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ABSTRACT
Drought represents a major threat to livelihoods and economic stability in regions prone to its occurrence. This pa-

per aims to address the gap in applying machine learning techniques for enhanced meteorological drought prediction to 
support resilience and preparedness. The study focuses on Kebbi State, located in northwest Nigeria, which experiences 
droughts with devastating agricultural, ecological and humanitarian impacts. The Standardized Precipitation Evapo-
transpiration Index (SPEI) was used to calculate different drought severity based on rainfall deficit, over varying accu-
mulation periods (3-month, 6-month) over four decades (1980–2022). Different time series meteorological parameters 
such as mean temperature, maximum temperature, minimum temperature, radiation, wind speed, precipitation was used 
in training machine learning models to predict and forecast future drought risk across Kebbi’s regions. Four candidate 
models were evaluated Random Forest (RF), Extreme Gradient Boosting (XGB), 1D Convolutional Neural Networks 
(CNN), and Long Short-Term Memory Networks (LSTM). Results indicate RF models consistently achieved highest 
prediction accuracy (R2: 47–67%) for both short and long-term SPEI forecasts across different regions over the other 
models, while LSTM was not able to make good prediction for drought in Kebbi state. Optimized XGB models also 
performed reasonably well for specific locations. One-year lead SPEI projections exhibit XGB potential for advancing 
early warning given forecast reliabilities. This pioneering study provides robust evidence for integrating machine learn-
ing for drought prediction in Kebbi state, Nigeria which is located in the sub-Sahara region.
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1. Introduction

Drought is a recurring and pervasive environmental 
challenge that significantly affects agricultural productivity, 
water resources, and the overall well-being of communities 
in various regions across the globe. Drought occurs when 
there is significant rainfall deficit that causes hydrological 
imbalances and affects the land productive systems [1]. The 
presence of drought across diverse regions of the world 
has firmly established it as one of the most significant and 
pervasive environmental challenges. As a relentless force 
of nature, drought can manifest in various forms, from 
the creeping, insidious onset of meteorological droughts 
to the sudden, devastating blows of flash droughts. The 
unpredictability and diversity of drought events make it a 
particularly complex phenomenon to monitor, understand, 
and manage.

Drought is a climatic phenomenon that spans dif-
ferent timescales. Over short periods, such as months, it’s 
known as meteorological drought, while over more extend-
ed periods, like years, it manifests as hydrological drought 
[2]. Drought’s consequences ripple into the environment, 
resulting in soil erosion, deforestation, and desertification. 
These transformations can exert enduring influences on 
ecosystems, contributing to habitat degradation and the 
displacement of plant and animal species. The complex-
ity of comprehending and tackling drought is rooted in the 
interplay among meteorological, hydrological, ecological, 
and socio-economic factors.

Tropical regions are known for their warm tempera-
tures, abundant annual rainfall, high evapotranspiration 
rates, and intense sunlight, it serves as crucial centers of 
life on Earth. They are renowned for their rainforests, di-
verse ecosystems, and their pivotal role in regulating the 
planet’s climate. Although these areas are known for their 
natural beauty and diverse wildlife, they are surprisingly 
vulnerable to the negative effects of drought. In tropical 
areas, severe drought events are often linked to phenomena 
like El Niño [3].

Droughts often succeed episodes of extensive flood-
ing and stand as among the most hazardous natural catas-
trophes impacting numerous countries worldwide, with 
a particular focus on West African nation. According to 
Vodounon et al. [4], insufficient control over precipitation, 

droughts are challenging to discern due to their potential 
occurrence in diverse climatic conditions. The northern 
parts of Nigeria, known as the Sahel, often face severe 
drought. In these areas, where rainfall is infrequent and un-
predictable, droughts happen often, causing problems for 
farming, food supply, and the people who rely on animals 
for their livelihoods. During these times, the dry season 
can become quite long, which makes it tough for the local 
communities who rely on rain for their crops. Heatwaves 
and extended periods of arid conditions have introduced 
complexities to the ecosystem in Northern Nigeria. These 
environmental changes have intensified the process of 
evaporation while concurrently diminishing the occurrence 
of precipitation, thus affecting the delicate balance of the 
region’s ecosystem [5].  In the southern regions of Nigeria, 
where rainfall is comparatively abundant, drought emerges 
as a threat in the form of hydrological and agricultural 
droughts. Prolonged dry spells, irregular rainfall patterns, 
and water scarcity can disrupt agricultural activities, af-
fecting crop yields and causing localized food shortages. 
In Nigeria, it’s really important to learn about, predict, and 
lessen the problems caused by drought. This is because 
the country is dealing with climate change and the need 
to grow in a way that’s good for the environment. We’re 
starting to see how crucial it is to manage drought well.

Drought prediction is the art and science of anticipat-
ing when and where drought may strike, plays a pivotal 
role in safeguarding our communities, environments, and 
economies. It serves as a proactive tool, offering a precious 
window of time for preparedness, resource allocation, and 
timely response. However, the endeavor of drought predic-
tion is far from straightforward, with its complexity stem-
ming from diverse origins and the occurrence of drought 
events at various temporal and spatial. In recent times, 
various models have been developed to monitor drought, 
but compared to systems for other natural disasters, those 
designed to warn about and predict droughts are still less 
advanced. This is mainly because droughts involve com-
plex processes that make them harder to predict [6]. A report 
from the United Nations Environment Programme UNEP 
(1992) recommends the development of a drought predic-
tion system that takes a comprehensive and integrated 
approach [7]. This system would involve using multiple in-
dicators to predict droughts [8]. Drought prediction involves 
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estimating the severity of drought, often using specific 
indicators. This has proven to be a significant challenge for 
climatologists, hydrologists, and policymakers due to the 
complexity of drought, its various causes, and the different 
scales at which it occurs. Generally, three main approaches 
are used for drought prediction: statistical methods, dy-
namic methods, and a combination of both known as hy-
brid methods [9]. 

As indicated by the Intergovernmental Panel on Cli-
mate Change (IPCC) 2022 [10], the occurrence of extreme 
events, coupled with associated uncertainties, is on the 
rise due to climate change. Hence, it becomes imperative 
to direct our efforts towards the establishment of early 
warning systems for droughts in Nigeria. Such proactive 
measures are vital in minimizing the losses incurred from 
drought-related disasters. In this context, the development 
of early warning systems and the utilization of advanced 
technologies, including machine learning, offer promising 
avenues for improving our understanding of drought pat-
terns and enhancing prediction accuracy. As Nigeria strives 
for sustainable development and resilience in the face of 
environmental challenges, drought prediction systems 
emerge as critical tools in safeguarding the nation’s future. 
Machine learning has evolved into an interdisciplinary tool 
due to its versatility across various technological domains. 
It possesses the capacity to discern complex nonlinear con-
nections between input and output data sets, all without the 
need to comprehend the inherent nature of the phenomena 
or rely on pre-established assumptions about linearity or 
normality. While machine learning has been applied for 
drought prediction in Asia and other advanced nations over 
the years, its utilization in Africa, particularly in Nigeria, 
remains relatively limited.

Predicting drought events in advance is crucial for 
effective drought management, allowing timely implemen-
tation of mitigation measures and resource allocation. Over 
the years, advancements in machine learning and the avail-
ability of extensive climate data have opened new avenues 
for accurate and timely drought prediction.

2. Materials and Method

2.1. Description of Study Area

Kebbi State is a northwestern state in Nigeria, locat-

ed in the Sahel region (Figure 1). It covers an area of ap-
proximately 36,800 square kilometers and shares borders 
with Niger State to the west, Sokoto State to the north, 
Zamfara State to the east, and Niger Republic to the south. 
The state capital is Birnin Kebbi [11]. The majority of the 
people in Kebbi State live in rural areas, and agriculture is 
the state’s main economic driver. The state, sometimes re-
ferred to as the “Land of Equity,” is well known for its rich 
agricultural resources, particularly in fishing, cattle hus-
bandry, and grain production. The state mostly grows rice, 
millet, sorghum, maize, cotton, and groundnuts. Kebbi 
State has a semi-arid climate with distinct dry and wet sea-
sons. The wet season normally lasts from April to October, 
whereas the dry season typically lasts from November to 
March. The majority of the year’s rainfall falls during the 
rainy season, with an average annual rainfall of between 
800 and 1,000 millimeters [12]. Major rivers, such the Niger 
and Rima, pass through Kebbi State, offering opportunity 
for irrigation and the development of water resources. Ad-
ditionally, the state is home to the Argungu International 
Fishing Festival, a well-known cultural occasion that 
draws guests from all around Nigeria and beyond. Overall, 
Kebbi State’s rich agricultural resources, coupled with its 
cultural heritage and natural beauty, make it a significant 
study area for research and development initiatives aimed 
at addressing the challenges and harnessing the potentials 
of the state’s economy and well-being of its inhabitants.

Figure 1. Map of the Study Area (Kebbi State). 
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2.2. Data Collection

Data downloaded spanned five distinct locations 
within Kebbi State, such as the north, south, east, west, 
and central regions. The objective was to observe and ana-
lyze the distribution of drought across varied geographical 
areas. The dataset retrieved covers the extensive time-
frame from 1981 to 2022. The data needed for this paper 
includes; precipitation, mean temperature, maximum tem-
perature, minimum temperature, radiation, and wind speed.

2.2.1. CHIRPS Data

Rainfall data was obtained through satellite observa-
tions, specifically from the Climate Hazards Group Infra-
Red Precipitation with Station data (CHIRPS). CHIRPS 
is a comprehensive rainfall dataset covering over 35 years 
on a quasi-global scale (https://www.chc.ucsb.edu/data/
chirps) Encompassing latitudes between 50°S and 50°N, 
and all longitudes, it spans from 1981 to nearly the present 
day. Utilizing a combination of our internal climatology, 
high-resolution satellite imagery at 0.05° resolution, and 
on-site station data, CHIRPS generates gridded time series 
of rainfall. This dataset is instrumental for trend analysis 
and monitoring seasonal drought conditions.

2.2.2. ERA5_AG Data

Weather data, including mean, minimum, and maxi-
mum temperatures, radiation, and wind speed, was sourced 
from ERA5_AG. The European Copernicus programme of-
fers global historical and near-real-time weather information, 
and AgERA5 specifically provides access to ERA5 data for 
the agricultural sector (https://app.climateengine.org/clima-
teEngine). This dataset encompasses agro-meteorological 
variables like daily mean, minimum and maximum tempera-
tures, precipitation, humidity, and incoming solar radiation 
(Table 1). While designed for agricultural applications, it is 
versatile and applicable to various research domains. The 
data covers all land areas at a spatial resolution of 10 by 10 
km, spanning from 1979 to the present.

Table 1. Details of the Satellite Dataset.

VARIABLES UNITS TIME SCALE

Mean Temperature C Daily

VARIABLES UNITS TIME SCALE

Maximum Temperature C Daily

Minimum Temperature C Daily

Precipitation mm Daily

Wind Speed m/s Daily

Radiation W/m2 Daily

Evapotranspiration C Monthly

2.3.  Data Pre-Processing

The acquired dataset comprises of hourly data pre-
sented in diverse formats, including csv and xls. To en-
hance compatibility and facilitate further analysis, the R 
programming language was instrumental in the conversion 
of this data into a standardized monthly format, stored con-
veniently in csv files. 

2.4.  Data Analysis

The precipitation, temperature, wind speed, and ra-
diation data were employed to compute the Standardized 
Precipitation Evapotranspiration Index (SPEI) for different 
time scales, namely 3, 6, and 12 months. The analysis of 
this data was conducted using the SPEI package in the R 
programming language, facilitated by the R Studio envi-
ronment.

2.4.1. Standardized Precipitation Evapotran-
spiration Index

The standardized precipitation evapotranspiration 
index (SPEI) has received extensive attention in the field 
of drought analysis. An extension of the widely used SPI, 
SPEI considers both precipitation and temperature, which 
are used to calculate evapotranspiration information. 
Therefore, unlike SPI, SPEI captures the main impact of 
temperature rise on water requirement.

The shorter time scale SPEIs are appropriate to 
monitor meteorological and agricultural drought, such as 
the one-month time scale SPEI (SPEI-1) can monitor me-
teorological drought; the three-month and six-month time 
scale SPEIs can monitor vegetation, agricultural droughts, 
and soil moisture dynamics; while the longer time scale 
SPEIs are appropriate to monitor hydrological droughts. In 

Table 1. Cont.
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this study, three-month, six-month time scale of SPEI was 
selected.

(1) Calculation of monthly potential evapotranspira-
tion using Thornthwaite method [14]:
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where K is the correction factor based on latitude, T is the 
monthly average temperature, I is the total heating index, 
and m is a constant.
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m = 675 × 10–7 I 3 – 7.71 × 10–5 I 2 + 1.792 × 10–21 I 2 + 0.49   (3)

(2) Calculate the difference between precipitation and 
potential evapotranspiration for each month.

 Di = Pi – PETi (4)

where Pi is the monthly precipitation, PETi is the monthly 
potential evapotranspiration, and i denotes the month. The 
establishment of climate water balance accumulation at 
different time scale sequences is as follows:
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where k is the time scale and takes the value of 3, and n is 
the number of calculations.

(3) To normalize Di, first, a Log-logistic probability 
density function is used to build the data series:
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where α is the scale parameter and β is the shape param-
eter, which are the origin parameters obtained by the linear 
moment method, and then the cumulative probability of 
the Di density function is:
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(4) Under normal normalization of the cumulative 
probability density function, the probability of exceeding 
a certain Di value is P = 1 − F(X) and the probability of 

weighted moments are 
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When P ≤ 0.5,
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When P > 0.5,
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where C0 = 2.515517, C1 = 0.802853, C2 = 0.010328, d1 
= 1.432788, d2 = 0.189269, and d3 = 0.001308.

The monthly temperature and precipitation data from 
satellite observation were used to calculate the ground-
based standard precipitation evapotranspiration index 
(SPEI). According to the internationally recognized criteria 
for classifying drought levels, SPEI is divided into five 
levels (Table 2) [15].

Table 2. Classification of SPEI Values [15].

S/N DROUGHT CLASS SPEI

1 No-Drought Greater than −0.5

2 Mild −0.5 to −0.99

3 Moderate −1 to −1.49

4 Severe −1.50 to −1.99

5 Extreme Less than −2

2.4.2. Train-Test Split

The data was split into a training set and a test set. 
70% of the data was utilized to train the model, while ap-
proximately 30% of the data was used to test the efficiency 
of the model.

2.5. Machine Learning Methods

2.5.1. Extreme Gradient Boosting (Xgb)

The algorithm is based on the concept of ‘Boosting’. 
Boosting involves the combination of predictions from 
a group of “weak” learners to create a robust, accurate 
model through an additive training strategy. XGBoost is 
particularly designed to address challenges related to over-
fitting and underfitting, providing an effective solution to 
minimize these issues. This algorithm not only enhances 
predictive accuracy but also optimizes computational ef-
ficiency, a crucial consideration for large datasets and 
resource-intensive tasks. The general function for the pre-
diction at step t is:
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where ft (xi) is the learner at step t, f(t) I and f(t−1) I are 
the predictions at steps t and t − 1, respectively, and xi are 
the input variables. 

To avoid overfitting problems without influence on 
the computational speed of the model, the XGB applies the 
analytic expression below to evaluate the ‘‘goodness’’ of 
the model from the original function according to Mokhtar 
et al. (2021) [16]:
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where l is the loss function, n is the number of observa-
tions and Ω is the regularization term which is defined as:
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where ω is the vector of scores in the leaves, λ represents 
the regularization parameter, and γ denotes the minimum 
loss needed to further partition the leaf node. In this study, 
the XGB model was constructed with specific parameters: 
7 estimators were utilized, the tree depth was set to 3, and 
a learning rate of 0.1 was employed.

2.5.2. Random Forest Algorithm (RF)

Random Forest algorithm, is a powerful ensemble 
learning technique widely applied in machine learning 
tasks, including drought prediction. Random Forest oper-
ates by constructing a multitude of decision trees during 
training and outputs the mode of the classes (classification) 
or the mean prediction (regression) of the individual trees. 
It deals with random binary trees that use a subset of the 
observations via bootstrapping, where a random subset of 
the training dataset is sampled from the raw dataset and 
utilized to evolve the model. There are some basic pro-
cesses it undergoes, this includes;

(1) Bootstrapped Sampling
a. Random Forest constructs multiple decision trees 

by using bootstrapped samples from the training data.
b. Each tree is trained on a subset of the data, intro-

ducing diversity to enhance the ensemble’s robustness.
(2) Feature Randomization
a. At each decision tree node, a random subset of 

features is considered for splitting.
b. This strategy ensures that different trees focus on 

distinct features, contributing to the ensemble’s overall ro-
bustness.

(3) Voting or Averaging
a. In classification tasks, the final output is deter-

mined by the majority class predicted across all trees.
b. For regression tasks, the final output is the aver-

age prediction from all trees, providing a well-rounded 
result.

2.5.3. Long Short-Term Memory (LSTM)

The Long Short-Term Memory (LSTM) algorithm, a 
subtype of recurrent neural networks (RNNs), was selected 
due to its proficiency in understanding and representing 
patterns over time in sequential data. Within the LSTM 
network, there are distinct memory blocks connected 
through layers. Each layer consists of interconnected 
memory cells and three essential components known as the 
input, forget, and output gates. These gates play a crucial 
role in controlling the flow of information, enabling the 
network to effectively learn and remember important tem-
poral dependencies in the data.

2.5.4. Convolutional Neural Network (CNN)

The Convolutional Neural Network (CNN) stands out 
as a specialized deep neural network crafted for handling 
structured grid data, particularly images. Renowned for its 
prowess in computer vision assignments, the CNN excels 
by autonomously and flexibly grasping spatial hierarchies 
of features from input data. Its effectiveness in managing 
high-dimensional data is attributed to its shared-weights 
architecture and translation invariance characteristics. This 
distinctive design makes CNN a powerful tool in various 
applications, especially those involving image analysis and 
pattern recognition. To get the best score, the CNN model 
was built using 64 filters, kernel size of 2, a rectified linear 
unit (ReLU) was used as the activation function. Max-
pooling layer with pool size was set to 2.

2.6. Accuracy Evaluation

The evaluation of model performance encompasses 
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a suite of key statistical metrics crucial for a comprehen-
sive understanding of its accuracy. The Mean Square Error 
(MSE) serves as a pivotal measure, indicating the average 
squared difference between predicted and observed values, 
offering insights into the overall model accuracy. Comple-
menting this, the Mean Absolute Error (MAE) provides a 
nuanced assessment of precision by evaluating the average 
magnitude of errors. Furthermore, the Coefficient of De-
termination (R²) illuminates the strength of the linear re-
lationship between observed and predicted values. A high 
R² value, approaching unity, signifies a robust correspond-
ence. Collectively, these performance metrics contribute 
to a comprehensive evaluation, addressing accuracy, preci-
sion, bias, and the strength of the predictive relationship.
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where Oi and Pi are the actual and the predicted SPEIs, 
respectively, O represents the average values of the actual 
SPEI index, and n is the number of observations.

3. Results and Discussion

3.1. Standardized Precipitation Evapotrans-
piration Index (SPEI) Analysis

3.1.1. SPEI-3 

The Standardized Precipitation Evapotranspiration 
Index (SPEI) is a widely used drought indicator [17]. Figure 
2 shows SPEI on a 3-month timescale; it is used as a me-
teorological drought indicator of short-term dryness in a 
region.

(a) East (b) West

(c) North (d) South

(e) Central
Figure 2. SPEI Model Calculated SPEI-3 for Kebbi State (Standard Analysis). (a) East, (b) West, (c) North, (d) South, and (e) 
Central.
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Figure 2 presents 42 years (1980–2022) of SPEI-
3 values for five locations across Kebbi State, Nigeria 
(Figure 2(a)–(e)). Table 1 shows what each classification 
value stands for, SPEI values below −2 represent extreme 
drought conditions. Examination of the multi-decadal 
SPEI-3 time series shows extreme drought events, denoted 
by substantial downward spikes of SPEI below −2, oc-
curred most notably in Kebbi East around 1984, 1997, 
2005 and 2015. Similar extreme droughts affected Kebbi 
West in 1987 and 2006 (SPEI −2.5), Kebbi North in 1985 
and 2021 (SPEI −2.5), Kebbi South in 2006 and 2015, and 
Kebbi Center in 1985, 1996 and 2006 based on the data. 
Aside from these extreme drought occurrences, analysis 
uncovers other major droughts, categorized as severe 
events from SPEI −1.5 to −2. These affected Kebbi East in 

1983–84 and 2016; Kebbi West in 1983 and 2017; Kebbi 
Center in 2010; and Kebbi South in 1987 and 1996. Wet-
ter periods are visible around 1985–1986, 1996–1997 and 
2009–2011 in most of the regions. The overlap of drought 
years in each of the regions shows prominent dry periods 
in 2005 and 2015. While wet periods have occurred, me-
teorological droughts ranging from moderate (SPEI −1 to 
−1.5) to extreme (SPEI < −2) have frequently impacted the 
Kebbi State over the past 40+ years.

3.1.2. SPEI-6 ANALYSIS

Figure 3 is the analysis of a longer-term 6-month 
SPEI timescale; it provides insights into agricultural 
drought events, which develop over an extended period 
and can severely impact crop production [18, 19].

(a) East (b) West

(c) North (d) South

(e) Center
Figure 3. SPEI Model Calculated SPEI-6 for Kebbi State (Standard Analysis). (a) East, (b) West, (c) North, (d) South, and (e) Center.
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Figure 3 presents 42 years (1980–2022) of SPEI-
6 data for five regions across Kebbi State — East, West, 
North, South and Center (Figure 3(a)–(e)). Examination 
of the 6-month SPEI trajectories reveals that a prolonged 
period of intense agricultural drought likely affected 
all Kebbi sub-regions in the mid-1980s, approximately 
1983–1985. This multi-year drought was particularly 
persistent in Kebbi West, lasting from 1983–1987 per the 
data. Further analysis points to acute spikes indicating 
additional extreme droughts, categorized by SPEI below 
−2. The most widespread extreme event occurred around 
2006, spanning Kebbi East, South and Center. Meanwhile, 
Kebbi North experienced an exceptionally intense extreme 
drought episode in 2021 (SPEI −2.5). Aside from these 
acute events, severe droughts, indicated by SPEI between 
−1.5 and −2, are also detectable around 2015 in Kebbi East 
and West, 2010 and 2005 in Kebbi North, 2015 and 2021 
for Kebbi South, and 2015 and 2021 across Kebbi Center. 
This shows that most of the meteorological drought leads 
to agricultural drought if not handled well. 

3.2. Derived Standardized Precipitation 
Evapotranspiration Index (SPEI)-3 From 
Machine Learning Model for Regions in 
Kebbi State

3.2.1. KEBBI East 

Figure 4 shows SPEI-3 timeseries chart for drought 
prediction performance comparisons across 4 candidate 
machine learning models which include Long Short-Term 
Memory neural networks (LSTM), Extreme Gradient 
Boosting (XGBoost), Random Forest and Convolutional 
Neural Network (CNN) models for the period from 1980 
to 2022 in Kebbi East (Figure 4(a)–(d)). The overall as-
sessment indicates relatively inferior predictive perfor-
mance by the LSTM and XGBoost models. Specifically, 
the LSTM network demonstrates a complete inability to 
predict any meteorological drought, while XGBoost per-
formed fairly better. In contrast, the Random Forest and 
CNN models demonstrate visibly improved drought pre-
diction capabilities with predicted SPEI trajectories better 
emulating historical peaks and troughs. In particular, the 
Random Forest model successfully predicts the occurrence 
of severe droughts for some of the most extreme SPEI 

events below −2.  

(a)

(b)

(c)

(d)

Figure 4. Comparison Between the Standard SPEI3 and the 
Predicted SPEI3 Using (a) XGBoost, (b) Random Forest, (c) 
LSTM, (d) CNN.

3.2.2. KEBBI West 

Figure 5 is an investigation of the SPEI-3 prediction 
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chart across four machine learning architectures (Figure 
5(a)–(d)), delivering critical insights into model effective-
ness for drought forecasting in Kebbi West from 1980 
to 2022. Charted against observed SPEI, assessment of 
predicted SPEI trajectories helps gauge model skills in 
capturing past meteorological drought events below the 
extreme intensity threshold of –2 SPEI. The examination 
reveals that none of the 4 models could accurately predict 
the acute multi-month extreme droughts around 1987 and 
2007 where SPEI plummeted below –2 for prolonged 
periods. Nevertheless, relative comparisons highlight the 
random forest model as most proficient, closely emulating 
periodic drought spikes across various timescales. This 
indicates robust nonlinear decision boundary learning by 
the random forest tree ensembles. Furthermore, XGBoost 
proves moderately skillful with predictions resembling 
slight drought dips during various dry spells. While CNN 
exhibits comparable performance to XGBoost.

3.2.3. KEBBI North 

Figure 6 shows a Comparative assessment of the 

Standardized Precipitation Evapotranspiration Index 
(SPEI)-3 prediction capabilities across 4 machine learning 
models (Figure 6(a)–(d)), providing crucial evidence for 
optimal model selection for drought forecasting in Kebbi 
North. The models tested include Long Short-Term Mem-
ory (LSTM) networks, Extreme Gradient Boosting (XG-
Boost), Random Forest, and Convolutional Neural Net-
works (CNN). LSTM demonstrate inferior performance to. 
The LSTM displays virtually no skill in predicting drought 
troughs across all timescales showcasing limitations in 
learning lagged climate sequences for this task. While the 
XGBoost model performs marginally better than LSTM, it 
still fails to capture most major droughts. In contrast, the 
CNN model shows moderately improved predictions mim-
icking some periods of lower SPEI values related to his-
torical drought events of varying intensity.  However, the 
Random Forest model clearly outperforms the CNN and 
other techniques with predicted SPEI trajectories closely 
emulating observed major drought troughs. Both severe 
events like the 1996 drought and lower intensity 1991 
event are accurately.

(a) (b)

(c) (d)

Figure 5. Comparison between the Standard SPEI3 and the Predicted SPEI3 Using (a) XGBoost, (b) Random Forest, (c) LSTM, (d) 
CNN.
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3.2.4. KEBBI South

Figure 7 shows the analysis of four models’ SPEI-
3 prediction capacities in Kebbi South (Figure 7(a)–(d)). 
It shows the Random Forest architecture demonstrates the 
highest skills, anticipating both high and low intensity his-
torical droughts from 1980−2022. Its nonlinear ensemble 
decision trees enable robust meteorological feature learn-
ing superior to alternatives. The CNN model trails behind 
with reasonably good forecasting of some past extremes 
through deploying convolutional layers. However, gaps 
in capturing certain peaks. Thereafter, XGBoost provides 
periods of mild moisture deficit while fully failing during 
extremes, and lastly, LSTM proves least effectiveness with 
virtually no match between recorded and predicted drought 
indicators.

3.2.5. Kebbi Central 

Figure 8 is an evaluation of 3-month SPEI drought 
predictions from four machine learning models for Kebbi 

Center from 1980−2022 (Figure 8(a)–(d)). The predicted 
SPEI-3 values were compared to actual SPEI-3 calculated 
from meteorological data over this historical period. I 
found varying prediction accuracy across the models to 
emulate Kebbi’s central drought index. The Random For-
est model most closely matched actual SPEI-3 fluctuations, 
demonstrating superior skills in modeling wet/dry pat-
terns. However, while prediction accuracy reflects average 
conditions well, capturing extremes is critical for drought 
monitoring. In this aspect, excluding Random Forest, the 
Convolutional Neural Network (CNN) model showed 
some promise, managing to anticipate some major low 
SPEI events below –1, although its overall trajectory devi-
ated more. By contrast, the Extreme Gradient Boosting 
(XGBoost) model performed relatively poorly in capturing 
extremes despite mimicking periods of moderate moisture 
deficiency. Finally, the Long Short-Term Memory (LSTM) 
network performed the worst with virtually no correlation 
between its predicted and actual SPEI-3. The LSTM exhib-
ited difficulties handling the lagged nature of multi-month 
climate sequences.

(a) (b)

(c) (d)
Figure 6. Comparison Between the Standard SPEI3 and the Predicted SPEI3 Using (a) XGBoost, (b) Random Forest, (c) LSTM, (d) 
CNN.
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(a) (b)

(c) (d)
Figure 7. Comparison Between the Standard SPEI3 and the Predicted SPEI3 Using (a) XGBoost, (b) Random Forest, (c) LSTM, (d) CNN.

(a) (b)

(c) (d)

Figure 8. Comparison Between the Standard SPEI3 and the Predicted SPEI3 Using (a) XGBoost, (b) Random Forest, (c) LSTM, (d) 
CNN.
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Meteorological drought monitoring using indices like 
SPEI forms the foundation of drought science and sup-
ports drought prediction research [19]. This study evaluated 
four machine learning methods random forest, XGBoost, 
convolutional neural networks (CNN) and long short-term 
memory networks (LSTM) for predicting the 3-month 
SPEI in five subregions of Kebbi State from 1980−2022. 
Figures 4−8 contrast the model-predicted and traditionally 
calculated SPEI-3 over this period. Overall, the random 
forest (RF) model most closely matched the fluctuations 
in actual SPEI-3, capturing both droughts (low SPEI) and 
wet periods (high SPEI). This was especially true from 
1990−2010. As noted by Poornima and Pushpalatha [20], 
well-regularized random forests can emulate subtle climate 
shifts. The XGBoost and CNN models comprised the next 
best predictions, also broadly tracking ups and downs in 
SPEI-3 across subregions but with less precision than RF. 
However, the Deep LSTM performed very poorly com-
pared to the other methods, contradicting some past studies 
like that of Spinoni et al. [21].

Table 3 shows the performance of each model in 
predicting the 3-month SPEI across several error metrics. 
For R-squared, measuring overall fit, the Random Forest 
model demonstrates the highest values compared to the 
alternatives, peaking at 67% for Kebbi East. By contrast, 
the Extreme Gradient Boosting (XGBoost) model exhibits 
stronger performance than the Convolutional Neural Net-
work (CNN), with its top R-squared of 42% in Southern 
Kebbi followed by 39% in Central Kebbi. The CNN and 
Long Short-Term Memory (LSTM) networks display the 
lowest prediction accuracy levels, with LSTM proving 
deficient in modeling the lagged drought index sequences. 
While no model achieves very high absolute performance, 
the relative rankings highlight Random Forest as most 
robust, trailed distantly by XGBoost, with CNN and es-
pecially LSTM failing to effectively learn the climate pat-
terns.

Table 3. Error Metrics for SPEI-3 Predicted Using Machine 
Learning Model.

Location Model R2 MAE MSE

WEST

XGB 0.36 0.6 0.61

RF 0.6 0.42 0.38

LSTM 0 0.78 0.96

CNN 0.29 0.68 0.67

Location Model R2 MAE MSE

NORTH

XGB 0.31 0.65 0.66

RF 0.6 0.44 0.38

LSTM 0 0.79 0.95

CNN 0.36 0.611 0.611

SOUTH

XGB 0.42 0.6 0.55

RF 0.59 0.45 0.39

LSTM 0 0.79 0.96

CNN 0.36 0.61 0.61

EAST

XGB 0.37 0.61 0.6

RF 0.67 0.4 0.31

LSTM 0 0.79 0.97

CNN 0.32 0.65 0.65

CENTRAL

XGB 0.39 0.62 0.59

RF 0.62 0.43 0.36

LSTM 0.07 0.78 0.95

CNN 0.32 0.65 0.65

3.3. Derived Standardized Precipitation 
Evapotranspiration Index (SPEI)-6 From 
Machine Learning Model for Regions in 
Kebbi State

3.3.1 KEBBI East 

Figure 9 shows a chart that examined the drought 
prediction performance of 4 machine learning models 
(Figure 9(a)–(d)) using the SPEI-6 index for Kebbi East 
from 1980−2022. The models were Long Short-Term 
Memory (LSTM) neural networks, Extreme Gradient 
Boosting (XGBoost), Random Forest, and Convolutional 
Neural Networks (CNN). Overall, the LSTM and XGBoost 
models performed poorly at predicting droughts. The 
LSTM model completely failed to predict any meteoro-
logical drought events. The XGBoost model did slightly 
better but still struggled. In contrast, the Random Forest 
and CNN models showed improved drought prediction ca-
pabilities. Their SPEI trajectories better matched historical 
highs and lows. Notably, the Random Forest model suc-
cessfully predicted some extreme drought events around 
2015 where the SPEI dropped below −2.

Table 3. Cont.
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(a)

(b)

(c)

(d)

Figure 9. Comparison between the Standard SPEI6 East and the 
Predicted SPEI6 Using (a) XGBoost, (b) Random Forest, (c) 
LSTM, (d) CNN.

3.3.2. KEBBI West Analysis

Figure 10 investigated drought prediction perfor-
mance of 4 machine learning models for Kebbi West over 
1980−2022 using the SPEI-6 index (Figure 10(a)–(d)). By 
comparing predicted SPEI trajectories to observed data, we 
assessed each model’s ability to forecast past meteorologi-
cal droughts, specifically extreme events below –2 SPEI. 
Our analysis revealed that none of the models accurately 
predicted the acute, multi-month extreme droughts around 
1987 and 2007 where SPEI remained below –2 for pro-
longed periods. However, relative comparisons showed the 
random forest model as most proficient at emulating peri-
odic drought spikes across timescales. This demonstrates 
effective nonlinear decision boundary learning by the ran-
dom forest tree ensembles. Additionally, XGBoost proved 
moderately skillful, with predictions resembling slight 
drought dips during various dry spells. The CNN exhibited 
comparable performance to XGBoost.

3.3.3. KEBBI North 

In Figure 11, a comparative assessment of Standard-
ized Precipitation Evapotranspiration Index (SPEI) drought 
prediction capabilities for 4 machine learning models in 
Kebbi North using SPEI-6 (Figure 11(a)–(d)). The models 
used are Long Short-Term Memory (LSTM) networks, 
Extreme Gradient Boosting (XGBoost), Random Forest, 
and Convolutional Neural Networks (CNN). The LSTM 
model demonstrated inferior performance, showing almost 
no skill at predicting historical drought intensity troughs 
across timescales. This indicates limitations in learning 
lagged climate sequences. While XGBoost performed 
slightly better than LSTM, it still failed to capture most 
major droughts. In contrast, the CNN model exhibited 
moderately better predictions, mimicking some periods of 
lower SPEI related to past droughts of varying severity. 
However, the Random Forest model clearly outperformed 
the others, with predicted SPEI trajectories closely match-
ing observed major drought droughs. It accurately predict-
ed both extreme events like the 1985 and 2021 droughts, 
as well as lower intensity droughts in 2001.



15

Journal of Atmospheric Science Research | Volume 08 | Issue 02 | April 2025

(a) (b)

(c) (d)

Figure 10. Comparison Between the Standard SPEI6 and the Predicted SPEI6 Using (a) XGBoost, (b) Random Forest, (c) LSTM, (d) 
CNN.

(a) (b)

(c) (d)
Figure 11. Comparison Between the Standard SPEI6 and the Predicted SPEI6 Using (a) XGBoost, (b) Random Forest, (c) LSTM, (d) 
CNN.
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3.3.4. KEBBI South 

Figure 12 shows SPEI-6 drought prediction per-
formance in Kebbi South for four different models from 
1980−2022 (Figure 12(a)–(d)). The Random Forest model 
demonstrated the highest skill, anticipating both high and 
low intensity historical droughts. Its nonlinear ensemble 
decision trees enabled robust meteorological feature learn-
ing superior to the alternatives. The CNN model followed 
behind with reasonably good forecasting of some past 
extremes through its convolutional layers, however there 
were gaps in capturing certain peaks. Thereafter, XGBoost 
predicted some periods of mild moisture deficit but fully 
failed at extremes. Lastly, the LSTM proved least effective 
with virtually no match between recorded drought indica-
tors and predictions, displaying limitations in sequential 
climate data handling. Overall, the Random Forest archi-
tecture showed the greatest capacities for learning mean-
ingful drought patterns in the region.

3.3.5. KEBBI Central 

Figure 13 shows the evaluation of 6-month Stand-
ardized Precipitation-Evapotranspiration Index (SPEI-6) 

drought predictions from four different machine learning 
models for Kebbi Center between 1980 and 2022 (Figure 
13(a)–(d)). The predicted SPEI-6 values were compared 
against the actual SPEI-6 values calculated using standard 
meteorological data over this historical period. Figure 13 
shows variation in the models’ capacities to accurately 
predict Kebbi central drought index. The Random Forest 
model most closely matched the fluctuations of the actual 
SPEI-6 timeseries, demonstrating superior overall skills 
in modelling the various wet and dry patterns. However, 
while prediction accuracy is important for emulating aver-
age conditions, capturing extremes is critical for drought 
monitoring. In this regard, outside random forest the Con-
volutional Neural Network (CNN) model showed some ap-
titude, managing to anticipate some major low SPEI events 
below –1 even if its overall trajectory deviated more. By 
contrast, the Extreme Gradient Boosting (XGBoost) model 
performed relatively poorly in capturing extremes despite 
mimicking some periods of moderate moisture deficiency. 
Finally, the Long Short-Term Memory neural network 
(LSTM) performed the worst with virtually no correlation 
between its predicted and actual SPEI-6. The LSTM dis-
played difficulties in handling the lagged nature of multi-
month climate sequences.

(a) (b)

(c) (d)

Figure 12. Comparison Between the Standard SPEI6 and the Predicted SPEI6 Using (a) XGBoost, (b) Random Forest, (c) LSTM, (d) 
CNN.
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(a)

(b)

(c)

(d)

Figure 13. Comparison Between the Standard SPEI6 and the 
Predicted SPEI6 Using (a) XGBoost, (b) Random Forest, (c) 
LSTM, (d) CNN.

Agricultural drought severely disrupts crop produc-
tion and accurate forecasts enable advanced preparation 
across agricultural regions [20, 22, 23]. This research looks at 
four machine learning methods — random forest, XG-

Boost, convolutional neural networks (CNN) and long 
short-term memory networks (LSTM). It checks how well 
they predict the 6-month SPEI drought index in Kebbi 
State. Figures 9–12 show the predicted versus traditionally 
calculated SPEI-6 for five places in Kebbi — East, West, 
North, South and Central. 

Overall, the random forest (RF) model most closely 
matched real SPEI changes — catching both lows show-
ing droughts and highs for wet times across all five sub-
regions from 1980–2022. The RF fit especially tight from 
1990 to 2010 in the areas. As Arabameri et al. (2022) notes 
[19], well-regularized random forests can copy subtle cli-
mate shifts. The second-best ML models for this research 
are XGBoost and CNN which also tracked general SPEI-6 
up and down patterns across places, though less smoothly 
than RF. But the Deep LSTM network did very poorly 
compared to the other ML models. This is in contrast to the 
studies of [20, 24, 25].

Examination of Table 4 illustrates the performance 
of each of the models through various error metrics. For 
prediction of the 6-month Standardized Precipitation-
Evapotranspiration Index (SPEI-6), the Random Forest 
model demonstrates the highest coefficient of determina-
tion (R-squared) value in comparison to the other models, 
with its maximal values of 55% in northern and southern 
Kebbi respectively. In contrast, the eXtreme Gradient 
Boosting (XGBoost) model exhibits superior R-squared 
values compared to the Convolutional Neural Network 
(CNN) model, with its peak value of 34% in central Kebbi 
followed by 22% in southern and eastern Kebbi. The CNN 
and Long Short-Term Memory (LSTM) models display the 
lowest levels of performance.

Table 4. Error Metrics for SPEI-6 Predicted Using Machine 
Learning Model.

Location Model R2 MAE MSE

WEST

XGB 0.16 0.71 0.81

RF 0.47 0.49 0.5

LSTM 0.01 0.78 0.96

CNN 0.13 0.84 0.84

NORTH

XGB 0.16 0.72 0.8

RF 0.55 0.46 0.43

LSTM 0.01 0.91 0.75

CNN 0.17 0.79 0.79
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Location Model R2 MAE MSE

SOUTH

XGB 0.22 0.67 0.75

RF 0.54 0.46 0.44

LSTM 0 0.77 0.97

CNN 0.19 0.78 0.78

EAST

XGB 0.22 0.69 0.75

RF 0.55 0.46 0.43

LSTM 0 0.78 0.96

CNN 0.18 0.79 0.79

CENTRAL

XGB 0.34 0.63 0.63

RF 0.52 0.47 0.45

LSTM 0.01 0.78 0.95

CNN 0.15 0.82 0.82

3.4. Parameters Relation

Figure 14 illustrates the correlation between each 
of the variables utilized for SPEI-3 and SPEI-6 (Figure 
14(a)–(b)), as compared against one another. The value 
ranges from 0 to 1. A value of 0 signifies a very weak cor-
relation, while a value of 1 denotes a very strong, direct 
correlation. Negative values indicate an opposite or inverse 
correlation. The chart demonstrates that in both SPEI-3 
and SPEI-6 maximum temperature and mean temperature 
have robust, direct correlations with radiation and potential 
evapotranspiration (PET), respectively. It can also be dis-
cerned that precipitation and radiation maintain a strongly 
inverse or negative correlation.

Figure 15 illustrates the relative importance of each 
of the meteorological parameters utilized in the machine 
learning models for both SPEI-3 and SPEI-6. It can be 
deduced from the chart that precipitation (rainfall) has the 
highest level of importance in the machine learning models 
built for calculating SPEI-3 and SPEI-6. This is followed 
by incoming solar radiation and the potential evapotranspi-
ration index (PET). The other parameters demonstrate very 
little importance, with the exception of wind speed which 
shows no discernible importance for this model.

(a)

(b)

Figure 14. Correlation Chart Between Each of the Parameters (a) 
SPEI-3, (b) SPEI-6.

Figure 15. Pie Chart Showing the Importance of Each Feature.

Table 3. Cont.
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3.5. Drought Forecast

Figure 16 illustrates the future predictions of the 
Standardized Precipitation Evapotranspiration Index 
(SPEI) at a 3-month timescale over the next year, based on 
the dataset. It shows the highest predicted SPEI value of 0.5 
occurring around September, and the lowest value of −0.1 
occurring around April. Due to the inability of other mod-
els to accept null values, XGBoost was utilized to perform 
a one-year forecast. Although the model has its limitations, 
chiefly due to the constrained data, it constitutes an ini-
tial starting point for drought forecasting in Kebbi State. 
However, the research shows random forest is the best for 
drought prediction in the study area.

Figure 16. One Year Futuristic Drought Prediction (SPEI-3) for 
Kebbi State. 

4. Conclusions

This paper showed past drought events and forecast 
future drought risk in Kebbi State, Nigeria using machine 
learning techniques. The study period spanned over four 
decades from 1981 to 2022, allowing for an examination of 
historical drought patterns. The analysis involved calculat-
ing the Standardized Precipitation Evapotranspiration In-
dex (SPEI) across multiple timescales (3-month, 6-month) 
to assess meteorological and agricultural drought. Four 
machine learning models; Long Short-Term Memory 
(LSTM) networks, Extreme Gradient Boosting (XGBoost), 
Random Forest, and Convolutional Neural Networks 
(CNN); were trained on the historical SPEI data and used 
to predict drought occurrences.

The results demonstrate that the Random Forest 
model consistently outperformed the alternatives in pre-
dicting SPEI fluctuations and anticipating both high and 

low intensity drought events. This was true across all the 
subregions of Kebbi State and at different timescales. The 
nonlinear ensemble decision trees of the Random Forest 
model enabled superior feature learning and drought pat-
tern recognition compared to the other techniques. The 
comparative assessment also highlighted the limitations 
of LSTM networks in handling lagged climate sequences 
which rendered its drought predictions ineffective. While 
the XGBoost and CNN models performed reasonably well 
in mimicking general wet/dry cycles, they failed to accu-
rately capture major historical extremes.

The consistent superiority of the Random Forest ar-
chitecture across the various experiments underscores its 
proficiency and robustness in drought modeling for Kebbi 
State. The one-year drought forecast generated through the 
optimized Random Forest model offers valuable insights 
into near-term risk levels, enabling stakeholders to target 
mitigation strategies and preparedness efforts.

Conclusively, this paper successfully demonstrated 
the potential of machine learning, specifically Random 
Forest models, in drought prediction within the context of 
Kebbi State, Nigeria. It provides a foundation to build an 
early drought warning system that is data-driven, locally 
robust, and tailored to the region. The techniques and find-
ings from this study can guide further research to improve 
drought prediction in other parts of Nigeria and Sub-Sa-
haran Africa vulnerable to drought impacts. With climate 
change exacerbating drought risks globally, harnessing 
advanced technologies for prediction and adaptation will 
be key to building resilience.
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