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In the terrain following coordinate, Gal-Chen and Somerville [1] and other 

proposed a vertical coordinate ( ) / ( )bottom top bottomz z z z z∝ − −  and con-
stant spatial intervals of xδ  and yδ  along the other directions. Because 
the variation of xδ  and yδ  was ignored, their coordinate does not really 
follow the terrain. It fails to reproduce the divergence and curl over a com-
plex terrain. Aligning the coordinate with real terrain, the divergence and 
curl we obtained from the curvilinear coordinate are consistent with the 
Cartesian coordinate. With a modification, the simulated total mass, energy, 
and momentum from the Navier-Stokes equations are conserved and in 
agreement with those calculated from Cartesian coordinate.

Keywords:
Navier-Stokes equations
Cartesian
Curvilinear
Covariant
Contravariant
Terrain following

1. Introduction

Numerical atmospheric and oceanic models are usu-
ally applied over complex terrain [2-10, etc.]. Hence, models 
require different coordinate to handle the irregular terrain. 
One of the terrain following coordinates, discussed in the 
papers [1,5,11,12], has been applied to Regional Atmospheric 
Modeling System (RAMS) [13], Geesthacht Simulation 
Model of the Atmosphere (GESIMA) [11], Cloud Resolv-
ing Strom Simulator (CReSS) [7,14], Japan Meteorological 
Research Institute (MRI-model) [5], WRF [8], and oth-
er models. The relationship between their coordinates 

( ,  ,  )x y z and the Cartesian coordinates (x, y, z) satisfies: 

,  ,x x y y= =  and
( ) t b

t b

z z z
z

z z
−

=
−

,  whe re   and t bz z
 

are the height of the domain and the terrain elevation, 
respectively. This popular coordinate works well when it 
is applied to the gradient ∇ψ, but it fails to produce the 
accurate divergence or the curl over a sloped mountain. It 
cannot be applied to the Navier-Stokes equations either. 
Although the coordinate is simple, it does not consider the 
variation of the spatial intervals over the terrain because 

,  and x x y yδ δ δ δ= =  We propose a true terrain fol-
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lowing coordinate, in which the spatial intervals are not 
constant but vary with the terrain. This system can accu-
rately simulate the divergence and curl over a complex 
terrain. When it is applied to the Navier-Stokes equations 
with some modification, the total mass, energy and mo-
mentum calculated from the curvilinear coordinate are 
conserved and agree with those calculated from the Carte-
sian system. 

2. Equations 

2.1 General Curvilinear Coordinate 

The detailed transformation between the Cartesian 
coordinate and the general curvilinear coordinate can be 
found in vector and tensor analysis books [15,16], as well as 
research articles [17,18]. In a curvilinear coordinate, a posi-
tion vector (or any other vector) can be presented by

                  (1)

where gi is the covariant basis vector along the curvilinear 
coordinate ˆ ix  (a contravariant quantity), and the contra-
variant basis vector (or dual basis vector) gi (i =1, 2, 3), as 
shown in Figure 1. They satisfy: 

j j
i iδ=g g       (2a)

(2b)

and

1 2 32 3 3 1 1 2,   ,   ,
J J J
× × ×

= = =
g g g g g gg g g  (2c)

1 2 3 1 2 3 2 3 1=J ⋅ × = × ⋅ = × ⋅g g g g g g g g g  (2d)

Figure 1. covariant basis vectors (gi), con-
travariant basis vectors (gi), and a 2D vector 

In the Cartesian system, the basis vectors ei and the 

change of the position vector satisfies:

i
x y z id dx dy dz dx dy dz dx

x y z
∂ ∂ ∂

= + + = + + =
∂ ∂ ∂
r r rr e e e e

                                                                                        (3)
In the curvilinear system, it becomes

                                                                      (4a)

and the covariant basis vectors are

                (4b)

The gradient operator is

ˆ i

i
i ix x

∂ ∂
∇ ≡ =

∂ ∂
g e                                                        (5a)

and

                                        (5b)

The Jacobian matrix is

(6)

For a scalar variable S

 (7)

where 
ˆ i

i
i i

S SS
x x
∂ ∂

∇ = =
∂ ∂

g e  as shown in (5a, 5b). 

A c c o r d i n g  t o  t h e  d i v e r g e n c e  t h e o r e m , 
,dv dA∇⋅ = ⋅∫ ∫V V n



 we can calculate the divergence in 

the volume of 

in Figure 2. The flux of a velocity V normal to the lower 
s u r f a c e  i s  

,  where 3 3v̂ = ⋅V g ,  and the

f l u x  o n  t h e  u p p e r  s u r f a c e s  c a n  b e  e s t i m a t e d 

by: . Hence, the net flux 

along g3 is . It is also applied to two 

other directions. The summation of the net fluxes becomes

                   (8)
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Therefore: 

and

                                    (9)

Figure 2. 3D curvilinear coordinates and volume 

dv=

Following tensor analysis [19, 15], we can also derive di-

vergence of a vector ˆ j
jv=V g :

                (10)

where Christoffel of the second kind is defined as
k k nk
ij ji ijnΓ = Γ = Γggnkk k nk

ij ji ijnΓ = Γ = Γg                                            (11a)

and

    (11b)

is the Christoffel of the first kind, and

gij ;   ;   and 
ˆ

kk k ki
ij i j ijk ji kjx

∂
= ⋅ = ⋅ = Γ = Γ

∂
gg g g g g g g g g;   ;   and 

ˆ
kk k ki

ij i j ijk ji kjx
∂

= ⋅ = ⋅ = Γ = Γ
∂

gg g g g g g g g 

                                                                                     (11c)
The curl of vector V becomes

                         

                                                                                     (12a)
But

Therefore

Finally, we obtain:

                 (12b)

where .

2.2 Terrain Following Coordinate

Terrain following coordinate is one of the most popular 
non-orthogonal systems applied to the atmospheric and 
oceanic models. Pielke [12] has detailed the history and 
evolution of the system. Figure 3 shows the 2D diagram 
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of the curvilinear coordinate 1 3ˆ ˆ( , )x x , the inclination 

angle θ of the ẑ -surface. For convenience, we also define 

the vertical coordinate 3ˆẑ x=  and:

3ˆˆ b

t b

z zz x
z z
−

= =
−

       (13)

where zb, is the terrain elevation and zt is the domain 
height. From (13), we obtain:

( ),

,

ˆ 1
b

t b

x y t b

x y

z z
z zz

z z z z

 −
∂  −∂   = = ∂ ∂ − 

  (14)

and

                                                                 (15)

The inclinations of ẑ  along x and y- directions are 

( )( )
ˆ ˆ

ˆ
ˆ(1 )b t b b

z z

z z z z zz z
x x x

 ∂ + − ∂∂  = = −    ∂ ∂ ∂   
(16a)

and 

ˆ

ˆ(1 ) b

z

zz z
y y

  ∂∂
= − ∂ ∂ 

                                          （16b)

Figure 3. Basis vectors of 2D Cartesian coordinate and 
terrain following coordinates

The changes ẑ  with respect to x and y are

( ) ( ) ( ) ( )

( )

( )
( )2

ˆ 1ˆ
b b t b b

t b b
t b

z t bt b

z z z z z z zz z z z zz zz x x x
x x z zz z

 − ∂ − ∂ − ∂∂  − − − −−∂    ∂ ∂ ∂= = = ∂ ∂ −  −

( ) ( ) ( ) ( )

( )

( )
( )2

ˆ 1ˆ
b b t b b

t b b
t b

z t bt b

z z z z z z zz z z z zz zz x x x
x x z zz z

 − ∂ − ∂ − ∂∂  − − − −−∂    ∂ ∂ ∂= = = ∂ ∂ −  −

( ) ( ) ( ) ( )

( )

( )
( )2

ˆ 1ˆ
b b t b b

t b b
t b

z t bt b

z z z z z z zz z z z zz zz x x x
x x z zz z

 − ∂ − ∂ − ∂∂  − − − −−∂    ∂ ∂ ∂= = = ∂ ∂ −  −
                                                           (17a)

( )

( )

ˆ 1
ˆ

b b

t b

t bz

z z z zz zz y
y y z z

 − ∂∂ − − ∂ ∂ = = ∂ ∂ − 

                 (17b)

The covariant basis vectors at the terrain coordinate 

system become:

                                   (18a)

 

                                 (18b)

and

                 (18c)

At surface ˆ( 0)z = , g1 and g2 are parallel to the terrain 

surface, while g3 always points to the vertical direction. 

The Jacobian becomes
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                                                   (19)

From (2c), (5b) and (19), the contravariant basis vec-

tors become

 

                                         (20a)

 

                                             (20b)

and

( ) ( ) 3
3 1 2

ˆ 1ˆ 1 ˆ
( ) ( ) ( )

bb
yx

z
jj

t b t b t b

zz zz xyx
J z z z z z z x

∂∂ −−  × ∂∂∂= = + + =  − − − ∂ 

eeg g eg e

( ) ( ) 3
3 1 2

ˆ 1ˆ 1 ˆ
( ) ( ) ( )

bb
yx

z
jj

t b t b t b

zz zz xyx
J z z z z z z x

∂∂ −−  × ∂∂∂= = + + =  − − − ∂ 

eeg g eg e                                              (20c)

The transformation between the velocity (u, v, w) in the 

Cartesian coordinate (x, y, z) and the velocity  in 

the new coordinate is

(21)
and

             

(22)

and
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(23)

It shows that g3 parallels to ez, g
1
 parallels ex, and g2 par-

allels ey. In this system, gi is different from gi. 

2.3 The Popular Terrain Following Coordinate

In the popular terrain coordinate [1, 5, 7, 12], it is assumed: 

( );  ;  and t b

t b

z z z
x x y y z

z z
−

= = =
−

                (24)

and the inverse transformation:

( );  ;  t b
b

t

z z z
x x y y z z

z
−

= = = +                 (25)

Because they assumed that  and x x y y= = , the 

spatial interval  or x yδ δ  is not measured along the real 
terrain as . The relationships of the basis vec-

tors and other variables between the systems in 2.3 and 2.2 
are:

( ) ( )ˆ / /b t b tz z z z z z z= − − =                        (26a)

and

 

                                                                        (26b)
Their basic vector ig and the relationship with ig are;

( ) ( )
33

33

1 1 1 1 1

1

11 1 1 1

( )

ˆˆ(1 ) (1 )

x y z t b
x z b

t xx

b b
x z x z

xt x

x y z z z zx z
x x x x z

z zx z x xz
x x z x x x

 ∂ + + − ∂ ∂ ∂ = = = + +  ∂ ∂ ∂ ∂  

 ∂ ∂∂ ∂ ∂ = + − = + − =   ∂ ∂ ∂ ∂ ∂  

e e erg e e

e e e e g( ) ( )
33

33

1 1 1 1 1

1

11 1 1 1

( )

ˆˆ(1 ) (1 )

x y z t b
x z b

t xx

b b
x z x z

xt x

x y z z z zx z
x x x x z

z zx z x xz
x x z x x x

 ∂ + + − ∂ ∂ ∂ = = = + +  ∂ ∂ ∂ ∂  

 ∂ ∂∂ ∂ ∂ = + − = + − =   ∂ ∂ ∂ ∂ ∂  

e e erg e e

e e e e g

( ) ( )
33

33

1 1 1 1 1

1

11 1 1 1

( )

ˆˆ(1 ) (1 )

x y z t b
x z b

t xx

b b
x z x z

xt x

x y z z z zx z
x x x x z

z zx z x xz
x x z x x x

 ∂ + + − ∂ ∂ ∂ = = = + +  ∂ ∂ ∂ ∂  

 ∂ ∂∂ ∂ ∂ = + − = + − =   ∂ ∂ ∂ ∂ ∂  

e e erg e e

e e e e g
( ) ( )

33

33

1 1 1 1 1

1

11 1 1 1

( )

ˆˆ(1 ) (1 )

x y z t b
x z b

t xx

b b
x z x z

xt x

x y z z z zx z
x x x x z

z zx z x xz
x x z x x x

 ∂ + + − ∂ ∂ ∂ = = = + +  ∂ ∂ ∂ ∂  

 ∂ ∂∂ ∂ ∂ = + − = + − =   ∂ ∂ ∂ ∂ ∂  

e e erg e e

e e e e g                                               (27a)

( )
3

2 2 2 2

2

22 2 2

( )

ˆˆ(1 )

x y z t b
y z

tx

b
y z

x y z z z zy
x x x z y

zy xz
x y x x

 ∂ + +  − ∂∂ ∂ = = = +  ∂ ∂ ∂ ∂  

 ∂∂ ∂ ∂
= + − = = ∂ ∂ ∂ ∂ 

e e erg e e

re e g

( )
3

2 2 2 2

2

22 2 2

( )

ˆˆ(1 )

x y z t b
y z

tx

b
y z

x y z z z zy
x x x z y

zy xz
x y x x

 ∂ + +  − ∂∂ ∂ = = = +  ∂ ∂ ∂ ∂  

 ∂∂ ∂ ∂
= + − = = ∂ ∂ ∂ ∂ 

e e erg e e

re e g

( )
3

2 2 2 2

2

22 2 2

( )

ˆˆ(1 )

x y z t b
y z

tx

b
y z

x y z z z zy
x x x z y

zy xz
x y x x

 ∂ + +  − ∂∂ ∂ = = = +  ∂ ∂ ∂ ∂  

 ∂∂ ∂ ∂
= + − = = ∂ ∂ ∂ ∂ 

e e erg e e

re e g       (27b)

( )
1 2

1 2

3
3 3 3 3

,
,

( )x y z t b
z

x x t t
x x

x y z z z
x x z x z

 ∂ + + −∂ ∂   = = = = =   ∂ ∂ ∂   

e e e gr rg e

( )
1 2

1 2

3
3 3 3 3

,
,

( )x y z t b
z

x x t tx x

x y z z z
x x z x z

 ∂ + + −∂ ∂   = = = = =   ∂ ∂ ∂   

e e e gr rg e                                      (27c)

and the Jacobian

1 2 3

1 2 3 1 3 1 2 3

1 2 3

1

2

det ... det

0 0

( )det 0 0

( ) ( ) ( )

t b

t

b t b t t b

t t t

x x x
x x x
y y yJ

x x x x x
z z z
x x x

x
x

z zy
x z

z z z z z z z z
x z y z z

∂ ∂ ∂ 
 ∂ ∂ ∂ 

∂ ∂ ∂ ∂ ∂   = ⋅ × = =   ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ 
 ∂ ∂ ∂ 

 ∂
 ∂ 

−∂ = = ∂ 
∂ − ∂ − − 
 ∂ ∂ 

r rg g g

               

                               (28)
as well as 

1
1 1

2 3
ˆ( )/

( )
t b t z

y x
t t b

z z z xJ
z z z x
− ∂

= × = × = =
− ∂
eg g g e e g

                                                  (29a)
2

2 2
3 1

ˆ
/ y

xJ
y

∂
= × = =

∂
g g g e g                             (29b)

                                   (29c)
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The velocity becomes  
1 1 11

2 2 2 2

3

( )( )

( ) ( ) ( )

1 0 0
0 1 0

( )( )

( ) (

bb tt t

t b t b t b

bb tt

t b t b

x x xdx
x y zdtu u

dx x x xv v
dt x y z

w w
dx zz z zz z zyxdt

z z z z z z

zz z zz z yx
z z z z

 
 ∂ ∂ ∂ 
   ∂ ∂ ∂     
   ∂ ∂ ∂   = =      ∂ ∂ ∂           ∂∂ −−   ∂∂   

− − − 

=
∂∂ −− ∂∂

− − ) ( )
t

t b

u
v
w

z
z z

 
 
        

  
 
 − 

      (30)

Eq. (30) was derived by Gal-Chen and Somerville [1]. It 
is noted that 

1

1
ˆ

ˆ
dx dx xu u u
dt dt x

∂
= = = =

∂
,               (31a)

2

2
ˆ ,

ˆ
dx dy yv v v
dt dt x

∂
= = = =

∂
                (31b)

Hence, their system becomes very simple, and

3

3

( )( )

( ) ( ) ( )

ˆ(1 )ˆ(1 )ˆ 1
( ) ( ) ( )

ˆ

bb tt t

t b t b t b

bb

t t
t b t b t b

t

zz z zz z zdx yxw u v w
dt z z z z z z

zz zzdz yxz z u v w
dt z z z z z z

z u

∂ ∂ −− ∂∂= = + + − − − 
 

∂ ∂ −− ∂∂= = − − + − − − 
 

=

 

                       (31c)

The corresponding gradient, the divergence, and curl 
are 

i
i

SS
x
∂

∇ =
∂

g ,     (32)

1 2 3

1 2 3

1 ( ) ( ) ( )Jv Jv Jv
J x x x
 ∂ ∂ ∂

∇ ⋅ = + ∂ ∂ ∂ 
V , (33)

and

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 1
J x x x J x x x

v v v

   
   ∂ ∂ ∂ ∂ ∂ ∂   ∇× = =
∂ ∂ ∂ ∂ ∂ ∂   

   ⋅ ⋅ ⋅   

g g g g g g

V

g V g V g V

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 1
J x x x J x x x

v v v

   
   ∂ ∂ ∂ ∂ ∂ ∂   ∇× = =
∂ ∂ ∂ ∂ ∂ ∂   

   ⋅ ⋅ ⋅   

g g g g g g

V

g V g V g V

.   (34)

3. Numerical Simulations

We apply a 2D numerical model to test the curvilinear 
coordinates on gradient, divergence, and curl, which are 
the fundamental operators in the Navier-Stokes equations. 
The 2D model consists of 2 sets of grids: The first one is 
the C-grids in the Cartesian coordinate without mountain. 
The second set is derived from the coordinates discussed 
in Sections 2.2-2.3. The numerical results derived from 
the Cartesian coordinate are used to compare with the 
simulations obtained from the curvilinear systems. The 
Cartesian 2D model includes (20×20) uniform grids with 
∆x=1 km, zt = 12 km, and ∆z = 12 km/20. The elevation 
of a bell-shaped mountain is given by

2

/ 1.0c
b bm

x xz z
wa

 − = +     
  (35)

where zbm = 2000 m, wa = 4000 m, and xc is located at 
the mid-point in the x-axis. The coordinate ẑ  is given by 
(13) and z  by (24). 

3.1 Gradient

A scalar variable, ( )cS Cs x x z= − ,               (36a)

with Cs=3.0. The second order centered differ-
ence of the gradient in the Cartesian coordinate is:  

1/2, 1/2, , 1/2 , 1/2j k j k j k j k
x z x z

S S S SS SS
x z x z

+ − + −− −∂ ∂
∇ = + = +

∂ ∂ ∆ ∆
e e e e  

                  (36b)

The numerical scheme in the terrain following coordi-
nate in Sect. 2.2 is:

                    (36c)
The scheme in Sect. 2.3 is
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( )

( )

1 1 3

1 1 3 3

/ ( ) ( )

1
/ ( ) ( )

j
j

tx b t
x z

t b t b

t b t
x z

t b t b

SS
x

z z z zS S
x x x z z x z z x

z z z zS S S
x x x z z x x z z x

∂
∇ =

∂
− ∂∂ ∂

= + + ∂ ∂ ∂ − ∂ − ∂ 
− ∂∂ ∂ ∂

= + + ∂ ∂ ∂ − ∂ ∂ − ∂ 

g

e e e

e e

     

             (36d)
The continuous black lines in Figure 4 show the gradi-

ent in the Cartesian coordinate of Eq. (36b) along ex and ez 

directions, respectively. They are completely covered by 
the dashed red lines from the terrain following coordinates 
of Eq. (36c) and the blue dots of Eq. (36d). We can see 
that both schemes generate the same results as the Carte-
sian coordinate, because 

Figure 4. S in (36a) is shown by yellow lines, ∇S by color 
vector; x and z components of gradient in Cartesian co-

ordinate by black lines, which are covered by dashed red 
lines of (36c) and blue dots of (36d) in terrain following 

coordinates. Green lines show terrain and depth beneath (in 
meter.)

3.2 Divergence

A vector 2 2( ) ( )c x c zDc x x z Dc x x z= − + −V e e     (37a)
with Dc = 6x10-8, is applied to the Cartesian and terrain 

following coordinates. Then we solve the divergences nu-
merically:

a
v wDiv
x z
∂ ∂

= ∇ ⋅ = +
∂ ∂

V ,               (37b)

  

                       (37c)
and

1( ) ( )j i j
c ij jDiv v Jv

x J x
∂ ∂

= ∇ ⋅ = ⋅ =
∂ ∂

V g g  (37d)

 

Figure 5. Black lines for divergence from (37b) in Carte-
sian, dashed red lines from (37c), and blue dots from (37d) 

of terrain following coordinates

Figure 5 shows Diva of the Cartesian coordinate (black 
lines), as well as Divb (dashed red lines) and Divc (blue 
dots) from the terrain following coordinates. Divb agrees 
with Diva. But Divc departs from Diva over the slope of 
the mountain, especially in the lower layers, where the 

difference between 1 1ˆand x xδ δ  is large. The discrepan-

cy diminishes when 1xδ  approaches 1x̂δ  in the upper 

layer or over the peak of the mountain (at x = xc). Hence, 

the difference between 1 1ˆand dx dx  is important. 

3.3 Curl along y-direction

The vector V is given by

6 3 22.526 10 ( ) 2.526 10 ( )( 10 )c x c zx x z x x z z= × − + × − − ∆V e e
6 3 22.526 10 ( ) 2.526 10 ( )( 10 )c x c zx x z x x z z= × − + × − − ∆V e e                  (38a)

The y-component of curls becomes
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a
u wCurl
z x
∂ ∂

= −
∂ ∂

,                    (38b)

,               (38c)

And 

31
3 1

1
c

vvCurl
J x x

∂∂ = − ∂ ∂ 
.               (38d)

The results of Curla (black), Curlb (dashed red), and 
Curlc (blue dots) are shown in Figure 6. Overall, Curlb re-
produces Curla quite well, except some errors in the short-
waves, because the solutions obtained from terrain follow-
ing coordinates are interpreted to the Cartesian grids by 
linear interpretation. But Curlc can be quite different from 
Curla, as discussed in Section 3.2.

Figure 6. y-component curl: Black lines from (38b) of 
Cartesian coordinate, dashed red lines from (38c) and 

blue dots from (38d) of terrain following coordinates, and 
green lines for terrain

4. The Navier-Stokes Equations

The equations in geofluid dynamics in the Cartesian sys-
tem are:

( )
0j

j

u
t x

ρρ ∂∂
+ =

∂ ∂
    (39)

1i i i
j i ri

j j

u u Fpu b F
t x xρ ρ

∂ ∂ ∂
+ = − + + =

∂ ∂ ∂
�

                (40)

1
j

j p

dqu D
t x c T dt θ
θ θ θ∂ ∂
+ = +

∂ ∂
�

   (41)

and equation of state
( , , ) 0f p Tρ =      (42)

where p is pressure, ρ  is density, ib  is gravity, riF is 

friction along the xi-direction, θ  is potential temperature, 
T is temperature, q is heating, and Dθ  is diffusion. Ap-
plying the chain rule to the pressure gradient, divergence, 
and the total derivatives in the curvilinear coordinate [2], 
we obtain:

 

for j=1 and 2     (43)

      (44)
and

1ˆ
ˆ

j

j p

dqu D
t x c T dt θ
θ θ θ∂ ∂
+ = +

∂ ∂
�

   (45)

Eqs. (43-45) have been applied to the NTU-Purdue 
Nonhydrostatic model [20], and other nonhydrostatic 
models [21,22]. Although the system is simple and can be 
solved numerically with high accuracy [10,23,24], it does not 
conserve the total mass or momentum. Combining those 
equations, we obtain the flux forms:

( )i ji
i ri i

j j

u uu p b F F
t x x

ρρ ∂∂ ∂
+ = − + + =

∂ ∂ ∂
 (46)

and 

1j

j p

u dq D Q
t x c T dt θ

ρθρθ θρ ρ
∂∂

+ = + =
∂ ∂

�
 (47)

Without forcing terms on the right-hand side, Eq. (40) 
in the curvilinear coordinate becomes

   (48)

With terra in  given by (35) ,  and the velocty:
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4sin( / )sin(2 / ) sin(2 / )sin( / )L L x L L zx x z z x x z zπ π π π= +v e e ,
where xL=20 ∆x, is the length of horizontal domain, zL is 
the height of the domain, we calculate the local change of 
velocities  and ( , , )u v w  in the terrain following 
coordinates. Then, they are converted to the Cartesian 
coordinate according to (21) and (31) to compare with 
(u, v, w) calculated from the Cartesian coordinate. The 
numerical results of time-derivative of x-component ve-
locities in Figure 7 show that  is better than 

1 2 3( , , )x x x  as expected. 

Figure 7. Local time derivative of u: black lines from 
Cartesian coordinate, red from (48) based on  
coordinate, and blue dots based on ( ), ,x y z  coordinate

 The conventional flux form of momentum in the curvi-
linear is

      (49)
In the Cartesian coordinate, the component momentum 

over the entire domain ( iu dvρ∑ ) in (46) is conserved 
with Fi = 0. dvρθ∑  in (47) is also conserved if Q = 0. 
But (49) is not conserved with Fi = 0 [17], it is also quite 
complicated. In the curvilinear systems, we may use the 
divergence operator to present the flux form of the equa-
tions, i.e., 

 

      (50)

where ˆj jv vψ= ,ψ ρ=  in (39), ψ ρθ=  in (47), 

and iuψ ρ=  in (46) where ui is the i-component veloc-
ity in the Cartesian coordinate. Eq. (50) is much simpler 
than (49) and can be solved easily. Eq. (48) and (49) can 
also be written:

( ) ( )ˆ
ˆ

i

i

JuJ
t x

ρρ ∂∂
= −

∂ ∂
   (51)

and

( ) ( )ˆ
ˆ

i
jj

ji

Ju uJu
F

t x
ρρ ∂∂

= − +
∂ ∂

  (52)

The total mass is conserved in (51), and total momen-
tum along each component (uj, in Cartesian coordinate) is 
also conserved with Fj =0 in (52). They can be calculated 
as divergence operator in the previous section. The Navi-
er-Stokes equations including forcing terms can be solved 
by the finite volume method [25]

.

5. Summary

Here we provide the derivations of a terrain following 
coordinate, in which the gradient is calculated along the 

coordinate curves, 
ˆ jx
ψ∂
∂

, with a variable spatial interval 

ˆ jxδ . The results obtained from the gradient, divergence 
and curl are consistent with those derived from the Carte-
sian grids. On the other hand, the system proposed by Gal-
Chen and Somerville and others with j jx xδ δ=  along 
the horizontal coordinate, introduces significant errors in 
divergence and curl over the sloped terrain.

When the proposed terrain following coordinate is 
applied to the Navier-Stokes equations, the results agree 
with those calculated from the Cartesian coordinate. On 
the other hand, discrepancy shows in the popular terrain 
following coordinate. Meanwhile the total mass, momen-
tum, and energy become conserved by using a modified 
flux form of (51-52). It is also noted that the chain rule 
proposed by Kasahara works well for gradient, diver-
gence, and curl operators, but they do not conserve the 
total mass, momentum, or energy when they are applied 
to the Navier-Stokes equations. 
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