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A comprehensive analysis of climate data (1958-2018) is carried out at 
the national scale in India to assess spatiotemporal variation in aridity. 
The aridity is analyzed using UNEP (United Nations Environment 
Programme) Aridity Index (AI), which is the ratio between Precipitation 
(P) and Potential Evapotranspiration (PET). Freely available Terra-Climate 
database, P and PET variables, offered an unprecedented opportunity for 
monitoring variations in AI and aridity index anomalies (AIA) at inter-
seasonal and inter-decadal basis. The study also assesses longer term 
patterns of P and AI anomalies with vegetation anomalies. The results 
indicate that significant clustered areas with maximum dryness are located 
at west-central part of India, the state of Maharashtra. Overall, there is 
a gradual increase in the extent of arid zone during 60-year period and 
spatially maximum extent of percentage change in aridity area is observed. 
The change patterns of AI in India are largely driven by the changing 
patterns of precipitation. The maximum impact of decline in precipitation 
on AIA was observed during Kharif season frequently, for every 4-5 years 
during 1972-1992. The pattern repeated in the last few recent years (2013-
2018), the decline in precipitation resulted increased aridity. The study also 
reveals that the availability and usage of irrigation sources have increased 
from 2014 to 2018. Thus, despite of less precipitation positive vegetation 
has been resulted in this period. The findings are important to understand 
the impacts of climate change on land use pattern, and land and water 
resource management.
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1. Introduction

India is an agrarian country with two-third of its 
population depending on agriculture and allied activities. 
It stands the first among the rain-fed agricultural countries 
of the world [1] with about 61 per cent of farmers relying 

on rain-fed agriculture. Half of the gross cropped area in 
India under rain-fed farming [2] and is the second largest 
producer of rice and wheat, staple food for millions of the 
world (FAO, 2020). The agriculture productivity primarily 
depends on climatic factors, namely, precipitation, 
temperature and evapotranspiration [3,4]. The precipitation 
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(P), i.e., the quantity of rainfall, its intensity, and its 
distribution over an area during each cropping season can 
define the economy of any agriculture dependent country 
like India [5]. The precipitation and its pattern are also 
important for gaining an understanding of the micro-level 
availability of water, which in turn is useful for planning 
agricultural activities, and land and water development 
activities for future use [6]. Potential Evapotranspiration 
(PET) is the rate at which evapotranspiration occurs from 
a large area that is completely and uniformly covered with 
growing vegetation that has access to an unlimited supply 
of soil water, without advection or heat storage effects [7-

9]. P and PET can collectively affect the availability of 
water spatially and temporally [10] impacting society and 
ecosystems [11]. The relationship with these two climatic 
factors informs about degree of aridity in the given area. 
Here, aridity index (AI) is an indicator of degree dryness 
of the climate at a given location, which is generally 
calculated as mathematical measures of P (long-term 
average water supply) and PET (long-term average water 
demand). This depends on six climatic factors, namely, 
maximum air temperature, precipitation, actual vapor 
pressure, actual solar radiation, minimum air temperature 
and wind speed [12]. Studying AI and its anomalies (Aridity 
Index Anomaly - AIA) are like monitoring climate 
variability and its impact on vegetation. The study of 
these indices is a good tool that policy makers can use to 
plan agricultural activities, and the use of water resource [13] 
and its management.

The United Nations Environmental Programme 
((UNEP, 1993) defined AI as the ratio of the annual P to 
the total PET. The high- spatial and temporal resolution 
Terra Climate dataset has information on various climate 
variables (both primary and secondary) such as P and 
PET at a global scale. The monthly datasets of Terra 
Climate are useful in aridity and other drought index 
studies [12]. McKee et al. [15,16]. [17] developed Standardized 
Precipitation Index (SPI) a drought index which is simple, 
easy to calculate and statistically relevant and meaningful. 
It depends on a single meteorological element, i.e. P, 
hence flexible and temporally versatile [18,19]. Similarly, 
the impact of climatic variability on the vegetation can 
be measured using various remote sensing indices. For 
example, Normalized Difference Vegetation Index (NDVI) 
[20] is used most often for monitoring vegetation during 
growing seasons because of its good correlation with 
crop productivity [21,22]. Similarly, Enhanced Vegetation 
Index (EVI) was developed as an alternative vegetation 
index to address some of the limitations of the NDVI [23]. 
The Moderate Resolution Imaging Spectro-radiometer 
(MODIS) provides these vegetation indices fortnightly 

that are useful in anomaly studies. The NDVI anomaly can 
be studied along with meteorological indices (AIA and 
SPI) to characterize drought related impacts on growing 
vegetation at timescales from month to year [24-27].

The primary objective of the research is to understand 
distribution of aridity, ranging from month to season, to 
year across India using Terra Climate (1958-2018) data. 
The spatio-temporal changes in aridity are assessed using 
data for 1958-1968 and 2008-2018. To understand the 
seasonal pattern (aridity anomalies, drought anomalies and 
vegetation anomalies), State of Maharashtra is taken as a 
case study, where MODIS-NDVI (2000-2008) anomalies 
are analyzed with AI and SPI (monthly precipitation 
and PET data of Terra Climate). These anomalies are 
compared with agriculture and irrigation data sources. 
Maharashtra is known for dependence of around 55% of 
population on agriculture and its allied activities [28,17]. The 
region has a history of drought [29] and is in a constant state 
of drought since the year 2012 with deficits in rainfall 
after every 5-6 years [30,31].

2. Study Area and Data Used

2.1 Study Area

India is a tropical country situated between 06°44′ and 
37°30′ north latitude and 68°7′ and 97°25′ east longitude, 
covering an area of 3,287,263 km2. The country depicts 
heterogeneous climatic variation with Himalayan arc in the 
north, Indian Ocean in south, Arabian Sea in southwest, 
and the Bay of Bengal in its southeast. The country can be 
divided into six aridity classes, namely, hyper-arid, arid, 
semi-arid, dry sub-humid, moist sub-humid and humid. 
About 15.8% (50.8 Mha) of the geographic area is arid and 
nearly 37.6% (123.4 Mha) is characterized by semi-arid 
climatic conditions. Different types of crops are adapted to 
the natural climate in their respective zones. Over 75% of 
the cropped area of India falls in the semi-arid tropics (131 
million ha out of 174 million ha), which is regularly hit by 
drought. Both hot and cold arid zones are found in India. In 
the cold arid zones, the precipitation is low, the vegetation 
is scattered, and the PET is even as low as zero. Thus, AI 
values cannot be determined in the cold arid zones. So in this 
study only the hot arid zone of India (Figure 1) is considered 
to analyze aridity and its anomalies.

For the study of NDVI, AI and SPI anomalies, state of 
Maharashtra is taken as a case study. It is situated between 
15°44’ and 22°6’ north latitude and 72°36’ E to 80°54’ 
east longitude. Around 83% of the state is characterized 
by semi-arid climatic condition [31]. The western boundary 
is a narrow string of dry and moist sub-humid zones 
between semi-arid and Ghat region. The Konkan and the 
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Ghat regions are humid and per-humid respectively. One-
third of Maharashtra receives scanty rainfall. This area 
constitutes 24% of the drought prone area of India [32]. 
Several region-wide droughts of moderate to extreme 
intensity were experienced in Maharashtra between 1871 
and 2016, which have adversely affected the agricultural 
crops [31,33]. The state accounts for about 9.3% of India’s 
population (2011) and 11.6% of gross cropped area 
(2015-16). Only 18% of the cropped area, which is 
predominantly rain-fed, is irrigated. In the state, the share 
of agriculture and allied sectors declined from 26.01% 
to 17.90% during 1960-61 to 1990-91 respectively and 
further to 9.9% in 2018-19 [34]. Considering the challenges 
involved, only agricultural land was studied in the present 
work.

Figure 1. Location of the Study Area. Regional level 
analysis is done for entire India and local level analysis is 

done for state of Maharashtra show in grey shade

2.2 Data Used

This study used two types of datasets (i) climate data 
and (ii) remote sensing data.

2.2.1 Climate data

The meteorological data (P and PET) were downloaded 
using Google Earth Engine (GEE) platform from Terra 
Climate database with spatial resolution of ~4 km for a 

period of 60 years (1958-2018) [14]. These datasets were 
used to compute AI, AIA, and SPI; over entire India. 
These were also used to assess the aridity and relationship 
with precipitation and vegetation indices (NDVI; NDVI 
Dev) over the state of Maharashtra.

2.2.2 Remote sensing data

MODIS NDVI (MOD13Q1) product with spatial 
resolution of 250 m generated every 16 days was obtained 
from LPDAAC (https://lpdaac.usgs.gov) for the years 
2000-2018. It was processed using MODIS Reprojection 
Tool (MRT). Land Use Land Cover (LULC) map of the 
year 2005 [35] was used to extract agricultural area and 
other areas were masked out.

2.3 Methodology

The methodology is organized in two sections. The first 
section describes calculation of assessment of aridity index 
anomaly and seasonal long-term (60 years) pattern of aridity 
anomaly across India. The second section describes seasonal 
patterns of AIA, NDVI anomaly, and SPI.

2.3.1 Aridity Index Anomaly (AIA) and decadal 
changes

The monthly AI was computed using Terra Climate 
monthly variables i.e., P and PET for the period 1958-
2018 while applying the UNEP (United Nations 
Environment Programme) Aridity Index (AI) (= ratio of P 
and PET) (UNEP, 1993). The monthly AI data (for 1958-
2018) was staked forming altogether 720 layer (60 years ×  
12 months) database. These AI layers were used to 
generate AIA [=, where,  is the long-term (60-year) mean 
AI and  is the AI layer of the year (1958-2018)]. To carry 
the inter-seasonal and inter-decadal studies, these monthly 
AI and AIA layers were converted to seasonal (monsoon, 
winter, and summer, where each season consist of 60 
layers), annual and decadal dataset. The spatial change 
detection of AI maps for monthly, seasonal, and decadal 
over regional and local scales (India and Maharashtra, 
respectively) and hot spot analysis was carried using 
ArcGIS (Getis-Ord Gi*) tools. AI values were classified 
into six classes based on UNEP [36,17], i.e., Hyper-arid 
(HA) (AI < 0.05), Arid (A) (0.05 ≤ AI < 0.20), Semi-Arid 
(SA) (0.20 ≤ AI < 0.50), Dry sub-Humid (DsHu) (0.50 ≤ 
AI < 0.65), and Humid (Hu) (AI ≥ 1). The resulted hot 
and cold spots were classified into seven categories based 
on their Gi Bin values: Hotspot (HS) 99% significant, 
HS 95% significant, HS 90% significant, not statistically 
significant, cold spot (CS) 90% significant, CS 95% 
significant, and CS 99% significant [37]. The temporal 
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variation plots and change in area and percentage of total 
arid area were carried out by extracting statistical values 
of AI and AIA using R software and ArcGIS tools.

2.3.2 Seasonal patterns analysis of AIA, NDVI 
anomaly, and Standardized Precipitation Index 
(SPI)

The seasonal pattern of AIA along with SPI is carried 
out to assess the impact on agriculture over extremely 
significant hot spot regions of aridity. The AIA for the 
year 2000-2018 was computed using the methodology as 
explained in the earlier section. For the computation of 
NDVI anomaly and SPI the following methods were used.

2.3.3 NDVI anomaly

MODIS NDVI products of 250 m resolution produced 
fortnightly were downloaded from the LPDAAC data 
pool. The dataset was re-projected with the WSG84 
datum. The fortnightly NDVI products were transformed 
into monthly data by selecting the maximum NDVI of 
each month from 2000 to 2018. These monthly NDVI 
data were stacked in sequence for each month. The 
masking out of the non-agricultural area was carried out 
using the agriculture area (cropland and fallow land) from 
the LULC map of the year 2005 [35] to prepare MODIS 

agricultural NDVI files. The monthly NDVI files were 
used to generate the NDVI anomaly [=, where,  is the 
mean NDVI and  is the NDVI layer for each month of the 
year (2000-2018)].

2.3.4 Standardized Precipitation Index (SPI)

The SPI is a drought index representing the probability 
of occurrence of the observed rainfall at a location 
compared with a long-term reference period. The monthly 
precipitation data were stacked for the period from 2000 
to 2018. The mean and standard deviation of these layers 
were calculated using the ERDAS software package. The 
monthly precipitation data were used to calculate the SPI 
[=, where,  and  represent the ith value and the mean value 
and σ represents the deviation from the mean value]. The 
non-agricultural area was masked out from the monthly 
(2000-2018) SPI layers.

The AI anomaly, NDVI anomaly, and SPI were 
determined for three seasons: the summer monsoon 
(June-September), winter (October-January) and summer 
(February-May) as the mean values of the months of 
each season. The seasonal files were extracted using 
the R software package (http://openwetware.org/wiki/
R_Statistics). The overall methodology of this study is 
illustrated in Figure 2 (a, b).

Figure 2. Schematic diagram of approach used for (a) long-term aridity anomaly and decadal changes in arid zones in 
India, and (b) seasonal analysis of aridity anomaly, SPI and NDVI anomaly
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3. Results

Climate parameters play an important role in deciding 
the aridity over a region, and the quality of precipitation 
and PET performs an essential position in terms of 
understanding the extent and scale of aridity over the 
region. The AI, which is an indicator of degree of dryness, 
was analyzed for temporal (monthly, seasonal, decadal 
and sixty year) and spatial changes in arid zones. The AI 
was spatially analyzed to identify significant hot spot arid 
region and the impact of climate and aridity variation on 
agricultural regions.

3.1 Seasonal Pattern of AIA (1958-2018)

The seasonal patterns of AIA are explained by bisecting 
the monthly into seasonal pattern i.e., monsoon (June-
September), winter (October-January) and summer 
(February-May) to understand the seasonal variability 
over India (Figure 3 a-c). The temporal patterns were 
inferred, by comparing the frequency (number of years) 
of negative AIA (more than 2 months in each season) 

between 1958-92 and 1993-2018 years. During monsoon, 
frequency of negative AIA is the maximum in the last 
25 years compared to 1958-1992. This indicates that the 
region is turning to dryer. Extreme dryness is observed 
during the year 2002-03 (Figure 3a). During winter, the 
fluctuation of aridity level is noticed for the year 1958-
1992, whereas the magnitude of aridity is extreme in the 
beginning of October month, followed by end of January 
month in sixty years. The consistent increasing trend 
in aridity is observed in the last 18 years (2000-2018), 
except the years 2005-06, 2010-11 and 2013-14. And for 
summer, the maximum number of years showed negative 
AIA during 1958-1992 (Figure 3 b-c).

3.2 Long Term (1958-2018) Pattern of AIA with 
Precipitation Anomaly

The long-term (1958-2018) analysis,  monthly 
precipitation and PET data were used, and the mean 
seasonal  and annual  AIA anomaly wi th  annual 
precipitation anomaly was assessed at regional level 
of India (Figure 4). Analysis of Seasonal AIA with 
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Figure 4. Long term seasonal/annual pattern of AIA with precipitation anomaly in  
three cropping seasons of India

Figure 3. Monthly/seasonal pattern of AIA during 1958-2018 (a) monsoon, (b) winter, and (c) summer seasons

precipitation anomaly shows that the season-wise AIA 
follows the pattern with annual precipitation anomaly. The 
negative anomalies (AIA and precipitation anomalies) 
were found continued in all the seasons from 1965 to 
1967, followed by 2002-2005. The maximum impact of 
decline in precipitation on AIA was observed during kharif 
season. This was very frequent for every 4-5 years during 
1972-1992. In the last few years (2013-2018) over again, 
the decline in precipitation had an impact on aridity of an 
area. The changed patterns of AI over a period in India are 
largely driven by the changing patterns of precipitation [38].

3.2.1 Spatial (monthly) change in AI

Spatial distribution of monthly mean of AI (for 60 
years) is shown in Figure 5. Distribution during January-

March shows an increasing (maximum) range of aridity 
levels from eastern to western part of India. In the 
extremely dry months (April-May), northern and central 
regions of India indicate characteristics of hyper-arid zone. 
An increasing level of humid condition is observed during 
wet months (June-September). Due to excess in rainfall in 
July-August months, these months fall under humid zones. 
While in October-December an increase in arid condition 
from south towards north-west regions is been noticed 
indicating dryness in the north-west part of India.

3.2.2 Seasonal variation (60 years) of AIA

The sixty years spatial distribution of AIA over India in 
different seasons (monsoon/kharif, winter/rabi and summer/
zaid) and annual are given Figure 6. In the monsoon, an 
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Figure 5. Spatial distribution of monthly mean of 60 years AISeasonal variation (60 years) of AI
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extreme negative AIA was observed in the Western Ghats 
and central part of India. Whereas during winter, most of the 
area falls at moderate negative AIA and extremely negative 
is observed towards the tip and eastern costal parts of India. 
Overall, the annual AIA map over India shows mildly 
negative to moderately positive distribution.

3.2.3 Annual aridity (1958 and 2018) analysis

The spatial extent of change in the aridity zones over 
India between 1958 and 2018 is shown in Figure 7. The 
change in area and percentage of AI from one zone to 
other i.e., A-H, SA-A, DsHu-SA, DsHu-A, Hu-DsHu, and 

Hu-SA at state wise are illustrated in tabular format (Table 
A1). The spatially map shows, a maximum negative 
change of AI is towards western-central part of India, 
which indicates that the area is gradually shifting to dryer. 
The change in area percentage of aridity conditions, from 
A-H and DsHu-SA are highest at Rajasthan (0.12%) and 
Maharashtra (1.85%) states. Whereas changes from SA-
A, DsHu-SA, and Hu-SA are high at Gujarat states (1.77 
%, 0.03% and 1.04%). Overall, there is a gradual increase 
in the extent of the arid zone during 60-year period 
and spatially maximum extent of change is observed at 
Maharashtra region.

Figure 6. 60 year spatial patter of AIA for the three seasons (monsoon, winter and summer) and annual
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3.2.4 Hot spot analysis

The hot spot analysis tool used to identify the 
areas with significant spatial clustering of high 
variable values, is illustrated in Figure 8. The results 
indicate, most of the very high hot spots (statistically 
significant clustered areas with high negative change 
in AI are located at west-central part of India. State 
wise percentage area of hotspot computed from total 
geographical area of India is shown in Table A2. 
The maximum percentage areas of HS 99%, and HS 
95% confidence level is shown at Maharashtra state, 
indicating highly significant occurrence of change in 
arid condition noticed at Maharashtra, followed by 
Madhya Pradesh state at HS 90% confidence. This 
indicates that the increase in change in extent of aridity 
is highest at Maharashtra region.

3.3 Local Scale Analysis - Maharashtra

The climatic parameters and aridity variations 
will have impact on agriculture. As Maharashtra is 
proven, highest arid change region from the section 
4.1.2. Hence the study carried to assess the impact of 
aridity and precipitation by comparing the seasonal 
relationship between AIA and SPI with NDVI anomaly 
over Maharashtra region.

3.3.1 AIA with NDVI anomaly

The temporal pattern of AIA with NDVI anomaly in 
three seasons during 2000-2018 is illustrated in Figure 
9 a-c. Frequency of occurrence of minimal to maximal 
range negative AIA are majority (out of 18 years, 
11 years are shown negative AIA) during monsoon. 
Similar NDVI anomaly falls the pattern with AIA is 
observed over a study period, except during 2015-
2018. Whereas, in winter season, the positive pattern 
of both anomalies was observed only during 2010 
and 2011 followed by 2014 and 2015. During dry/
summer season, only 5 years (2006, 2011, 2014, 2015 
and 2018) are shown positive anomalies indicate good 
vegetation with residual moist condition.

3.3.2 NDVI and SPI anomalies

The Standardized Precipitation Index (SPI) was 
calculated using monthly precipitation data for 2000-
2018 from Terra Climate. The temporal pattern of SPI 
with NDVI anomaly in three seasons during 2000-2018 
is illustrated in Figure 10a-c. The plots of the NDVI 
anomalies, mostly aligns with those of the AIA and SPI 
temporal patters in the three seasons indicating that the 

Figure 7. Changes in AI between 1958 and 2018

Figure 8. Spatial hotspot analysis of aridity between 1958 
and 2018
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Figure 9. Temporal patterns of AI and NDVI anomaly during 2000-01 to 2017-18, (a) monsoon/kharif, (b) winter/rabi, 
and (c) summer/zaid season
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Figure 10. Temporal patterns of SPI and NDVI anomaly during 2000-01 to 2017-18,  
(a) monsoon/kharif, (b) winter/rabi, and (c) summer/Zaid season
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change in vegetation is due to the precipitation and PET. 
However, the positive vegetation anomalies during monsoon 
season shown for recent years (2014 to 2017) despite there 
being a less precipitation, indicates that usage of available 
irrigation sources have been increased simultaneously. It 
was observed that with various major, medium, and minor 
irrigation projects, a total irrigation potential of 49.26 lakh ha 
had been created by the end of 2012 [39].

4. Discussion

The effective wetness or dryness of climate over a land 
area is decided by way of the terrestrial aridity of that area, 
that is measured with the aid of the ratio of annual mean 
precipitation to the annual imply ability evapotranspiration 
[12,13,36]. Earlier studies noted that globally the increase 
in aridity is due to the fact that the rise in atmospheric 
demand over land use practices leading to sever land 
degradation, can amplify the near-surface climatic changes 
and lead to further desertification over longer periods 
with exceed in the precipitation changes [40,41]. Thus, the 
degrees of dryness and the relation with precipitation 
carried in most of the studies to examine impacts on food 
grain production over India [38,42] used coarse resolution 
gridded datasets. Meteorological phenomena, such as fast 
moving clouds, forefronts variation of solar radiation. 
This study addresses the research gaps of previous studies 
with using the fine resolution gridded data sets (0.05o × 
0.05o) to assess the long term (1958-2018) spatio-temporal 
change in aridity. This also identifies the most significant 
hot spots and examines the relation with precipitation 
and arid conditions on agriculture. The results suggest 
that the increase in aridity may cause loss of agricultural 
productivity and impact the food security if mitigation 
actions are not initiated. More than this the findings are 
important to understand impacts of climate change on land 
use pattern, and land and water resource management.

Studying the change in aridity at the regional scale 
helps to understand the magnitude, identify the extreme 
hot spot areas and spatial pattern of the changes as well as 
the shift of lands from one class of aridity to another arid 
class. The transition of aridity is considered as a foremost 
and assertive impact of global climate change [27,43,44]. The 
study examines the sensitivity of gridded precipitation 
data sets for identification of semi-arid regions over 
India. It makes reliable assessment of the observed 
regional aridity changes. Such evidence is important for 
decision-makers as a signaling mechanism to think about 
adaptation planning over the semi-arid regions of India 
(Ramarao et al., 2018). Such assessment features the 
need of satisfactory planning for the water conservation 
during seasonal precipitation which is often overflown. 

Such overflow of water during the monsoon season can 
be utilized for succeeding dry months. Such strategic 
planning can meet the harvest soil dampness request and 
lift horticultural creation altogether. To remedy rainfall 
venture and preserve crop production in the area, piloting 
irrigation for selected plants, as some farmers are already 
doing, is particularly endorsed.

5. Conclusions

The present study was conducted to understand the 
effect of recent changes in climate on aridity and shift of 
arid land in India between 1958 -1968 and 2008 -2018. For 
a regional picture across country the monthly and seasonal 
pattern of AI using Terra Climate (1958 -2018) data was 
carried out. The Terra Climate data provided trends in 
precipitation and PET, and these were used to assess the 
aridity shifts and the impact of aridly. It further focuses 
on aridity anomalies, drought anomalies and vegetation 
anomalies and the relations between them while taking a 
case of state of Maharashtra, India. The MODIS NDVI 
data were found useful while assessing NDVI anomalies 
along with AI and SPI. We also used data in agriculture 
and sources of agriculture to support our results.The 
incline in aridity in resulted in last 25 and 18 years during 
monsoon and winter seasons, whereas extreme dryness is 
noticed in 2002-03 year. The changed patterns of AI over 
a period are largely driven by the changing patterns of 
precipitation for every 4-5 years period. Spatial north-west 
portion of India shows an increase in aridity condition. 
Spatially variation of change in seasonal change aridity 
condition is observed i.e, during monsoon Western Ghats 
and central part of India extreme AIA and towards the tip 
and eastern costal parts of India in winter season.
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Supplementary Material

Spatial pattern of dryness

The spatial  extent of dryness is computed by 
differencing two different years’ annual AI mean images. 

The map is categorized into 5 classes based of degree 
of dryness. In 1958 to 2000, the major extreme to dry 
classes has been observed at west to central part of India, 
followed by eastern part of India. In 1958 to 2018, the 
maximum extent of dryness is observed towards west part 
of India (Gujarat).

Figure A1. Spatial distribution of extent of dryness maps (a) 1958, 2002 and difference of 1958-2000, and b) 1958, 
2018 and difference of 1958-2018

Figure A2. Long term seasonal pattern of (a) Kharif season AIA with NDVI anomaly for 1958-2018, and (b) annual 
precipitation anomaly with Kharif season inter-sensor NDVI anomaly
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Table A1. State wise percentage change in AI classes

States Names A-HA SA-A DsHu-SA DsHu-A Hu-SA

Andaman and Nicobar 0.00 0.00 0.00 0.00 0.00

Andhra Pradesh 0.00 0.00 0.79 0.00 0.01

Arunachal Pradesh 0.00 0.00 0.00 0.00 0.00

Assam 0.00 0.00 0.00 0.00 0.00

Bihar 0.00 0.00 0.00 0.00 0.00

Chandigarh 0.00 0.00 0.00 0.00 0.00

Chhattisgarh 0.00 0.00 0.00 0.00 0.00

Dadra and Nagar Haveli 0.00 0.00 0.00 0.00 0.00

Daman and Diu 0.00 0.00 0.01 0.00 0.01

Delhi 0.00 0.00 0.02 0.00 0.00

Goa 0.00 0.00 0.00 0.00 0.00

Gujarat 0.00 1.77* 1.08 0.03* 1.04*

Haryana 0.00 0.03 0.31 0.00 0.00

Himachal Pradesh 0.00 0.00 0.00 0.00 0.00

Jammu and Kashmir 0.00 0.04 0.11 0.00 0.00

Jharkhand 0.00 0.00 0.00 0.00 0.00

Karnataka 0.00 0.00 1.11 0.00 0.10

Kerala 0.00 0.00 0.00 0.00 0.00

Madhya Pradesh 0.00 0.00 0.46 0.00 0.60

Maharashtra 0.00 0.13 1.85* 0.00 0.19

Manipur 0.00 0.00 0.00 0.00 0.00

Meghalaya 0.00 0.00 0.00 0.00 0.00

Mizoram 0.00 0.00 0.00 0.00 0.00

Nagaland 0.00 0.00 0.00 0.00 0.00

Orissa 0.00 0.00 0.00 0.00 0.00

Pondicherry 0.00 0.00 0.00 0.00 0.00

Punjab 0.00 0.04 0.35 0.00 0.00

Rajasthan 0.12* 0.97 1.23 0.00 0.51

Sikkim 0.00 0.00 0.00 0.00 0.00

Tamil Nadu 0.00 0.00 0.51 0.00 0.00

Tripura 0.00 0.00 0.00 0.00 0.00

Uttar Pradesh 0.00 0.00 0.27 0.00 0.01

Uttaranchal 0.00 0.00 0.00 0.00 0.00

West Bengal 0.00 0.00 0.00 0.00 0.00

India 0.12 2.98 8.10 0.03 2.46

HA - Hyper-arid; A - Arid; SA - Semi-Arid; DsHu - Dry sub-Humid; Hu - Humid 

*Highest values among all states
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Table A2. State wise area Percentage of hot spot

State Names
Area Percentage of hot spot

CS_99% CS_95% CS_90% No Change HS_90% HS_95% HS_99%

Andaman and Nicobar 0.15 0.00 0.05 0.00 0.00 0.00 0.00

Andhra Pradesh 0.00 0.00 6.20 1.64 0.00 0.28 0.25

Arunachal Pradesh 0.00 0.00 2.57 0.00 0.00 0.00 0.01

Assam 0.00 0.00 2.46 0.00 0.00 0.00 0.00

Bihar 0.00 0.00 2.86 0.02 0.00 0.00 0.01

Chandigarh 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Chhattisgarh 0.00 0.00 4.12 0.00 0.00 0.00 0.00

Dadra and Nagar Haveli 0.00 0.00 0.00 0.02 0.00 0.00 0.00

Daman and Diu 0.00 0.00 0.00 0.02 0.00 0.00 0.00

Delhi 0.00 0.01 0.00 0.00 0.04 0.00 0.00

Goa 0.00 0.00 0.00 0.11 0.00 0.00 0.00

Gujarat 0.00 0.00 0.00 4.76 0.94 0.00 0.04

Haryana 0.01 0.00 0.13 0.78 0.43 0.00 0.00

Himachal Pradesh 0.00 0.00 1.68 0.00 0.00 0.00 0.02

Jammu and Kashmir 1.39 0.02 4.97 0.07 0.00 0.01 0.16

Jharkhand 0.00 0.00 2.46 0.00 0.00 0.00 0.00

Karnataka 0.00 0.00 2.81 2.35 0.00 0.05 0.66

Kerala 0.00 0.00 0.00 1.15 0.00 0.00 0.00

Madhya Pradesh 0.00 0.11 5.02 0.82 2.88 0.01 0.55

Maharashtra 0.00 0.17 4.83 1.77 0.09 0.35* 2.21*

Manipur 0.00 0.00 0.71 0.00 0.00 0.00 0.00

Meghalaya 0.00 0.00 0.70 0.00 0.00 0.00 0.00

Mizoram 0.00 0.00 0.66 0.00 0.00 0.00 0.00

Nagaland 0.00 0.00 0.53 0.00 0.00 0.00 0.00

Orissa 0.00 0.00 4.75 0.00 0.00 0.00 0.00

Pondicherry 0.00 0.00 0.00 0.01 0.00 0.00 0.00

Punjab 0.03 0.01 0.21 0.69 0.61 0.00 0.00

Rajasthan 0.00 0.00 0.00 8.07 1.82 0.01 0.65

Sikkim 0.00 0.00 0.22 0.00 0.00 0.00 0.00

Tamil Nadu 0.32 0.03 0.10 3.49 0.00 0.00 0.02

Tripura 0.00 0.00 0.32 0.00 0.00 0.00 0.00

Uttar Pradesh 0.01 0.04 4.52 0.73 1.79 0.01 0.24

Uttaranchal 0.00 0.00 1.62 0.00 0.00 0.00 0.00

West Bengal 0.00 0.00 2.56 0.01 0.00 0.00 0.00

C - Cold Spot; HS - Hot Spot and value % is significant level.
*Highest values among all states
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