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ered.
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1. The Representation of Complex Networks 
with Mathematical Models

Complex networks are networks whose structure is 
irregular, complex and which evolves over time 
and are used in various branches of science and 

technology, as in biochemistry, in the study of interactions 
in quantum field theory, in study of IT processes, topolo-
gies in geographical databases[1] and also on the web, in 
social networks such as Facebook and Linkedin and in the 
Google model. 

The same term “complex” derives from the latin cum 
(together) - plexus (intertwined), “intertwined together”: 
it highlights that a complex network system is composed 
of a set of parts connected together and “intertwined” in 
such a way that the final result (the effect produced) is 
different from the sum of the constituent parts. Therefore, 
the behavior of a complex system cannot be inferred by 
a simple analysis of the elements that compose it, but it 
is necessary a systematic examination of the interactions 
that are generated between them and the constraints that 
determine their operation must be carried out.

An appropriate methodological approach to the prob-
lem for the applied sciences can make use of particular 
discrete mathematical structures, called “graphs”, which 
are represented by an n-air relationship on a finite set S, 
defined by the subsets of S with n elements which satisfy 
a property P(1,..,n), which can be constructed in such way 
to be representative of the structure and the behavior of 
the main tangible and intangible networks, such as:

(1) WWW = World Wide Web;
(2) telematic or real communication networks (tele-

phone networks, road, railway, port, logistics, airways, 
etc.); 

(3) networks describing ecological systems (food webs, 
etc.);

(4) biological networks (neural networks, genetic tran-
scription networks, metabolic networks, protein networks, 
etc.);

(5) relationship networks (social networks, scientific 
collaboration networks, etc.);

(6) musical networks for composition (graphs based on 
notes and others on chords can be linked together by a re-
lationship of duality to create the melody and harmony of 
a piece of music).

Figure 1.

From a geometric point of view, a graph is a data struc-
ture made up of a set of vertices (or nodes) which are 
related to each other through links, called arcs. In essence, 
a graph can be imagined as a set of points randomly ar-
ranged in the space Rn connected by “bridges” to the other 
points. So in a computer network, for example, the nodes 
are represented by all the devices connected to the net-
work (such as a PC connected to the internet), while the 
arcs are represented by the communication channels that 
allow users to interact in the network. If the relationship 
between the elements of the represented set does not pro-
vide an order between them, there is a not oriented graph 
(see the following figure), while if it is foreseen, there is 
an oriented graph.

Figure 2.

An not oriented graph G=(N,L)=GN,K is algebraically 
definable through a pair of two sets N and L where the 
elements of are N={n1,n2,...,nK} called nodes or vertices 
and the elements of L={l1,l2,...,lK} are pairs of elements of 
N, called arcs or links. The number of elements of the set 
of vertices and arcs is respectively N and K. The graph is 
oriented if the elements of L={l1,l2,...,lK} are ordered pairs 
of elements of N. In this case, lij indicates an arc that con-
nects node i with node j.

Given a graph G with N nodes, the number K of arcs 
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can vary from a minimum of 0 arcs to a maximum of N(N-
1)/2 and in this case all the nodes are adjacent (connected 
to each other by a arch)a; it is defined as connected if for 
each pair of distinct nodes i and j, there is a path i→j, oth-
erwise it is disconnected, for the mathematical represen-
tation a special matrix is used, called adjacency, typically 
indicated as A, of dimension NxN and the degree of a node 
i is calculated through the number ki of arcs adjacent to ib.

The numerical representations of a graph can be matrix 
or vector, the nodes of the set N are usually indicated with 
an integer. The representation of the graph most used in 
calculation programs is known as the outgoing star, or 
forward star, in which each node i is associated with the 
set of arcs it leaves, or the final nodes of these arcs, FWS 
(i). A similar representation of the graph called backward 
star (BWS) is obviously possible, which requires exactly 
the same amount of data. The choice between the repre-
sentations depends on the algorithm for calculating the 
minimum paths that is adopted.

Figure 3.

A graph G(N,L) can be stored on a computer in multi-
ple ways, the choice of which depends on the character-
istics to be highlighted and the needs for use, as well as 
on its size and density (number of arcs compared to the 
number of nodes), 

(1) connection matrix;
(2) incidence matrix; 
(3) adjacency list. 
Of these (see following diagrams), the first and the last 

a  A graph is called complete if K =
 
 
 

N
2

= N·(N −1)/2 it is denoted 

by KN, while a walk G (i→j) is a sequence of nodes and arcs which be-
gin from i to j and they can cross more times.
b  For example, an infrastructural network of land mobility (road 
or rail) can be represented through an oriented and connected graph 
G=(N,L), in a computerized way.

are the most usedc but the incidence matrix, although 
less effective than the other two methods from the com-
putational point of view, is however preferable in some 
optimization problems due to its relative ease of represen-
tation. 

Figure 4.

The connection matrix as storage method is based on 
the use of a square matrix nxn (with n number of nodes in 
the graph), in which the generic element (i,j) assumes the 
value 1 if there is an arc that connects the node i with node 
j, while 0 in the other cases, so in the case of undirected 
graphs the matrix will be symmetric, since the element (i,j) 
is equal to the element (j,i).

Furthermore, depending on the particular infrastructur-
al network (material and / or immaterial) under examina-
tion, it is possible mathematically to “deposit” on the set 
of vertices or arcs (or both) some quantitative information 
of the arcs or vertices that represent specific “assessments” 
that characterize the problem and its constraints. It is 
possible to refer to specific models representative of the 
specific realities in the study, defining each time the set of 
variables, the objective function (or multi-objective) and 
the system of constraints, as in the case that we want to 
determine the cheapest way to transport a certain amount 
of an asset (for example, gas, oil, industrial or agricultural 
products, etc.) from one or more production nodes to one 
or more consumption points, through a certain transport 
network (hydraulic, distribution, road or railway, of the 
production chain, etc.)d. For such models of flow distri-
bution at minimum cost, the network can be conveniently 

c  The connection matrix is preferable in the case of very dense graphs 
because, compared to the adjacency list, it allows greater efficiency and 
immediacy of the calculations, while the latter is useful in the case of 
scattered graphs (i.e. the number of arcs is small compared to the number 
of nodes).
d  The mathematical model of the problem is here of a general nature 
because it lends itself to representing cases that have nothing to do with 
the shipment of goods and, therefore, the more abstract notion of flow 
that can refer to each application will be used below.

DOI: https://doi.org/10.30564/jbar.v3i3.1898
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represented by means of an oriented graph, like the one in 
the figure below.

Figure 5.

In this simple explanation of the problem the 5 nodes 
of the oriented graph can be associated with the localities 
(intermodal centers, stations, depots, industrial plants, 
urban areas, etc.), and the 8 arcs with the communication 
routes which are supposed, for example, to one way (gas 
pipeline, road, railway branches, etc.) between the con-
sidered locations. In the real case of two-way streets, it 
will then be necessary, for each of them, to consider a pair 
of arcs directed in opposite directions between the two 
localities of reference. The network topology constitutes 
only a part of the problem data, to which must be added 
the demand for the goods, the availability of these in other 
locations, the transport costs from one location to another 
and the maximum capacity associated with each arc of the 
network (see example of integrated logistics network be-
low [18]). 

Figure 6.

To formulate this problem with graph theory (m vari-
ables and n constraints) we consider an oriented network 
G=(N,L), associating to it for each arc (i,j)∈L a cost Cij 
(negative, positive or zero)a, a given capacity Cij ≥ 0 and 
a lower lij , with 0 ≤ lij  ≤ Cij.

Suppose that each node i of N has an integer number  

a  A unit of that property under study that is shipped from an “i” origin 
to a “j” destination must bear a cost equal to the sum of the unit transport 
costs of all the arcs of the network that must be crossed.

b(i), assuming that b(i) > 0 indicates the presence of an of-
fer (i = origin, or “source”) and that b(i) < 0 characterizes 
the presence of demand (i = destination, or “well”), while 
b(i) =0 indicates the absence of both supply and demand 
(i= transfer node).

In the following we will assume the hypothesis (of 
admissibility) for which the total offer equals the total de-
mand, given by the equation:

∑
i N∈

b i( ) = 0.

Then, the cost of a flow can be defined as the sum: 

(i j L→ ∈
∑

)
c xij ij⋅ ⋅

It should be noted that the classification of the nodes in 
the three mentioned types (origin, destination, transfer or 
transit) is completely independent of the structure of the 
network, but it is defined only by the numerical data on 
the availability of the asset and demand. So, for example, 
in the previous scheme, if there is a demand for 6 units at 
node 4, 8 at node 5, and an availability of 10 units at node 
1, and 4 at node 2, then 4 and 5 they are well nodes, while 
1 and 2 are source nodes, while the 3 is transit.

Assuming now that the availability of the asset corre-
sponds to a negative demand, it is possible to associate 
each node i=1,..,n a variable equal to the demand bi of the 
node (positive for the wells, negative for the sources and 
zero for the transit nodes). According to this approach, the 
application vector b will have n components, in which the 
i-th component will be bi, definable by means of the ex-
pression:  

b = = .

 

 

 
 
 
 
 
 

b

b
b

b
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4

 

 
 

 

 
 

 

 

−
−

8

0
6

10
4

Furthermore, for the calculation, we consider the hy-
pothesis that the total availability of all the source nodes 
is equal to the total demand of all the well nodes which 
does not limit the applicability of the model to the practi-
cal problems concerning the transport of goods, because 
technically they can always be traced back to a form that 
satisfies this assumption. This, in fact, will be achieved by 
adding appropriate fictitious nodes and arcs in the network 
under study, with functions completely analogous to the 
waste variables used to bring the problems examined back 
to standard form.

DOI: https://doi.org/10.30564/jbar.v3i3.1898
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In general, the problem of flow at minimum cost con-
sists in to find an admissible flow distribution on the net-
work G=(N,L) such that the total cost is minimal. If we 
indicate the incidence matrix of the network with AG with 
b=[b(1),b(2),...,b(n)]T the supply/demand vector, with Rm 
the cost vector and with l∈ (Rm)+,u∈ (Rm)+ the vectors 
whose components represent the lower limit and the ca-
pacity of the corresponding arc, the minimum cost flow 
problem can be analytically defined through the following 
system: 





l x u

min
A x b
≤ ≤
G

c x
=

T

 .

In the particular case of a non-capacitive network, that 
is when lij=0, uij=∞, then the system assumes the follow-
ing configuration:







min
A x bG

x ≥

c x
=
0

T

Finally, as regards, in general, for the resolution of any 
problem of optimization of the efficiency, quality, safety 
and reliability of a complex network[10, 11], the definition 
of the “objective function” (for the measurement of the 
value attributable to the set objective), this will depend on 
the number  “n” of the choice variables x1,x2,…,xn, charac-
terizing the case study (whose values must be established 
by the project manager, or by the multidisciplinary study 
team) and by a set of constraints that must be satisfied, 
expressed by equations or inequalities. These last can be 
“direct constraints”, when they operate on the value of the 
variables of choice (for example, 1≤x1≤6, “functional con-
straints”, when they operate indirectly on them (for ex-
ample 1≤x1≤6 “functional constraints”, when they operate 
indirectly on them (for example, x1+x2≤7), or “non-neg-
ative constraints”, when they impose on these variables 
to assume only non-negative values (for example, x3≥0). 
If, we indicate the objective function by F, the maximum 
problem to be solved will be represented as follows:













............................

Max F x x x
x x x
g x x x b
g x x x b

g x x x b

1 2

1 1 2 1

2 1 2 2

m n m

, ,...
( , ,... )
( , ,... )

( , ,... )

{

1 2

( , ,... )

n

1 2

n

n

≤
≤

≤

n }

where F(x1, x2, ..., xn) it is the function to be minimized 

(for the search for the lowest cost route for an O-D rela-
tionship on a mobility network) or to be maximized (if 
you want, for example, to examine the revenue from the 
toll, etc.), the variables x1, x2, ... , xn are those on which the 
operator can intervene and the expression gj (x1, x2, ..., xn) 
≤ bj represent the m constraints (con j=1, 2, ... , m), of the 
problem to be satisfied, which here, by way of example, 
have all been expressed in the form of inequalities of the 
type [≤], that is, with a weak inequalities.

However, the objective function F varies according to 
the cases and could be of the first degree (linear), or of 
the higher degree (nonlinear), of the deterministic type, or 
random (with the presence of random variables); more-
over, the problem could refer to a single temporal phase 
(“static” case), or more successive and related phases 
(“sequential” or “dynamic” problems), etc., and therefore 
in practical applications it will be necessary to use the 
procedure of more appropriate resolution and referring to 
appropriate computer programs.

Finally, assigning the “optimal” values thus identified 
to the choice variables, we will obtain the best possible 
result among all the admissible ones, interpreting the real-
ity in the studio as closely as possible, in order to be able 
to provide the decision maker with useful tools to operate 
successful choices.

2. The Contribution of Stochastic Geome-
try to the Analysis of Safety, Reliability and 
Quality in Operation of a Complex Network

Associating a representative set of a network with a suit-
able set of variables, it is possible to carry out the func-
tional analysis of the “network-safety-reliability-quality” 
system, through particular stochastic  ℜ n  models that 
allow to calculate in the geometric space  the interferences 
between the flow that crosses the branches of the network 
(vehicular flow, of fluids or gases, flow of information, re-
lationships, etc.) and accidental obstacles placed along the 
path that can affect its normal operation, thus ensuring the 
best overall performance and system security.

The problem can therefore  be  addressed us-
ing a set of safety, reliability and quality indicators, 
P x P x P xx x x

S A Q ,  ,  ( ) ( ) ( )  which give rise to an indicator 

P xx
G   ( )  of “global quality in operation” of the network, 

given by the expression:

P x P x P x P xx x x x
G S A Q     ,( ) = + +∑          ( ) − − −w w wS A Q( ) ( )

where, case by case, the relative set of variables must 
be made explicit, including:

DOI: https://doi.org/10.30564/jbar.v3i3.1898



35

Journal of Business Administration Research | Volume 03 | Issue 03 | July 2020

Distributed under creative commons license 4.0

(1) the overall costs[14, 15] of ris

  C Cr i j
R = ∑( → )−wi j→

for each arc ji →  of the network (depending on the 
topology, peculiarities of the nodes and arcs, operating 
characteristics, level of tolerability of the risk for the user, 
emergency management, etc.);

(2) quality of the service, in terms of the generalized 
cost of transport, as the ratio between the minimum cost 
and the cost travel between the branches ji →  of the 
network, which can be expressed with the ratio

Q = ∑
 
  
 

C
Ceff

min
i j

i j

→

→ ;

(3) the degree of interconnection of the n nodes

β β= ∑( i j
i n
→
= …1, , )−wβi ;

(4) the level of intrinsic security of the infrastructure

L LS i j= ∑( i n= …
→
1, , )−wLi ;

(5) reliability characteristics[10] in the useful life cycle 
of the technological devices in the network itineraries

T Taff i j=  ∑( i n
→
= …1, , )−wTi ;

(6) associating the concept of vulnerability[9] with that 
of functionality and the loss of functionality of certain 
arcs, a characteristic indicator of the network

η =
df
dv

,

where f is the functionality expressed in terms of ef-
ficiency and quality of the offer and v represents the ex-
tension of the malfunction (also as calculated risk) for the 
entire network;

(7) topological efficiency of the network, as an estimate 
of the probability that all nodes are reachable, which if id  
indicates the shortest path between i and j can be repre-
sented by the expression

E GTop   ( ) =
N d

1 1
−1 i j G,
∑
∈ i j→

;

(8) index of resiliencea [17], understood as “service 
recovery capacity” also following a disaster recovery 
disaster ricoveryb, as an indicator of the system’s ability 
to adapt to conditions of use and to resist wear and tear 
so as to continue to guarantee the availability of services 
provided (network fragility index), definable with the ex-
pression

( )   IR
G  (N , L )= = ⋅

∫
( )

t

t1

2

t t

φ

2 1

 (
−

t dt)
θ ,

where the function

θ β= f k E( i Top
i n= …1, , , , ,)

depends on the variable ETop and β defined above and 
on the total degree of each of the n nodes ki of the network 
oriented graph, with

 k k ki i i= +out in ,

sum of the incoming and outgoing arches, being

k a k ai ij i ji
out in= =∑ ∑

j N j N∈ ∈

;  ,

with aji the elements of the adjacency matrix. If the net-
work is represented by a weighted graph, the term ki

i n= …1, ,  
will represent the “node strength”, defined as the sum of 
all the weights of the arches connected to node i, extend-
ing the mathematical relationship is to the incident arches, 
both to their weight. 

Furthermore, ϕ(t) is a characteristic function of the 
system service built through the service level in an undis-
turbed situation ϕind, the one following the event examined 
ϕa , the variable which measures the speed of recovery of 
the system and Δt=(t2-t1) the time interval considered. This 
function is given by the equation 

φ φ φ φ    (t e) = − − ⋅ind ind o( ) εr ,

a  The word resilience derives from the Latin verb "resilio", which 
means "to jump back, to return to a previous state". For a complex 
system we can distinguish the supply side resilience, or the functional 
resilience of the infrastructure, and the custumer side resilience, typical 
of the use of the network by its users. The issue of resilience takes on 
particular relevance, as it is mainly related to the "response" to unexpect-
ed events and sudden changes, such as in the case of accidental obstacles 
in the network.
b  For computer networks, the term disaster recovery means the set of 
technological, logistical and organizational measures aimed at restoring 
data, systems and infrastructures necessary for the provision of business 
services to companies, associations or entities, in the face of serious 
emergencies that affect its regular activity.

DOI: https://doi.org/10.30564/jbar.v3i3.1898
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and ϕ(t) can take values between 0 and 1, with ϕ(t)=1 
corresponding to the full operation of the system and 
ϕ(t)=0 in the case of total inoperability. In the case of a 
network of n interdependent infrastructures and assum-
ing that Ri is the resilience of the generic infrastructure 
i-esima, (i=1,...,n) it is then possible to identify a function 
Rtete=ω(R1,...,Ri,...,Rn) which describes the resilience of the 
entire network.

(9) impact indicator on the functioning of the system 
for the measurement of the probability of interference of 
the flows with any obstacles along the route, depending 
of the network topology intP . The characteristics of the 
“traffic” 

t
il , and those of the obstacles (assumed overall 

in number of “k”) defined by the size dk of each,

P f l dint i k. =  ( , ) .

This last aspect, since it assume the particular impor-
tance for the systematic analysis of a network system, will 
be further developed through a special stochastic model 
based on a lattice obtained starting from a geometric fig-
ure called the “fundamental cell”, at the top of which are 
represented some regular polygons equal to each other, 
called “obstacles”, obtaining a “regular lattice with obsta-
cles”.

Considering that in a complex network it is possible 
the simultaneous presence of multiple obstacles along the 
constituent arches, due to events that affect quality, safety 
and functionality, the case of the presence of a generic 
number equal to 2(n+2) of obstacles.

The proposed model is, among other things, functional 
for the management of seismic and atmospheric emergen-
cies for all physical transport networks and is also appli-
cable to intangible ones.

In fact, in the studies of the infrastructures represented 
by graphs in  ℜ n , the tool of geometric probabilities lends 
itself well to the analysis of interferences in operation of 
the relationship “network-obstacles-safety-system oper-
ation”, assuming that the entire network is formed by a 
union union R of elementary geometric figures, constitut-
ing special lattices Ri, whereby R=R1,R2,...,Rn.

3. A Mathematical Model for Assessing the 
Probability of Interference of the Flow with 
Multiple Accidental Obstacles Along a Net-
work System

Considering the graph G=(N,L) representative of the 
considered network and constructed the sub-latticeolo 
Ri of the union set formed by it, by means of particular 
test bodies (mathematical models) representative of the 
means constituting the flow that passes through it, it is 

possible to study the relative motion in Ri(i=1,...,n) and 
any interferences generated by obstacles (of fixed shape 
and size) along each arc i→j of the network[12].

These test bodies can be taken as segments of suitable 
length l (to schematize, for example, in a road network a 
freight train with a large number of carriages, or an artic-
ulated lorry in the case of road transport), or consisting of 
rectangles of sides l1 and l2 (as in the case of a high-speed 
train, or a car along a road).

Furthermore, in order to research the mathematical 
solution of the problem, we will hypothesize that each 
side of the considered reticle offers the same resistance to 
the forward movement of the test body and that there are 
conditions of uniform motion.

We consider a lattice with the fundamental cell a rect-
angle (but it could be any other flat figure, even irregular, 
constituting the lattice) in which three different types of 
obstacles are inserted, in an equal number up to 2(n+2), 
formed by the following geometric figures: rhombuses, 
circular sectors and square.The degree of incidence of the 
disturbance produced by them on the regularity of the out-
flow in the network concerned varies from the maximum 
impact of the rhombuses to the minimum impact of the 
circular sectors, which have the least probability of inter-
ference between the test body (medium) and long obstacle 
path.

A reference scheme for the practical applications of the 
method is shown in the following table and refers both to 
the study of tangible and intangible networks, such as web 
networks, where for anomalies from accidental events, 
such as the occurrence of a “Bottleneck”, one must eval-
uate, in analogy to the electrical circuits, the impedancea, 
that is the resistance opposed by the obstacle to the flow 
of information. The same approach can be considered in 
the case of a mobility or logistics system for the analysis 
of traffic safety and fluidity, or in emergency landslides 
for adverse weather situations, monitoring the problem 
of the probability of obstacle-vehicle interference (fall 
boulders, trees, etc. along the infrastructure network or its 
nodes).

a  Impedance, in electrical engineering, is a physical quantity that rep-
resents the opposition force of a circuit to the passage of an alternating 
electric current, or, more generally, of a variable current.

DOI: https://doi.org/10.30564/jbar.v3i3.1898
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Figure 7.

Let  ℜ (a,b,c) be the regular lattice with fundamental 
cell is as in Figure 8.

Figure 8.

Denoting with C0
(1)  the fundamental cell, we have:

(1) areaC ab c0
(1) = −2 .2

The cell C0
(1)  have six obstacles that are squares 

with diagonal of length c with c<min(a,b). Consider-
ing a segment s of random position and of length l with 
c<l<min(a,b), we want compute the probability that this 
segment intersects a side of lattice. This probability is 
equal to probability Pint

(1)  that the segment s intersects the 
boundary of the fundamental cell. The position of the 
segment s is determined by the middle point p and by the 
angle φ that the segment form with the axis x. We consid-
er the limit positions of the segment s that corresponds at 

angle φ and let C
(1)
0 (ϕ )  the determined figure from this 

position (see Figure 9):

Figure 9.

Considering some results that we have obtained in a 
previous paper[1], and from Figure 9 follow that:

area a l1 (φ φ) = (a c
2
− )

cos , 

area a a  2 3(φ φ φ) + =( ) (b c l−
2
) 2

sin ,

area a4 (φ φ φ φ) = + −
cl l
4 4
(sin 2cos sin 2)

2

,

we have that:

area a4 (φ φ φ φ) = + −
cl l
4 2 8
 
 
 
sin cos sin 23 2

. 

With these results the relation (1) give us:
(2)

areaC ab c

= − − − + − −

− − + − + + −
 

 
 

2 cos 2 sin sin 2 .

(

ab c a l b c l

a c l b c l cl

ˆ
0
(1)

)

(

2

φ

cos 2 sin sin cos sin 2

)

 

 
 

= −

 
 
 

φ φ φ φ φ

2

2 2
c l

(

2

)

φ φ φ(

 
 
 

)

2 2
3

2

l 2

Denoting with M, the set of segments s whose the mid-
dle point are in C0

(1) and N, the set of segments s whose the 
middle point are in C0

(1) , we have that:

(3) Pint
(1) = −1

µ
µ
(
(
M
N1

1

)
)

where μ is the Lebesgue measure in Euclidean plane[4]. 
In order to compute the measures μ(M,) and μ(N,) we use 
the Poincaré kinematic measure[3] dK dx dy d= ∧ ∧ φ ,

where x,y are the coordinates of p and φ the defined an-
gle. Since ϕ ∈ [0, (π/2)], we obtain that:

(4) 

µ φ(M d dxdy areaC ab c1 0) = = = = −
α

π

∫ ∫∫
2

{(x y C, )∈ 0
(1)}

π π
2 2

(1) (2 2 ) ,

and considering the (2)
(5) 

µ φ φ φ(N d dxdy areaC d1 0) = = = =
α α

π π

∫ ∫∫ ∫
2 2

{(x y C, )∈ ˆ
0
(1)}

 
 

(1) ( )
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π
2 2 2
(2 cos 2 sin sin 2ab c a l b c l d− − + + − − =2 )

α

π

∫
2  
 
 

 
 
 

c lφ φ φ φ( )
2

π
2 2 2
(2 2 .ab c a b l− − + − −2 )  

 
 

 
 
 

c l 2

Considering the (3), (4) and (5) we obtain the probabil-
ity:

(6) Pint
(1) =

2 2 
 
 

a b l l

π

+ − −

(2ab c−
2
c

2 )

2

.

When c→0, the obstacles becomes points and the fun-
damental cell becomes a rectangle with side a and 2b. In 
this case the probability (6) becomes the Laplace proba-
bility:

P =
2 2(a b l l+ −

2πab
) 2

.

In the same way we can consider other different lattice 
configurations.

Example 1. Let  ℜ 2(a,b,c) be the regular lattice with 
fundamental cell is as in Figure 10:

Figure 10.

The obstacles are squares with the side of length c. 
Considering a random segment whose length l<min(a,b) 
we to want compute the probability that a segment inter-
sects a side of the lattice. This probability is equal to the 
probability Pint

(2) that a segment s intersect a side of the 
fundamental cell C0

(2)  we have

areaC ab ab c0
(2) = − ⋅ = −2 8 2c

8

2
2

Considering the position s of the segment with bary-
center p and which forms an angle φ with axis x. We con-
sider the limit positions of the segment s for a determined 

angle φ, and let C
(2)
0 (ϕ )  the figure determined by these 

positions (see Figure 11):

Figure 11.

and we have that

Pint
(2) = =

l a b c l a b l c   
   
   

+ − − − + − − −

π

2 2 2 2

2 (2ab c

4 2 4
c l c

− 2

2

)

π π2 2 2

π (2ab c− 2 )

When c→0 the fundamental cell C0
(2)  becomes a rect-

angle with sides a and 2b and the obstacles become points 
and the probability Pint

(2)  becomes the Laplace probability:

P =
2 2(a b l

2
+ −
πab

) 2

Example 2. Let  ℜ 2( a,b,c) be the regular lattice with 
fundamental cell is as in Figure 12.

Figure 12.

Denoting with C0
(3)  the fundamental cell, we have:

areaC ab0
(3) = −4 3

2
c2

The cell C0
(3)  have eight obstacles that are squares with 
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diagonal of length 2c with c<min(a,b). We have

(7) Pint
(3) =

2 2 2 
 
 

π

a b l l

 
 
 
 

+ − −

4ab − 3

2
c

c
2

2

2

When c→0, the obstacles becomes points and the fun-
damental cell becomes a rectangle with side 2a and 2b. In 
this case the probability (7) becomes the Laplace proba-
bility:

Pint
(3) =

2 2 2( a b l l
4
+ −
πab

) 2

Example 3. Let  ℜ 4 (a,b,c;α) be the regular lattice with 
fundamental cell C0

(4) is as in Figure 13.

Figure 13.

where α ∈ [0, (π/2)] is an angle and c<min(a,b). The 
C0

(4)  have six obstacles that are rhombs with side c and 
with the diagonals d1=2csinα, d2=2ccosα. We have that:

areaC ab c b c0
(4) = + + +2 4 cos sin 4 sin cos(α α α α α) 2

We have

(8) Pint
(4) =

π α α α α  2 4 cos sin 4 sin cosab c a b c+ + +

2 2 4 cos

(
(a b c l l+ + −α

)
)

2

2

.

When α→0, the obstacles becomes segments of length 
2c that go in the boundary of the lattice, the fundamental 

cell ( )4
0C becomes a rectangle of side a and 2b+4c and the 

(8) becomes the Laplace probability:

( )
( )cba

llcbaP
42

422 2

+
−++

=
π

.

Example 4. Let  ℜ 5(a,b,c;n) be the regular lattice with 

fundamental cell ( )nC0 a rectangle with sides (n+1) a and 

b with 2(n+2) obstacles that are four quarter of circle of 
radius (c/2) and 2n semicircle

with same radius (c/2) (Figure 14):

Figure 14.

We have that:
(9) 

P sint
(n) =

2 1  (n a b c l l+ + − − −)

π
 
 
 
(n ab+ −1)

2

(n c

π π

+1
4

  

)

(

π

n c+ −

2

1 1
4
) 2

.

When c→0, the fundamental cell C0
( )n  becomes a 

rectangle of sides (n+1)a and b and the probability (9) be-
comes the Laplace probability:

Pint
(n) =

2 1  (n a b l l
π
+ + −

(n ab
)
+1)

2

4. Conclusion

In this work, a particular mathematical criterion has been 
proposed for the analysis of the performance charac-
teristics and reliability in operation of the material and 
immaterial[20] networks in the presence of accidental ob-
stacles, through the study of geometric probabilities and 
integral geometry. It covers a wide range of engineering, 
socio-economic and applied sciences applications, being 
able to deal with problems of Social Network Analysis, 
mobility and logistic systems(5), business, etc. In fact, the 
algorithm allows to evaluate, with an adequate degree of 
accuracy, the interferences of the “network - unexpected 
obstacles - interferences with the flow of traffic” system, 
representing the network with an appropriate regular 
grid formed by the union of equal regular polygons, 
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generated by a “fundamental cell” and which have only 
segments of the relative “borders” in common.

For the development of the model, other equal regu-
lar polygons, called “obstacles”, were positioned in the 
vertices of the fundamental cell, thus geometrically con-
structing a particular “regular grid with obstacles”, capa-
ble of defining the ordinary operating conditions of the 
network and to calculate the probability of “flow-obsta-
cles” interference for each O-D path (origin-destination).

In this way, it is possible to study the effects of an 
accidental “disturbing cause” on the circulation of the 
“vehicles” that make up the current of traffic and also to 
intervene to restore the functionality of the system. To 
fully define the problem, the “impacts” on the lattice of 
three different types of obstacles (square, circular sector 
and rhombus) were examined, considering a multiple 
number, up to 2(n+2). This, in order to appropriately 
represent the different degree of incidence of the distur-
bance on the network (min  circular sector; max  rhom-
bus) according to the different unforeseen causes that can 
temporarily alter its regular performance characteristics 
and those of safety and reliability. For display simplicity, 
a rectangle has been assumed here as a “cell”, obviously 
being able to extend the calculation (also with the aid of 
computerized processing) to any other flat, regular and 
/ or irregular figure, constructing the representative grid 
of any case concrete through the effective articulation of 
arcs and nodes in the development of the network.

In this sense, by way of example, the configurations 
of both the internet network and the national road net-
work ANAS complete with its TEN (Trans-European 
Networks) extensions are shown below.

Figure 15.

Figure 16.

In the case of complex networks such as those shown 
above, it is necessary to extend the results reported in 
the present work to the actual configurations in Rn, also 
considering the rotation of the test body formed by the 
segment s representative of the medium belonging to the 
traffic current flowing into the network (material or imma-
terial).

That is, it is necessary to take into account the particu-
lar geometric configuration of the lattice to be examined, 
considering in the calculation of the geometric probabil-
ities developed above also the variable φ0 given by the 
value assumed by the angle between the 0x axis and the 
straight support d of the aforementioned segment s .

If Pm=(x,y) is the midpoint of s (of length l) and x and y 
represent its Cartesian coordinates, the problem can there-
fore be solved, in the general case, considering the ele-
mentary kinematic measure of Poincaré in the Euclidean 
plane [17]:

dk dx dy d      = ∧ ∧ ϕ0 .
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