while the

promise of deep learning approaches remains contingent on

addressing data and methodological challenges. The findings

guide practitioners and policymakers in favoring classical

approaches under current data constraints, while also encour-

aging ongoing innovation and methodological refinement to

meet evolving climate forecasting demands.

Author Contributions

S.C., I.A. andM.S.U.R. conceived of the presented idea

and developed the theory. S.C. performed the computations,

while I.A. and M.S.U.R. verified the analytical methods and

supervised the findings of this work. I.A. has collected the

climatic data set. All authors discussed the results and con-

tributed to the preparation of the final manuscript.

Funding

This research received no specific grant from any fund-

ing agency in the public, commercial, or not-for-profit sec-

tors.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

All data and materials supporting the findings of this

study are available from the corresponding author on request.

Acknowledgments

The authors gratefully acknowledge the support of

Bangladesh Agricultural Research Institute (BARI) and Bar-

ishal University for providing research facilities and access to

rainfall data. My profound thanks go out to my co-author, Is-

tiakAhmed, for his invaluable cooperation and contributions

to this study. His knowledge and suggestions significantly

raised the caliber of this work. I would also like to express

my gratitude toMd Saif Uddin Rashed, my supervisor, for his

mentorship, wise counsel, and ongoing support throughout

this endeavor.

Conflicts of Interest

The authors whose names are listed immediately below

the title certify that they have NO affiliations with or involve-

ment in any organization or entity with any financial interest

(such as honoraria; educational grants; participation in speak-

ers’ bureaus; membership, employment, consultancies, stock

ownership, or other equity interest; and expert testimony

or patent-licensing arrangements), or non-financial interest

(such as personal or professional relationships, affiliations,

knowledge or beliefs) in the subject matter or materials dis-

cussed in this manuscript.

References

[1] Barrera-Animas, A.Y., Oyedele, L.O., Bilal, M., et al.,

2022. Rainfall Prediction: A Comparative Analysis of

Modern Machine LearningAlgorithms for Time-Series

Forecasting. Machine Learning with Applications. 7,

100204.

27



Journal of Atmospheric Science Research | Volume 09 | Issue 01 | January 2026

[2] Di Nunno, F., Granata, F., Pham, Q.B., et al., 2022. Pre-

cipitation Forecasting in Northern Bangladesh Using a

Hybrid Machine Learning Model. Sustainability. 14(5),

2663. DOI: https://doi.org/10.3390/su14052663

[3] Le, T.T., Pham, B.T., Ly, H.B., et al., 2020. Devel-

opment of 48-Hour Precipitation Forecasting Model

Using Nonlinear Autoregressive Neural Network. Lec-

ture Notes in Civil Engineering. 54, 1191–1196. DOI:

https://doi.org/10.1007/978-981-15-0802-8_191

[4] Pregnolato, M., Ford, A., Robson, C., et al., 2016. As-

sessing Urban Strategies for Reducing the Impacts of

Extreme Weather on Infrastructure Networks. Royal

Society Open Science. 3(5), 160023. DOI: https://doi.

org/10.1098/rsos.160023

[5] Faccini, F., Luino, F., Paliaga, G., et al., 2018. Role

of Rainfall Intensity and Urban Sprawl in the 2014

Flash Flood in Genoa City, Bisagno Catchment (Lig-

uria, Italy). Applied Geography. 98, 224–241. DOI:

https://doi.org/10.1016/j.apgeog.2018.07.022

[6] Merz, B., Kreibich, H., Thieken, A., et al., 2004. Esti-

mation Uncertainty of Direct Monetary Flood Damage

to Buildings. Natural Hazards and Earth System Sci-

ences. 4(1), 153–163. DOI: https://doi.org/10.5194/nh

ess-4-153-2004

[7] Ejike, O., Ndzi, D., Shakir, M.Z., 2025. Comparative

Study of Machine Learning-Based Rainfall Prediction

in Tropical and Temperate Climates. Climate. 13(8),

167. DOI: https://doi.org/10.3390/cli13080167

[8] Kumar, D., Singh, A., Samui, P., et al., 2019. Forecast-

ing Monthly Precipitation Using Sequential Modeling.

Hydrological Sciences Journal. 64(6), 690–700. DOI:

https://doi.org/10.1080/02626667.2019.1595624

[9] Amir Hamjah, M., Chowdhury, M.A.K., 2014. Measur-

ing Climatic and Hydrological Effects on Cash Crop

Production and Production Forecasting in Bangladesh

Using ARIMAX Model. Mathematical Theory and

Modelling. 4(6). Available from: https://www.iist

e.org/Journals/index.php/MTM/article/view/13117

[10] Inman-Bamber, N.G., Smith, D.M., 2005. Water Re-

lations in Sugarcane and Response to Water Deficits.

Field Crops Research. 92(2–3), 185–202. DOI: https:

//doi.org/10.1016/j.fcr.2005.01.023

[11] Ercan, C., Arra, A.A., Şişman, E., 2025. Rethinking

Standardized Drought Indices for Critical Drought

Evaluation. Journal of Water and Climate Change.

16(12), 3727–3750. DOI: https://doi.org/10.2166/

wcc.2025.037

[12] Akter, M., Sarker. M.M.R., 2021. Impacts of Climate

Factors Influencing Rice Production in Bangladesh.

International Journal of Environment and Climate

Change. 11(1), 43–52. DOI: https://doi.org/10.973

4/ijecc/2021/v11i130336

[13] Chowdhury, N.T., 2010. Water Management in

Bangladesh: An Analytical Review. Water Policy.

12(1), 32–51. DOI: https://doi.org/10.2166/wp.2

009.112

[14] Shahid, S., 2010. Rainfall Variability and the Trends

of Wet and Dry Periods in Bangladesh. International

Journal of Climatology. 30(15), 2299–2313. DOI: https:

//doi.org/10.1002/joc.2053

[15] Twumasi, Y.A.,Annan, J., Merem, E., et al., 2021. Time

Series Analysis on Selected Rainfall Stations Data in

Louisiana Using ARIMAApproach. Open Journal of

Statistics. 11(5), 655–672. DOI: https://doi.org/10.423

6/ojs.2021.115039

[16] Khan, M.M.H., Mustafa, M.R.U., Hossain, M.S., et al.,

2023. Short-Term and Long-Term Rainfall Forecasting

Using ARIMAModel. International Journal of Envi-

ronmental Science and Development. 14(5), 292–298.

DOI: https://doi.org/10.18178/ijesd.2023.14.5.1447

[17] Dayal, D., Swain, S., Gautam, A.K., et al., 2019. De-

velopment of ARIMA Model for Monthly Rainfall

Forecasting over an Indian River Basin. In Proceed-

ings of the World Environmental and Water Resources

Congress 2019, Pittsburgh, PA, USA, 19–23May 2019;

pp. 264–271. DOI: https://doi.org/10.1061/97807844

82339.027

[18] Singh, P., Ramkumar, K.R., Hasija, T., et al., 2024.

Monsoon Rainfall Prediction for Punjab UsingARIMA

Model: A Time Series Analysis. In Proceedings of

the International Conference on Automation and Com-

putation (AUTOCOM 2024), Birmingham, UK, 5–7

September 2024; pp. 110–113. DOI: https://doi.org/10

.1109/AUTOCOM60220.2024.10486111

[19] Dutta, P.S., Hod, H.T., 2014. Prediction of Rainfall

Using Datamining Technique over Assam. Indian Jour-

nal of Computer Science and Engineering. 5(2), 85–90.

Available from: http://www.ijcse.com/docs/INDJCSE

14-05-02-081.pdf

[20] Somvanshi, V.K., Pandey, O.P., Agrawal, P.K., et al.,

2006. Modelling and Prediction of Rainfall Using Ar-

tificial Neural Network and ARIMATechniques. The

Journal of Indian Geophysical Union. 10(2), 141–151.

Available from: https://www.researchgate.net/publica

tion/255587986

[21] Van, S.P., Le, H.M., Thanh, D.V., et al., 2020. Deep

Learning Convolutional Neural Network in Rain-

fall–Runoff Modelling. Journal of Hydroinformatics.

22(3), 541–561. DOI: https://doi.org/10.2166/hydro.

2020.095

[22] Chattopadhyay, S., Chattopadhyay, G., 2008. Com-

parative Study among Different Neural Net Learning

Algorithms Applied to Rainfall Time Series. Meteo-

rological Applications. 15(2), 273–280. DOI: https:

//doi.org/10.1002/met.71

[23] Wu, C.L., Chau, K.W., Fan, C., 2010. Prediction of

Rainfall Time Series Using Modular Artificial Neu-

ral Networks Coupled With Data Preprocessing Tech-

niques. Journal of Hydrology. 389(1–2), 146–167.

[24] Venkatesan, C., Raskar, S.D., Tambe, S.S., et al., 1997.

28

https://doi.org/10.3390/su14052663
https://doi.org/10.1007/978-981-15-0802-8_191
https://doi.org/10.1098/rsos.160023
https://doi.org/10.1098/rsos.160023
https://doi.org/10.1016/j.apgeog.2018.07.022
https://doi.org/10.5194/nhess-4-153-2004
https://doi.org/10.5194/nhess-4-153-2004
https://doi.org/10.3390/cli13080167
https://doi.org/10.1080/02626667.2019.1595624
https://www.iiste.org/Journals/index.php/MTM/article/view/13117
https://www.iiste.org/Journals/index.php/MTM/article/view/13117
https://doi.org/10.1016/j.fcr.2005.01.023
https://doi.org/10.1016/j.fcr.2005.01.023
https://doi.org/10.2166/wcc.2025.037
https://doi.org/10.2166/wcc.2025.037
https://doi.org/10.9734/ijecc/2021/v11i130336
https://doi.org/10.9734/ijecc/2021/v11i130336
https://doi.org/10.2166/wp.2009.112
https://doi.org/10.2166/wp.2009.112
https://doi.org/10.1002/joc.2053
https://doi.org/10.1002/joc.2053
https://doi.org/10.4236/ojs.2021.115039
https://doi.org/10.4236/ojs.2021.115039
https://doi.org/10.18178/ijesd.2023.14.5.1447
https://doi.org/10.1061/9780784482339.027
https://doi.org/10.1061/9780784482339.027
https://doi.org/10.1109/AUTOCOM60220.2024.10486111
https://doi.org/10.1109/AUTOCOM60220.2024.10486111
http://www.ijcse.com/docs/INDJCSE14-05-02-081.pdf
http://www.ijcse.com/docs/INDJCSE14-05-02-081.pdf
https://www.researchgate.net/publication/255587986
https://www.researchgate.net/publication/255587986
https://doi.org/10.2166/hydro.2020.095
https://doi.org/10.2166/hydro.2020.095
https://doi.org/10.1002/met.71
https://doi.org/10.1002/met.71


Journal of Atmospheric Science Research | Volume 09 | Issue 01 | January 2026

Prediction of All India Summer Monsoon Rainfall Us-

ing Error-Back-Propagation Neural Networks. Meteo-

rology and Atmospheric Physics. 62(3–4), 225–240.

[25] Al-Samrraie, L.A., Abdalla, A.M., Alrawashdeh, K.A.-

B., et al., 2025. Deep Learning Models Based on CNN,

RNN, and LSTM for Rainfall Forecasting: Jordan as a

Case Study. Mathematical Modelling of Engineering

Problems. 12(7), 2456. DOI: https://doi.org/10.18280

/mmep.120724

[26] Ouma, Y.O., Cheruyot, R., Wachera, A.N., et al., 2021.

Rainfall and Runoff Time-Series Trend Analysis Us-

ing LSTM Recurrent Neural Network and Wavelet

Neural Network with Satellite-Based Meteorological

Data: Case Study of Nzoia Hydrologic Basin. Com-

plex and Intelligent Systems. 8(1), 213–236. DOI:

https://doi.org/10.1007/S40747-021-00365-2

[27] Sorkun, M.C., Paoli, C., Incel, Ö.D., et al., 2017. Time

Series Forecasting on Solar Irradiation Using Deep

Learning. In Proceedings of the 10th International

Conference on Electrical and Electronics Engineering

(ELECO), Bursa, Turkey, 30 November–2 December

2017; pp. 151–155.

[28] Skarlatos, K., Bekri, E.S., Georgakellos, D., et al.,

2023. ProjectingAnnual Rainfall Timeseries Using Ma-

chine LearningTechniques. Energies. 16(3), 1459. DOI:

https://doi.org/10.3390/en16031459

[29] Aziz, M.A., Rahman, N.M.F., Shohan, H.U.S., et al.,

2022. Present Scenario and Future Projection of Precip-

itation in Bangladesh at Rabi Season. Research Square

preprint. DOI: https://doi.org/10.21203/rs.3.rs-13920

14/v1

[30] Aziz, M.A., Shohan, H.U.S., Rahman, N.M.F., et al.,

2023. Projection of Future Precipitation in Bangladesh

at Kharif-II Season Using Geospatial Techniques. Earth

Systems and Environment. 7(1), 255–266. DOI: https:

//doi.org/10.1007/s41748-022-00319-9

[31] Bari, S.H., Rahman, M.T., Hussain, M.M., 2015. Fore-

casting Monthly Precipitation in Sylhet City Using

ARIMA Model. Civil and Environmental Research.

7(1), 69–77. Available from: https://www.researchgate

.net/publication/272744442

[32] Mahsin, M., Akhter, Y., Begum, M., et al., 2012. Mod-

eling Rainfall in Dhaka Division of Bangladesh Using

Time Series Analysis. Journal of Mathematical Mod-

elling and Application. 1(5), 67–73. Available from:

https://www.researchgate.net/publication/285068659

[33] Salman, M.A., Ahmed, F., 2020. Climatology in Bar-

ishal, Bangladesh: A Historical Analysis of Tempera-

ture, Rainfall, Wind Speed and Relative Humidity Data.

Malaysian Journal of Geosciences. 4(1), 43–53. DOI:

https://doi.org/10.26480/mjg.01.2020.43.53

[34] Hyndman, R.J.,Athanasopoulos, G., 2018. Forecasting:

Principles and Practice. OTexts: Melbourne, Australia.

[35] Holt, C.C., 2004. Forecasting Seasonals and Trends

by Exponentially Weighted Moving Averages. Inter-

national Journal of Forecasting. 20(1), 5–10. DOI:

https://doi.org/10.1016/j.ijforecast.2003.09.015

[36] Winters, P.R., 1960. Forecasting Sales by Exponen-

tially Weighted Moving Averages. Management Sci-

ence. 6(3), 324–342. DOI: https://doi.org/10.1287/mn

sc.6.3.324

[37] Hyndman, R.J., Koehler, A.B., Snyder, R.D., et al.,

2002. A State Space Framework for Automatic Fore-

casting Using Exponential Smoothing Methods. Inter-

national Journal of Forecasting. 18(3), 439–454. DOI:

https://doi.org/10.1016/S0169-2070(01)00110-8

[38] Box, G.E.P., Jenkins, G.M., Reinsel, G.C., et al., 2015.

Time Series Analysis: Forecasting and Control. John

Wiley & Sons: Hoboken, NJ, USA.

[39] Hyndman, R.J.,Athanasopoulos, G., 2021. Forecasting:

Principles and Practice, 3rd ed. OTexts: Melbourne,

Australia. Available from: https://otexts.com/fpp3/

[40] Hochreiter, S., Schmidhuber, J., 1997. Long Short-

Term Memory. Neural Computation. 9(8), 1735–1780.

DOI: https://doi.org/10.1162/neco.1997.9.8.1735

[41] Goodfellow, I., Bengio, Y., Courville, A., 2017. Deep

Learning. MIT Press: Cambridge, MA, USA.

[42] Gulli, A., Kapoor, A., Pal, S., et al., 2019. Deep Learn-

ing with TensorFlow 2 and Keras, 2nd ed. Packt Pub-

lishing: Birmingham, UK.

[43] Chao, Z., Pu, F., Yin, Y., et al., 2018. Research on

Real-Time Local Rainfall Prediction Based on MEMS

Sensors. Journal of Sensors. 2018(1), 6184713. DOI:

https://doi.org/10.1155/2018/6184713

[44] Zhang, J., Zhu, Y., Zhang, X., et al., 2018. Devel-

oping a Long Short-Term Memory (LSTM) Based

Model for Predicting Water Table Depth in Agricul-

tural Areas. Journal of Hydrology. 561, 918–929. DOI:

https://doi.org/10.1016/j.jhydrol.2018.04.065

[45] Yuan, R., 2025. Rainfall Prediction Based on CNN-

LSTM Model under Sliding Window. European Jour-

nal of Remote Sensing. 58(1). DOI: https://doi.org/10

.1080/22797254.2025.2540106

[46] Nash, J.E., Sutcliffe, J.V., 1970. River Flow Forecast-

ing Through Conceptual Models Part I—ADiscussion

of Principles. Journal of Hydrology. 10(3), 282–290.

[47] Gupta, H.V., Kling, H., 2011. On Typical Range, Sen-

sitivity, and Normalization of Mean Squared Error

and Nash-Sutcliffe Efficiency Type Metrics. Water Re-

sources Research. 47(10), W10601.

29

https://doi.org/10.18280/mmep.120724
https://doi.org/10.18280/mmep.120724
https://doi.org/10.1007/S40747-021-00365-2
https://doi.org/10.3390/en16031459
https://doi.org/10.21203/rs.3.rs-1392014/v1
https://doi.org/10.21203/rs.3.rs-1392014/v1
https://doi.org/10.1007/s41748-022-00319-9
https://doi.org/10.1007/s41748-022-00319-9
https://www.researchgate.net/publication/272744442
https://www.researchgate.net/publication/272744442
https://www.researchgate.net/publication/285068659
https://doi.org/10.26480/mjg.01.2020.43.53
https://doi.org/10.1016/j.ijforecast.2003.09.015
https://doi.org/10.1287/mnsc.6.3.324
https://doi.org/10.1287/mnsc.6.3.324
https://doi.org/10.1016/S0169-2070(01)00110-8
https://otexts.com/fpp3/
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1155/2018/6184713
https://doi.org/10.1016/j.jhydrol.2018.04.065
https://doi.org/10.1080/22797254.2025.2540106
https://doi.org/10.1080/22797254.2025.2540106

	Introduction
	Materials and Methods
	Data Sources and Data Preprocessing
	Exponential Smoothing (ES) Model
	(Seasonal) Autoregressive Integrated Moving Average (ARIMA) Model
	Long-Short Term Memory (LSTM) 
	Model Selection Criteria
	Akaike's Information Criterion (AIC)
	Root Mean Square Error (RMSE)
	Mean Absolute Error (MAE)
	Correlation Coefficient R 
	Nash-Sutcliffe Efficiency Coefficient (NSEC)
	Kling-Gupta Efficiency (KGE)

	Software and Programming Language

	Results
	Result Analysis of Exponential Smoothing (ES) Model
	Result Analysis of SARIMA Model
	Model Identification and Estimation of Parameter
	Diagnostic Checking
	Forecasting

	Result Analysis of the LSTM Model
	Data Preprocessing
	LSTM Model Fit and Evaluation


	Discussion
	Conclusions



