
Journal of Atmospheric Science Research | Volume 07 | Issue 04 | October 2024

Journal of Atmospheric Science Research

https://journals.bilpubgroup.com/index.php/jasr

RESEARCHARTICLE

Assessing Subseasonal Forecasts of Dry Spells and Heatwaves at the

Regional Scale in Brazil

Christopher Cunningham 1* , Nicholas P. Klingaman 2, Liana O. Anderson 1, Adriana Cuartas 1, Foster Brown 3,4,

Paulo Henrique Valadares 3, Ianca Ribeiro 3, Luciana Londe 1

1Brazilian Center for Monitoring and Early Warning of Natural Disasters (Cemaden), São Jose dos Campos 12247-016,

Brazil
2National Centre for Atmospheric Science and Department of Meteorology, University of Reading, Reading RG6 7BE, UK
3Post-Graduation Department, Acre’s Federal University, Rio Branco 69915-900, Brazil
4Woodwell Climate Research Center, Falmouth, MA 02541, USA

ABSTRACT

This study evaluates the performance of subseasonal forecasts for dry spells and heatwaves at a regional scale in

Brazil. The forecasts’ verification was designed to provide end-users with relevant information about the forecasts’ quality.

The U.K. Met Office model was assessed using a significant sample of weekly forecasts: 552 for dry spells and 240 for

heatwaves.  The analysis reveals that the overall performance of the forecasts is low, with a chance of detecting an event

close to 0.2, indicating that only one out of five observed dry spells is accurately predicted on average. The application of

quantile mapping corrections demonstrates improvements in predicting shorter dry spells (up to 5 days) and longer lead

times, although the timing of these forecasts often remains inaccurate, leading to increased false alarms. A significant

improvement in the forecast quality occurs when categorization by duration is disregarded. The detection chances increase

to 0.5−0.7 for dry spells and 0.5 for heatwaves. The Brier Score indicates that the probabilistic forecasts issued by the model

are equivalent or less skilful than climatological probabilities. Overall, the findings underscore the challenges in forecasting

dry spells and heatwaves in Brazil and highlight the need for ongoing improvements in forecasting methodologies to
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enhance their reliability and utility for regional decision-making. This research contributes to understanding subseasonal

climate forecasting and its implications for managing climate-related risks in Brazil.

Keywords: Dry Spells; Heatwaves; Subseasonal Forecast; Early Warning System; Disaster Risk Reduction

1. Introduction

Earth’s climate is warming fast, and the worldwide con-

sequences of 0.99°C [0.84−1.10] of global warming since the

industrial era are evident [1, 2]. Over South America, the cli-

mate projections under optimistic and pessimistic scenarios

indicate a precipitation reduction in tropical areas (e.g., Chou

et al. [3] and Marengo et al. [4]). Consistently, the warming

in the region has also been depicted by the models, reach-

ing up to 9°C in the most pessimistic scenario (RCP8.5) [5].

Apparently, what was projected to happen in the future is

occurring in the present. The year 2023 was a worldwide

record-breaking event in several aspects [6]: (1) 2023 is the

warmest calendar year in global temperature records going

back to 1850. (2) 2023 had a global average temperature of

14.98 °C, 0.17 °C higher than the previous highest annual

value in 2016. (3) Each month from June to December 2023

was warmer than the corresponding month in any previous

year. (4) In September 2023, the temperature deviation above

the 1991–2020 average was larger than in any month in any

year.

Long-term climate projections are undeniably vital to

assessing potential scenarios and supporting long-term poli-

cies for mitigating climate emergencies. However, there is

also an urgent need to forecast accurately in timescales that

permit coping with the present-time adversities due to the

warming climate. In this regard, a critical steering project

was initiated in 2013: the Subseasonal-to-Seasonal predic-

tion project (S2S) [7–11]. The subseasonal time scale of predic-

tion, typically defined between 2 weeks to 2 months, is very

important for several socio-economic sectors. One potential

benefit of S2S forecasts is improving society’s preparedness

for extreme weather events leading to disruptive societal

conditions, aka socio-environmental disasters [10, 12].

The International Strategy for Disaster Reduction

(ISDR) in 2000 granted visibility to the concept of Early

Warning Systems (EWS). During this decade, there were

two International Conferences on Early Warning in Bonn,

Germany (2003 and 2006), the first fostering the integration

of early warning into public policies and the second empha-

sizing the implementation of the Hyogo Framework. After

the 2004 tsunami in the Indian Ocean, many efforts have been

made to develop and improve capacities for people-centred

EWS. Current guidelines highlight strengthening capacities

at the institutional foundations and local communities’ lev-

els. Warning systems for hazards used to be assumed to be

top-down: to supply technology, data, and messages and

then connect to the people affected as the “last mile” of the

warning system. Yet lessons from past decades, alongside

recent work, demonstrated that bringing in affected people

last creates problems. Instead, warning systems need to be

inclusive from the beginning.

Most scientific literature in atmospheric sciences on

dry spells or heatwaves focuses on diagnostics, with few stud-

ies addressing forecast verification. For example, a search

in American Meteorological Society journals from 1980 to

2020 using “dry spell” as a title keyword yielded 14 results,

with only one related to forecasting [13]. The gap is less pro-

nounced for heatwaves. A search in Royal Meteorological

Society journals from the same period using “heatwave” re-

turned 58 results, but only four focused on prediction or

projection [14–17].

Krishnamurti et al. [13] were among the first to explore

the idea that it would be possible to forecast at the subsea-

sonal scale (1 month in advance). Their work was conducted

as a case study of a dry spell over India during June 1979.

They used a General Circulation Model (GCM), for which

they eliminated the higher frequencies of variability in the

initial state. The results were subjectively evaluated by com-

paring some forecasted atmospheric fields with the observed

state. Vitart [14] also showed that some potentially useful

skills might exist in amonth’s time scale. He used aGCMver-

sion from the European Center for Medium-Range Forecasts

(ECMWF) to show that the model successfully predicted a

chance of heatwave higher than in climatology more than ten

days in advance. He studied the heatwave case that impacted

Europe in August 2003. The evaluation was performed ob-

jectively using ROC and reliability diagrams. H. J. Lee, W.
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S. Lee and Yoo [16] evaluated five GCMs from the Interactive

Grand Global Ensemble (TIGGE) of the Observing system

Research and Predictability Experiment (THORPEX). They

used objective scores, such as the Critical Success Index,

which was adopted in the present work as well. Their results

showed that heatwaves are presumably predictable with 5

to 9 days lead times. However, the assessment was done

only for four South Korean heatwave cases during July and

August 2013.

In an original study, Lowe et al. [18] combined the S2S

forecasts and a mortality model due to heatwaves to assess

the potential of S2S forecasts in aiding preparedness and re-

sponse in the health sector in Europe. They used the ECMWF

subseasonal forecast system as input to a mortality model.

Their work was based on a case study of the heatwave that

impacted Europe duringAugust 2003. Their results indicated

that for short lead times (up to 4 days), the combined forecast

skill (S2S forecasts + mortality model), given by the Area

Under the ROC curve, is better than climatology.

Studies of heatwaves in Brazil are still exploratory,

aiming to provide climatological details [19–22] but lack fore-

casting aspects and society-integration proposals. This study

examines subseasonal forecasts of dry spells and heatwaves

in two critical regions of Brazil, given that both events are

expected to become more frequent and intense [23]. Those

critical regions are characterized by decreased rainfall [24] or

increased temperatures, and stakeholders could benefit from

subseasonal forecasts for strategic planning.

The objective of the present study is to assess the qual-

ity of dry spell and heatwave forecasts at the subseasonal

timescale, regarding the end-user perspective at a regional

scale. It is essential to highlight that information for stake-

holders regarding evaluating forecasts of dry spells and heat

waves is scarce in Brazil. Dry spells were assessed over

the Três Marias watershed in Southeastern Brazil and the

heatwaves over Rio Branco’s municipality in Southwestern

Amazon. Supposing that an S2S forecast is part of a system to

promote better decisions in Brazil’s strategic socio-economic

sectors, the relevant inquiry would be: considering a partic-

ular model, what is the usefulness of the raw and corrected

forecasts predicting heatwaves and dry spells?

The paper is organized into five sections. In the second

section, the datasets used are described, and the methods

are explained in detail. Section 3 presents the results and

discusses them. Section 4 presents the concluding remarks.

2. Materials and Methods

2.1. General Methods

The assessment approach was designed to provide rel-

evant information about the forecasts’ quality to users who

might have to take critical decisions based on the forecasts’

performance. For instance, we avoided evaluations over

large areas (e.g., a whole hemisphere or an entire continent).

While they are informative of a model’s overall skill, there-

fore motivating from the modelling science point of view,

they do not provide specific information about the forecasts’

quality in the region where the decision process should be

taken. In addition, the experiments’ architecture was thought

to mimic an operational condition on a hypothetical early

warning system. Further, we used actual observed data in-

stead of model-generated analysis. It is recognized that veri-

fication procedures that use analysis reduce the utility of the

results for the users outside the modelling community and

lead to an overestimation of the forecasts’ quality [25].

Dry spell or heatwave predictions must be verified dif-

ferently from precipitation or temperature extremes. First,

you must select a threshold for defining a dry or hot day. In

addition, we must consider that either dry spells or heatwaves

are defined as uninterrupted sequences of days obeying such

criterion. In other words, dry spells or heatwaves are also

represented in the time dimension: the events’ duration. Dif-

ferent durations imply different chances for occurrence and

different impacts. For instance, Q. Zhao et al. [26] have found

evidence in Brazil that heatwaves characterized by high tem-

peratures and long durations were associated with a higher

risk of hospitalization than lower and shorter heatwaves.

It is well known that GCM variables, such as precip-

itation or temperature, are not free of systematic errors [27].

Hence, postprocessing is a necessary step for any practical

application. The present study adopted quantile mapping as

the error correction technique. Quantile mapping is a sta-

tistical transformation method that finds a function to map

the modelled variable such that its new distribution equals

the distribution of the observed variable [28]. This method

has been widely used to correct errors from GCM outputs

in applications for hydrological prediction [29, 30] or meteo-

rological studies [31]. One of the advantages of this method
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is that it can correct errors in the extremes of the distribu-

tion, which is a proper characteristic given that the present

work deals with dry and hot days, both found in the tails

of the precipitation and temperature distributions. As with

any other method, it also presents disadvantages. T. Zhao

et al. [32] have demonstrated that while quantile mapping is

highly effective in correcting errors in model variables, it

cannot ensure reliability in forecast ensemble spread or guar-

antee coherence, i.e., that forecasts are at least as skilful as

climatology.

We used the R statistical computation software and

the package “qmap” for such correction. Based on obser-

vational data, the mapping function was derived from the

Empirical Cumulative Distribution Function (ECDF). When

verifying the quantile mapping method results, we adopted a

cross-validation approach to ensure the independence of the

training and verification of data samples. Each week being

evaluated is left out for verification, and the remaining weeks

in the forecast time series compose the training dataset. The

training dataset is then used to calculate the quantile-quantile

relation.

Remembering that there is no universal approach to

forecast assessment is valuable. The procedure adopted and

the scores selected must match the study’s specific objec-

tives [33, 34]. The central perspective of the present assess-

ment aims to answer the question: Is a dry spell/ heatwave

predicted for the next week (or the second, third, or fourth

week)? From this perspective, it is possible to verify the

forecast as a non-probabilistic dichotomous forecast: “Yes,

an event will happen” or “No, the event will not happen”.

The model evaluated is the Met Office global seasonal

prediction system (GloSea5) [35] in the scientific configura-

tion Global Coupled 2.0 [36]. In a recent study, Klingaman

et al. [37] found that the Met Office model predicted well

weekly mean rainfall anomalies across South America, val-

idated against the same CHIRPS dataset used here. Of the

four models examined in that study, the Met Office model

performed second best, particularly in southeast Brazil. Such

a result motivates examining its performance at shorter tem-

poral and smaller spatial scales. From a practical standpoint,

the Met Office forecast model output is readily available to

decision-making agencies in Brazil, which allows the co-

construction of a product design which can be operational-

ized in the future.

The available set of reforecasts covers 23 years

(1993–2015), with seven (7) ensemble members. The model

is integrated four times a month, on dates 1st, 9th, 17th and

25th. The total model’s forecast horizon (45 days) was di-

vided into 7-day weeks. The first week spans from forecast

days 2 to day 8 (week 1), the second from days 9 to day 15

(week 2), the third from days 16 to 22 (week 3) and the last

week from days 23 to 29 (week 4). Henceforward, those

weeks may also be referred to as target-weeks.

The event durations considered for verification, either

for dry spells or heatwaves, are 3 to 7 days. Given the present

methodology’s architecture, the verification experiments do

not consider when, within the week, the dry spell occurred.

For instance, for a forecast verification of a 3-day dry spell

during the first week, a hit is considered if the model pre-

dicted the dry spell occurring at the beginning of the week,

but the dry spell happened at the end.

The general procedure for verification of the forecasts

is a multi-step process intended to mimic an operational con-

dition when you have real-time predictions for the upcoming

weeks (1 to 4). The scores calculated are then straightfor-

wardly interpreted by the decision-makers. The process in-

volves several key steps, including separating the model’s

initialization dates, selecting forecast dates within the as-

sessed target-week range, adding observations to the dataset,

and categorizing forecasts for each member within the target-

week. The ensemble forecast is determined based on the

majority prediction of the members, and this information is

compared to the observations (Table 1). The outcome of this

process is the creation of arrays representing the forecasts

and observations, which are then used to build a contingency

table for further analysis.

Several scores can be usedwhen assessing dichotomous

forecasts. We adopted the performance diagram approach [33].

With this diagram, it is possible to exploit the geometric re-

lationship between four measures of dichotomous forecast

performance: the probability of detection (POD), false alarm

ratio or its opposite, the success ratio (SR), BIAS and crit-

ical success index (CSI, also known as the Threat Score).

The BIAS is not the error in the forecasted values of tem-

perature or precipitation. Instead, it is the frequency BIAS,

which measures the ratio of the frequency of forecast events

to the frequency of observed events. POD, SR, BIAS and

CSI approach unity for good forecasts, such that a perfect
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Table 1. Example of the categorization in dry days (1) or non-dry days (0) for a random week 1.

ICnDate FctDate FctM1 FctM2 FctM3 FctM4 FctM5 FctM6 FctM7 EnsFct Obs

3/17/1993 3/18/1993 0 0 1 0 0 1 0 0 0 

3/17/1993 3/19/1993 1 1 1 1 1 1 1 1 0 

3/17/1993 3/20/1993 1 1 1 1 1 1 1 1 1 

3/17/1993 3/21/1993 0 0 1 1 1 0 0 0 0 

3/17/1993 3/22/1993 1 1 1 1 1 1 1 1 1 

3/17/1993 3/23/1993 1 1 1 1 1 1 1 1 1 

3/17/1993 3/24/1993 1 1 1 1 1 1 1 1 0

Note: The rightmost column indicates the observed (CHIRPS) categories, and the immediate column to the left is the EnsFct, calculated as the mode of the members.

forecast lies in the upper right of the diagram. Conversely,

poor-performance forecasts tend to cluster in the lower left

corner of the diagram.

Given a contingency table as below (Table 2), the defi-

nition for the Probability of Detection (POD), success ratio

(SR), BIAS and critical success index (CSI) is:

Table 2. The joint distribution, i.e., the four combinations of fore-

casts (yes or no) and observations (yes or no).

Observed Yes Observed No

Forecast yes Hits False alarms

Forecast no Misses Correct negatives

POD =
hits

hits +misses
(1)

SR  =  
hits

hits +  false alarms
  =  1 −  FAR   (2)

where:           FAR =
false alarms

hits +  false alarms
(3)

BIAS  =  
hits +  false alarms

hits +  misses
(4)

CSI  =  
hits

hits +misses +  false alarms
(5)

When verifying the quality of dry spell predictions as

non-probabilistic dichotomous forecasts, we assessed two ex-

periment configurations that intend to suggest possible ways

of presenting the dry spell forecasts for a decision-maker.

The first experiment (Trial 1) is the most rigorous. It assesses

the model’s ability (as represented by the Ensemble Mode)

to predict a dry spell of an exact given duration in the target-

week. Hence, scores resulting from this trial are categorized

according to the duration (3, 4, 5, 6 or 7 days), which results

in five realizations of the verification procedure (see above)

for the raw forecasts, plus five for the corrected forecasts.

The second experiment (Trial 2) makes the verification

much more flexible since it considers hits if the EnsFct pre-

dicts an event (dry spell or heatwave) of any duration (3 to 7

days) and an event of any duration is observed. Hence, this

trial assesses the forecast of an event’s existence, disregard-

ing the categorization by duration. Since all five durations

are pooled in a single category, Trial 2 has only two realiza-

tions: raw and corrected forecasts.

Despite the apparent excessive flexibilization, this is a

plausible forecast product from the end user’s perspective.

Representatives of the Center forMonitoring and EarlyWarn-

ing of Natural Disasters (Cemaden) regularly meet with the

Ministry of Energy representatives. The goal is to support

critical decisions on operating the generation and distribu-

tion of electricity in Brazil. Cemaden is a Brazilian federal

institution that supports disaster risk reduction through oper-

ational activities. One learning from such interaction is that

end users are frequently only interested in knowing if some

extreme weather period is expected in the near future (for

instance, a dry spell or a heatwave), disregarding their exact

beginning or duration. Therefore, because of: (1) the scarcity

of heatwaves and dry spells forecasts’ verification for Brazil;

and (2) considering the needed improvement in scientific

and technical aspects of S2S predictions, the information

generated is helpful and of interest.

Since the main advantage of the ensemble forecasts is

to provide probabilistic estimates of the future, we have also

calculated the Brier Score (BS). The Brier score is essentially

the mean squared error of the probability forecasts, consid-

ering that the observation is one (1) if the event occurs and

zero (0) if it does not. The formulation is as follows.

BS  =  
1

n

∑n

k = 1
(yk −  ok)

2
(6)

in the present study, k varies from 1 to 552 (weeks) for
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the dry spells and 1 to 240 for heatwaves. Y represents the

probability forecast, a fraction ranging from 0 to 1. The fore-

cast probability was calculated by verifying for each member

(1−7) if an event of a given duration is predicted during the

forecasted week. The probability is the number of members

forecasting an event divided by the total number of ensemble

members.

It is common to present the BS as a skill score (BSS),

which expresses the percentage improvement over a refer-

ence forecast. This work calculated the BS and BSS using

the R-package “verification” from the National Center for

Atmospheric Research (NCAR), Research Applications Lab-

oratory. The BSS is expressed as follows.

BSS  =  
BS −  BSref

0 −  BSref
  =  1 −  

BS

BSref
(7)

The BSref is a sample climatology calculated from

the observations (see Sections 2.2 and 2.3 to learn the ob-

servation datasets). The following two sessions describe

specific methodological aspects, particularly for dry spells

or heatwaves.

2.2. Methods Concerning Dry Spell Analysis

The first critical area is the upper São Francisco River,

the Três Marias basin, in Southeastern Brazil. This basin

is crucial for hydropower generation, irrigation, water sup-

ply, and navigation [38]. The Três Marias reservoir regulates

river flow and supports downstream Sobradinho and Ita-

parica reservoirs, which are essential for hydropower and

water supply in the Brazilian Semiarid Region [39, 40]. Since

2014, the Southeast region has faced drought conditions [41].

The Três Marias basin has been significantly impacted, with

mean discharge in summer 2014 at 357.0 m³·s⁻¹ and in 2015

at 378.0 m³·s⁻¹, considerably lower than the historical aver-

age of 988.0 m³·s⁻¹ (1941–2015). By late November 2014,

the reservoir level was approximately 2.6%. The National

Centre for Early Warning of Natural Disasters (Cemaden,

Brazil) conducts weekly strategic meetings with energy sec-

tor stakeholders to provide forecasts for priority hydropower

basins. Operational decisions on sub-seasonal timescales

are critical for water resources managers. However, exist-

ing S2S and seasonal predictions are seldom integrated into

decision-making processes [42], highlighting the necessity to

investigate and evaluate S2S forecasts and develop method-

ologies for their effective utilization by decision-makers and

end-users.

The dataset used to validate the dry spells forecast was

produced by the Climate Hazards Group Infrared Precipita-

tion with Stations (CHIRPS) [43]. The CHIRPS dataset has

been previously validated for many regions in Brazil [44–47],

including the Amazon [48] and at the national scale [49], show-

ing robust association with observed weather station data.

The horizontal resolution of the UKMO model is 0.83

degrees longitude by 0.55 degrees latitude, which is approxi-

mately 90 km in longitude and 60 km in latitude. The original

horizontal resolution of CHIRPS is 0.05 degrees ( 5 km) in

both latitude and longitude. Both datasets were interpolated

to a 1.5-degree grid by area-weighted bilinear interpolation.

This grid matches the grid on which model output can be

obtained from the S2S prediction project database, which

means that the methods applied in this study could be easily

extended to validate other forecast models.

The rainfall dataset was geographically and season-

ally stratified. First, the CHIRPS daily rainfall was area-

averaged over the seven grid points encompassing the basin

(Figure 1). The delimited region presents a monsoonal cli-

mate regime [50, 51], with a well-defined dry season fromApril

to September. As such, sequences of days without rain are

expected during those months. For strategic sectors like food

security or energy management, dry spells that matter are

those that potentially may cause the most impact: those dur-

ing the rainy season. Regarding the UKMO’s retrospective

forecast initializations, the dates span from 1993-Jan-01 to

2016-Dec-25, giving 552 forecasted weeks for any week

considered (1 to 4).

The daily rainfall threshold differentiating a dry day

from a non-dry day is 1 mm [52]. Such threshold corresponds

to the 36th percentile of the CHIRPS time series, considering

only the rainy period from October to March (ONDJFM).

Consistently, the sample of assessed forecasts includes only

initialization dates during ONDJFM.

Figure 2 shows the effect of the correction by the quan-

tile mapping procedure. The quantile-quantile plot compares

all the forecasted week 3 and the corresponding observed

precipitation. The features are very similar for week 1, week

2 and week 4. The larger frame exhibits the whole range

for precipitation variability. The smaller frame focuses on

the lower values of precipitation, which are important for
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defining a dry day. The UKMO model presents a misrepre-

sentation of days with no rainfall, as the vertical straight line

at the beginning of Figure 2a demonstrates. It is well known

that observed precipitation presents a significant fraction of

days with zero precipitation. The UKMO misrepresented

this fact, generating several days with very low rainfall but

different from zero (Figure 2a). In the CHIRPS time series,

the transition from zero rainfall to rainfall occurs approxi-

mately at 0.31st quantile. In the UKMO model, this same

quantile corresponds to approximately 1.7 mm·day⁻¹. This

discrepancy signifies fewer dry days in the model than in

CHIRPS. The quantile mapping can correct this limitation

(Figure 2b).

Figure 1. Três Marias watershed location and delimitation.
Note: The grey squares indicate the grid points used for averaging the CHIRPS daily

precipitation. The dots indicate rainfall gauges that are used for operational purposes

in Cemaden. They were not used in the present work.

Figure 2. Quantile-Quantile plots comparing the UKMO model

and the CHIRPS precipitation for week 3. (a) Raw (Non-Corrected)

forecasts; (b) Corrected forecasts.

2.3. Methods Concerning Heatwave Analysis

The second study site is the Rio Branco municipality of

the southwestern Brazilian Amazon (Figure 3). From 1973

to 2013, the Brazilian Amazon exhibited an upward trend

in minimum, maximum, and average annual temperatures

of respectively 0.038, 0.045 and 0.036 °C per year [53]. In

the southwestern region, a temperature increase of approxi-

mately 1.72(±0.15) °C has been recorded since 1979, along-

side a 20% reduction in rainfall during the driest months [54].

A notable warming trend has been documented both annu-

ally and seasonally, with both minimum and maximum tem-

peratures rising more significantly during the dry season,

thereby elevating the risk of temperature extremes adversely

impacting population health and ecosystem stability in the

Amazon [55–57].

We used the daily maximum temperature registered at

the surface station in the Rio Branco municipality of Acre,

southwestern Amazon, to validate the heatwave forecasts.

This station is owned and maintained by the National Insti-

tute of Meteorology (INMET, in Portuguese), the Brazilian

meteorological institution representing the World Meteoro-

logical Organization (WMO). The time series extends from

1979 to 2019, but there are some long periods of missing

data at the beginning. The intersection of both datasets, the

23 years (1993–2016) of the UKMO model re-forecast and

the non-missing years of the Rio Branco station, resulted in

a period for verification from 1997 to 2016. The next step

was to stratify the datasets, isolating the months when max-

imum temperatures are climatologically higher during the

year: August, September and October (ASO). The outcome

dataset contains 240 weeks to be verified.

Figure 3. Rio Branco’s location and boundaries (red polygon) in

the Acre State, Southwestern Amazon.
Note: The left panel indicates the location. The right panel shows the municipality’s

boundaries and the elevation (meters) in the region (shades).

For heatwaves, a hot day is defined as exceeding 33.8

°C, representing the 80th percentile of the annual dataset

from 1997 to 2016. The simplified wet bulb globe tempera-

ture (WBGT*) [58] indicates the effects of elevated temper-

atures on human health, as elevated air temperatures and

humidity notably increase human stress. The application of

the WBGT formula yields a temperature of 31.4 °C. His-

torically, significant heat-related mortality has occurred be-
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low this WBGT threshold. The European heatwave of 2003

caused around 45,000 deaths, while the Russian heatwave of

2010 resulted in approximately 54,000 fatalities, withWGBT

values exceeding 25 °C in affected regions [58].

The ensemble forecast is represented by the ensemble

mode precisely in the same way defined for the dry spells’

analysis (Section 0). As was done for dry spells, two classes

of experiments were performed. Trial 1 assesses the quality

of the EnsFct to predict different categories of heatwaves,

defined by their duration (3, 4, 5, 6 or 7 days). The second

experiment (Trial 2) was designed to assess a heatwave’s

existence in the target-week without discrimination by dura-

tion.

The quantile mapping procedure effectively adjusts

the UKMO’s percentiles’ deviation for weeks 2, 3, and 4

(Figure 4). After mapping the quantiles, the larger residual

error occurs at the lower temperature’s extremity, which is

irrelevant to the present work. The correction in the higher

temperatures could adjust the percentiles almost perfectly

(Figure 4). However, applying the same mapping procedure

to week 1 gives significantly poorer corrections (Figure 5b).

Plotting the time evolution for all initialization dates clar-

ifies what is happening (Figure 5c). The plot presents all

forecast days, from 1 to 15 days lead-times. Each forecasted

day is given as a boxplot. The variance represented by the

boxplot concerns the differences among the initialization

times. Viewing the forecast data from this perspective, it

is clear that the UKMO’s model presents a systematic error.

Over the Rio Branco municipality region, the model exhibits

5 to 10 days of steady warming during the first lead times.

As we shall see, such an error is likely related to the poor

performance registered during week 1.

Figure 4. Quantile-Quantile plots comparing the INMET-Rio

Branco maximum temperature and the UKMO forecast for week 3.

(a) Raw (Non-Corrected) forecasts; (b) Corrected forecasts.

We repeated the boxplot procedure for a different grid-

point away from the southwestern Amazon to assess if this

initial warming is specific to the Rio Branco region. The se-

lected gridpoint is at the centre of the Três Marias watershed

(45W, 19.5S). The analysis demonstrated that the systematic

error pointed out in Rio Branco is not ubiquitous. Hence,

there are reasons not to discredit the model or the study.

Figure 5. Drawback associated with the correction for week 1. Quantile-Quantile plots comparing the Inmet-Rio Branco maximum

temperature and the Ukmo forecasts for (a) the Raw forecasts; and (b) the Corrected forecasts. (c) Box plots time evolution for all

initialization dates during the first 15 days of forecasts.

Note: The Figure 5c plot corresponds to member 3 of the model, but the error is also found in other members.

3. Results and Discussion

3.1. Dry Spells

Cunningham [51] studied the climatological character-

istics of dry spells over Southeastern Brazil, including the
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area of the Três Marias basin. The characteristic dry spells

duration during the rainy season (October to April) is up

to 9 days (80%). Dry spells ten days long or even longer

are relatively uncommon. The dry spells’ life cycle during

the rainy season exhibits a markedly subseasonal variability.

From October onwards, there is a progressive tendency to a

minimum in occurrences and duration, culminating in De-

cember, the wettest month. After this point in the cycle, the

tendency is to increase frequency and duration, peaking in

February. During March, the rainy season recovers to some

extent and demises in April. This characteristic behaviour

determines that January and February are predisposed to dry

spells, much more than December. For instance, the chance

of a dry spell ten days long or longer in December is 9/100,

but 18/100 in January and 26/100 in February.

Figure 6 shows the four scores presently considered,

plotted as the performance diagram [33] for the first and sec-

ond forecast weeks. Scores for weeks 3 and 4 are presented

in Table 3 and not as performance diagrams because they

tend to cluster in the diagram’s origin. The positioning of the

points concerning Trial 1 and week 1 reflects low score val-

ues. The better performance occurs when the model forecasts

3-day dry spells (Figure 6a, cyan points). An equivalent per-

formance is found for a raw forecast of dry spells 6-day

long (yellow open square). Nevertheless, the overall perfor-

mance, considering all duration categories, is low. The POD

is roughly lower than 0.2, meaning that for every five ob-

served dry spells, only one is correctly predicted on average.

The SR presents values of the same order (0.2). Then, on

average, one is a hit for a group of five forecasts predicting

a dry spell.

The gold points in Figure 6 represent the scores re-

sulting from Trial 2. They show an increase in performance

when the forecast system is verified without restricting dura-

tion categories. For week 1, POD and SR are around 60%

(0.60 and 0.63, respectively) for the raw forecasts and 0.7

and 0.59 for the corrected forecasts. There is a drop in per-

formance in week 2. The POD and SR are respectively 0.34

and 0.49 for the uncorrected forecasts and 0.40 and 0.41 for

the corrected forecasts. Nevertheless, it is much better than

the scores for Trial 1, all clustered with POD and SR below

20% (0.20). For week 3, the scores drop even further: POD

and SR are respectively 0.12 and 0.30 for the raw forecasts

and 0.30 and 0.40 for the corrected forecasts (not shown).

At the longest lead time (week 4), performance is slightly

increased compared to week 3. POD and SR are respectively

0.18 and 0.54 for the uncorrected forecasts and 0.28 and 0.48

for the corrected forecasts.

Figure 6. Performance diagram for the (a) first and (b) second

weeks predicted in trial 1 and trial 2.
Note: Open squares denote scores for the raw forecasts, and filled circles denote

scores after quantile mapping correction. For Trial 1, 3-day dry spells are cyan, 4-day

are green, 5-day are blue, 6-day are yellow, and 7-day are red. The two gold points

represent the results of Trial 2. Dashed lines represent BIAS scores with labels on the

line’s outward extension; while labelled solid contours are CSI. The crosshairs give

sampling uncertainty.

In general, applying quantile mapping increases the

BIAS (Equation (4)). This feature can be noticed in the dia-

grams (Figure 6), observing that, in general, for the same dry

spell duration (the same colour), the corrected point (filled

circle) is displaced leftward and upward relative to the non-

corrected point (empty square). The BIAS is mostly below

one for non-corrected (raw) forecasts (Table 3). Section 2.2.

shows that the raw UKMO forecasts predict fewer dry days

than observed. The BIAS scores (Table 3) show that this

misrepresentation leads to fewer dry spells, which is a logical

fact since dry spells are a chain of dry days. This underrepre-

sentation happens virtually every week and in every duration

category except for dry spells 4-day long forecasted during

week 1. The quantile mapping causes an increase in fore-

casts’ counts (hits + false alarms; not shown). The increased

frequency can be appraised in Table 3 , where it can be seen

that BIAS is increased for every week and duration category,

and in many instances, the model is forecasting more dry

spells than occurred.

After correction, the POD improves for shorter dry

spells (up to 5 days) and longer lead times (weeks 3 and 4).

The best improvement is 10% (from 0 to 0.10), predicting a

dry spell 5-day long during week 3. The SR improvements

tend to favour longer lead times. The best improvement is

again for a dry spell 5-day long during week 3 (from 0 to

0.12, after correction). In a broader picture, there are no

improvements, or there are worsenings in the scores. Since
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Table 3. Dry spells’ scores that compose the performance diagram for trial 1.

POD SR BIAS

uncorrected uncorrected uncorrected

Weeks 1 2 3 4 1 2 3 4 1 2 3 4

Heatwaves duration

3-days 0.24 0.06 0.03 0.04 0.29 0.11 0.08 0.17 0.81 0.59 0.38 0.27

4-days 0.22 0.05 0.03 0.05 0.19 0.09 0.05 0.13 1.13 0.59 0.50 0.41

5-days 0.10 0.09 0.00 0.03 0.11 0.12 0.00 0.09 0.93 0.74 0.33 0.34

6-days 0.19 0.18 0.06 0.10 0.30 0.20 0.25 0.25 0.63 0.88 0.22 0.40

7-days 0.17 0.09 0.00 0.00 0.18 0.13 0.00 0.00 0.92 0.73 0.64 0.71

POD SR BIAS

difference after correction difference after correction difference after correction

Heatwaves duration

3-days 0.00 0.00 0.02 0.06 −0.05 −0.03 −0.01 0.05 0.15 0.23 0.27 0.21

4-days −0.06 0.05 0.08 0.00 −0.09 0.02 0.09 −0.05 0.34 0.33 0.26 0.24

5-days 0.03 −0.04 0.10 0.03 0.01 −0.06 0.12 0.03 0.17 0.00 0.48 0.19

6-days −0.06 0.00 −0.06 0.00 −0.16 −0.03 −0.25 −0.08 0.25 0.18 0.50 0.20

7-days 0.00 0.00 0.00 0.00 −0.06 −0.07 0.00 0.00 0.42 0.82 0.09 0.14

Note: The scores presented are the Probability of Detection (POD), the Success Ratio (SR) and the frequency bias (BIAS). The top numbers indicate different target-weeks (1 to

4). The results are presented as function of the event duration.

the BIAS is generally increased, the results indicate that

even though the model forecasts more dry spells, the timing

(simultaneous occurrence in the week) is incorrect.

The BS and BSS are displayed in Figure 7. We com-

pare the performance among weeks by comparing different

colours, the performance between raw and corrected fore-

casts by comparing bars and lines for the same colour, and

performance as a function of the dry spell’s duration by com-

paring the categories (3 to 7 days). The most noticeable

feature is a diminishing error as the duration becomes more

prolonged, suggesting better skill in predicting longer dry

spells. However, this might be a misleading result. A back-

ground characteristic of the BS is that it is easier to achieve

a low BS for less frequent events without real skill [59]. We

have not computed the number of forecasted events during

the Brier score calculation process. However, we do know

that for observed events, it is true that the longer they are, the

less frequent they are. For instance, the experiment resulted

in 72, 32, 30, 16 and 12 observed dry spells during week 1, 3,

4, 5, 6 and 7 days, respectively. The diminishing frequency

of events as they become longer is maintained for the other

weeks (not shown).

The skill scores (BSS) indicate that the UKMO’s fore-

casts are less skilful than a climatological forecast since they

are all negative (Figure 7b). Comparing bars (raw forecasts)

and lines (corrected forecasts) for the same colour (dry spell

duration), we see that the quantile mapping correction in-

creases the forecasts’ probability error. This increase is more

evident in the BSS, where the lines are systematically and

notoriously at lower values than the bars (raw forecasts). The

only exception is when the forecast system predicts 3-day dry

spells during week 3. Also, week 3 presented the best results:

a small increase in error as the event duration increases and

an overall error or the order of 10% or less.

A critical characteristic of the results is that there is no

significant increase in probability errors with increasing lead

time (Figure 7a). The BS indicates that the probability error

predicting week 4 (red) is slightly lower than predicting week

1 (green). Usually, studies verifying the quality of forecast

predicting, for instance, precipitation anomalies for weeks 1

to 4, report a sharp decrease in skill as the lead time increases.

In general, it is well known for any variable that the skill of

a forecast 20 days ahead is very low [27].

3.2. Heatwaves

Pallotta [60] has analyzed the meteorological agents as-

sociated with temperature extremes in Rio Branco. Most

registered cases of extreme heat tend to occur in Rio Branco

between the end of winter and spring (August to October).

This time of the year corresponds to the demise of the dry
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season in the region, with a large availability of sensible

heat in the layers close to the surface. Associated with this

excess of heat, the author also found: (1) a large-scale subsi-

dence pattern over the Acre state at 500 hPa level; and (2) an

anomalous northwesterly wind pattern that combines warm

advection from the hotter equatorial regions with katabatic

winds descending the Andes over Acre.

Figure 7. (a) B.S. and (b) BSS for dry spells’ forecasts.
Note: Bars (lines) show the scores for the raw (corrected) forecasts. The scores for

week 1 are represented as green, week 2 as blue, week 3 as yellow, and week 4 as red.

The scores are categorized according to the dry spell duration.

The scores concerning Trial 1 are presented in Table 4.

The SR scores show that the best raw model’s performance is

associated with longer heatwaves and lead times. The model

shows a success of 4 in 10 predicting 3-day heatwaves during

week 4. During week 2 the model hits 1 in 4 yes forecasts,

considering heatwaves as long as 6 and 7 days. From the

observed heatwaves’ perspective, the raw forecasts best pre-

dict 5-day heatwaves during week 1 and week 4, though

with chances not greater than 1 in 10. Also, during week 4,

the model demonstrated a chance of 8 in 10 to hit a 3-day

heatwave.

The correction has an improving effect over the POD

and SR, different to what was seen in the analysis for dry

spells (see Discussion in Section 3.1). The applied correc-

tion mostly increased the frequency of predicted heatwaves,

as can be deduced by the majority of positive values in the

BIAS difference. This improvement reflects better in the

success rate, which is consistent since this score represents

the fraction of the forecast “yes” events that were correctly

observed.

Results from Trial 2 are displayed in Figure 8. As in

the dry spells’ assessment, the performance is substantially

increased when the event being predicted is not discriminated

by duration. The effect of the error minimization employing

the quantile mapping is visible. All corrected weeks (filled

circles) are displaced to positions near the BIAS diagonal

equal to 1. Before quantile mapping, the BIAS values in-

dicate a sub-representation of the heatwaves (values lower

than 1), i.e., on average, the forecast system anticipates fewer

heatwaves than observed.

Figure 8. Performance diagram showing the scores resulting from

trial 2.
Note: Open squares denote scores for the raw forecasts, and filled circles denote scores

after quantile mapping correction. The scores for week 1 are represented as green,

week 2 as blue, week 3 as yellow, and week 4 as red. Dashed lines represent BIAS

scores with labels on the line’s outward extension, while labelled solid contours are

CSI. The crosshairs give sampling uncertainty.

The corrected forecasts exhibited a sharp increase in

the POD, i.e., displacements along the Y-axis. Before the

correction, the POD tends to cluster around 0.2 to 0.3. After

the quantile mapping, POD scores increase to values over

0.5, which means that the forecast system predicts half of

the observed heatwaves well. It is important to notice the

discrepancy between week 1 (open green square) and the

other lead times (Figure 8). This feature is likely due to the

systematic warming error identified and associated with the

first days of forecasts (see Figure 5).

An important feature of the present results is the small
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Table 4. Heatwaves’ scores that compose the performance diagram for trial 1.

POD SR BIAS

uncorrected uncorrected uncorrected

Weeks 1 2 3 4 1 2 3 4 1 2 3 4

Heatwaves duration

3-days 0.02 0.00 0.05 0.08 0.11 0.00 0.20 0.40 0.23 0.20 0.26 0.21

4-days 0.00 0.03 0.03 0.03 0.00 0.08 0.10 0.07 0.38 0.42 0.34 0.45

5-days 0.10 0.05 0.00 0.06 0.20 0.07 0.00 0.20 0.50 0.79 0.21 0.31

6-days 0.00 0.06 0.00 0.00 0.01 0.25 0.00 0.00 0.07 0.25 0.67 1.17

7-days 0.00 0.06 0.00 0.00 0.01 0.25 0.00 0.00 0.06 0.25 1.50 0.83

POD SR BIAS

difference after correction difference after correction difference after correction

Heatwaves duration

3-days −0.02 0.12 −0.03 0.04 −0.11 0.54 −0.11 −0.08 −0.05 0.02 0.03 −0.19

4-days 0.00 0.00 0.03 0.06 0.00 0.01 0.15 0.16 0.03 −0.06 −0.07 −0.06

5-days 0.05 0.00 0.04 0.06 0.03 0.04 0.08 −0.02 0.15 −0.32 0.29 0.38

6-days 0.07 −0.06 0.17 0.00 0.06 −0.25 0.11 0.00 0.87 0.31 0.83 −0.17

7-days 0.06 0.00 0.00 0.00 0.01 −0.15 0.00 0.00 2.75 0.38 −0.25 1.00

Note: The scores presented are the Probability of Detection (POD), the Success Ratio (SR) and the frequency bias (BIAS). The top numbers indicate different target-weeks (1 to

4). The results are presented as function of the event duration.

variability in the scores as the lead time increases. All the

lead times are clustered in a region with POD and SR of

50%. The BIAS score is less than 1.3, and the CSI score is

between 0.3 and 0.4, respectively. This relative invariance

was not present in Trial 2 concerning the prediction of dry

spells. We saw a significant drop in performance from week

1 to week 2 (Figure 6) and subsequent weeks.

The probability error associated with the heatwaves’

forecast showed results comparable to the dry spells assess-

ment. Figure 9 shows the B.S. and BSS for each week,

discriminated by the heatwave duration. For some dura-

tion categories, the error decreases as the lead time becomes

longer, like for heatwaves lasting 3, 4 and 5 days. For all

duration categories, the error is lower in week 4.

Like in the dry spells analysis, the skill scores (BSS)

are all negative, indicating that the forecasts are less skil-

ful than the BSref (climatology). The BSS values tend to

present small variability among the different categories of

durations. Except for week 1, the error increment over clima-

tology (BSS) is 20% or less. Week 3 and week 4 presented

the best results. The average score over all the categories for

raw or corrected forecasts is greater than −0.2.

Predictions for week 1 present a significant degree of

degradation (loss of skill), both as a function of the pre-

dicted heatwave duration and when the quantile mapping

is applied. This degradation is not so severe for the other

predicted weeks. We attribute this feature to the systematic

error identified during the first lead times (Figure 5).

Figure 9. (a) B.S. and (b) BSS for heatwaves’ predictions.
Note: Bars (lines) show the scores for the raw (corrected) forecasts. The scores for

week 1 are represented as green, for week 2 as blue, for week 3 as yellow and for week

4 as red. The scores are categorized according to the dry spell duration.
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4. Conclusions

With the global population’s exposure to heat waves

and dry spells escalating due to climate change, the threat to

societal stability and public health is becoming more severe.

In this context, the urgent need to expand Early Warning

Systems for heat-related and drought-related health risks

across Brazil cannot be overstated. While these systems en-

compass more than just predicting the occurrence of hazards

such as heatwaves, the importance of having an accurate

forecasting system is paramount. Yet, both in general and

specifically in Brazil, there is a noticeable lack of studies on

the effectiveness of cutting-edge models in predicting these

events.

The original contribution of this research paper lies in

its focused assessment of subseasonal forecasts for dry spells

and heatwaves in the Brazilian context, which unfolds into

several aspects. First, the study addresses a significant gap

in the literature by emphasizing forecast verification for dry

spells and heat waves, which has been largely overlooked

in atmospheric sciences. Most existing studies focus on di-

agnostics rather than on the accuracy of forecasts, making

this work a valuable addition to the field. Second, the assess-

ment architecture was designed after transferring knowledge

acquired from regular interactions with water management

and energy production stakeholders. The objective was to

provide relevant information about the forecasts’ quality for

those making critical decisions. Third, by concentrating

on essential regions of Brazil, the study contributes region-

specific insights that can inform local decision-making and

policy development related to climate impacts, particularly

in sectors like agriculture, water management and disaster

risk reduction. This regional focus is essential for tailoring

early warning systems and improving community resilience

to climate variability. 

Concerning the most significant results, they indicate

that the prevailing performance of the raw forecasts is low,

particularly in predicting dry spells. Only one out of five ob-

served events are correctly predicted on average. Applying

quantile mapping corrections improves the chance for detec-

tion of dry spells and heatwaves. However, while the model

forecasts more events after correction, the timing of these

forecasts is often incorrect, leading to an increase in false

alarms. The Brier Score provides insights into the mean

squared error of the probability forecasts, indicating that

while the ensemble forecasts offer probabilistic estimates,

the overall accuracy remains a concern.

The present work suggests that while the models de-

signed for predictions at the subseasonal timescale represent

a crucial tool, there is still a need for better forecasts that can

accurately predict dry spells and heatwaves, especially in the

context of regional decision-making. There is a myriad of

techniques that can be used in an attempt to improve the fore-

cast quality. We highlight two that look promising and intend

to explore them as the next step in developing the present

research. The first is the association between atmospheric

circulation patterns and extreme weather conditions. Sev-

eral studies have associated periods of extreme temperature

with unusual and persistent patterns of atmospheric circu-

lation [61, 62]. More specifically, dry spells in southeastern

Brazil have also been associated with these semi-permanent

atmospheric circulation patterns. An anomalous westward

displacement of the South Atlantic subtropical anticyclone is

attributed as the cause of the summer monsoon dry spell in

South America [51, 63]. Occasionally, this climatological dry

spell becomes more intense and prolonged, causing severe

droughts [64, 65].

Artificial Intelligence (AI) and data science technolo-

gies have been rising as techniques in the atmospheric and hy-

drological modelling itself or as supporting techniques [66–68].

Recently, their importance has been leveraged by some of

the leading groups in atmospheric science. For instance, for

Phase II of the S2S project, the experimentation of AI and

machine learning techniques for model postprocessing and

downscaling is explicitly encouraged. In 2021, a prize chal-

lenge was launched to improve sub-seasonal to seasonal pre-

diction of 2-metre temperature and precipitation 3 to 6 weeks

in advance using Artificial Intelligence and Machine Learn-

ing methods [69]. The European Centre for Medium-Range

Forecast also pays attention to machine learning. In April

2021, the ECMWF launched the MAELSTROM project

(MAchinE Learning for Scalable Meteorology and Climate).

The three-year project aims to help prepare the weather and

climate community for large-scale machine-learning appli-

cations (ECMWF, 2020).

Overall, this work fills a critical gap in the existing lit-

erature and provides practical tools and insights for improv-

ing subseasonal forecasting in Brazil. Doing so contributes

to better preparedness and response strategies for extreme
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weather-related events, demonstrating the tangible impact of

the research.
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