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1. Introduction

Especially in recent years, the aviation industry 
has been growing steadily. This increase in the 
aviation sector, which was achieved by the first 

jet flight in 1949 reached 70 times nowadays; brought it 
with the following: the desire to reach opportunities in 
countries with developed living standards, with the crea-
tion of international aviation law, new markets to airline 
companies, increase in demand because it is a safe way of 
transportation, lower prices due to increased productivity 
and competitive environment [1]. 

According to statistics published by the International 

Civil Aviation Organization (ICAO) in 2006, there exists 
more than 900 commercial airline companies, 22,000 
airline fleets, 1,670 airports with millions of kilometers 
of network, 2 billion passengers per year, 2.1 million em-
ployees (check-in officers, maintenance crew, etc.) and a 
very comprehensive accounting system which deals with 
the 40% of total import and export (ICAO 2006). There-
fore, it is important to plan and manage this valuable sys-
tem which has a very complex structure in terms of both 
airline companies and the General Directorate of State 
Airports Authority [2].

The delay and complexity experienced at the airport 
has been one of the main problems of the aviation sector. 
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If better planning was made only at 29 intensive airports 
in the United States (U.S.), a total savings of 400 aircraft 
could be achieved [3]. After the security, the next most im-
portant issue for the US Department of Transportation, is 
managing the high passenger density [4].

In order to provide all the constraints of the stakehold-
ers (as presented in Figure 1), and to find an economical 
solution with high quality, airlines are spending a lot of 
resources and efforts in scheduling problems such as prof-
itable and cost effective fare classes, flight schedules, fleet 
plans, routes, flight team plans, gate assignments, mainte-
nance schedules, food service plans and baggage manage-
ment. In addition to stakeholder-based constraints, there 
are some other factors such as; having already benefited 
from limited resources, there is not much room for move-
ment and space to the changes, the environment in which 
the airline operates is a dynamic environment with ambi-
guities, adverse weather conditions, mechanical problems, 
malfunctions, fuel bottlenecks, illness of one flight crew, 
the plan made by the agents is very often interrupted and 
changed, flight team’s working conditions, track availabil-
ity, security etc. due to such factors as strict rules applied 
by the FAA (Federal Aviation Academy) [5].

Figure 1. Aviation Industry Stakeholders

Three different departments are involved in airline 
companies; scheduling and network, operational planning 
and operation control departments [6]. The scheduling and 
network department is responsible for the creation of fea-
sible schedules at the planning stage. The aim of this unit 
is to increase the intentions such as market share, passen-
ger income and to take measures to reduce the operational 
costs. In KLM Royal Dutch Airlines, this process takes 
approximately 2 months and the results are transferred 
to the operational plan department. The operational plan 
department makes minor changes on this chart taking into 
account the changes in the sector and the performance 

of the operations in the airline industry. Approximately 2 
weeks before the flight, it sends the results to the opera-
tion control department to make last-minute changes in 
different occasions.

‘Delays’ have been increasing in recent years due to the 
inability to show suitable charts or to adapt to the changes 
in the charts and to develop solutions that can respond to 
this change in a short time [6]. According to a survey con-
ducted by Eurocontrol in 2005, 42% of flights are delayed 
and almost half of these delays are 15 minutes or more. 
When the delays are examined in detail, it has been re-
vealed that half of these delays are caused by airlines.

As a result, considering all the inputs mentioned above, 
it is important to establish a wide range of fleet decision 
making systems, including strategic planning such as 
route planning and airplane purchase for airlines, tactical 
level planning such as fuel planning, crew scheduling. It is 
very important to solve and analyze these problems with 
scientific methods. 

In order to provide a service with high quality and low 
cost, airlines spend a tremendous amount of resources and 
effort to generate profitable and cost-effective fare classes, 
flight schedules, fleet plans, aircraft routes, crew schedul-
ing, gate assignment, etc. In this paper, the techniques and 
operations management applications that are used in the 
air transportation industry are reviewed including demand 
forecasting, fleet assignment, aircraft routing, crew sched-
uling, runway scheduling problem and gate assignment.

2. Background

The implementation of airline planning and operations 
management consist of several activities and operations. 
The planning starts by strategic decisions which takes a 
long lead time, for instance, demand forecasting, (i.e, col-
lecting the demand and supply). Then, a set of interrelated 
planning decisions are considered, for instance fleet as-
signment, aircraft routing, crew scheduling, are taken into 
account. The planning processes are generally completed 
by a month to a few months before the implementation 
of the schedule. Next, the operations phase is considered 
during the implementation of the planned schedule which 
takes into account flight and schedule recoveries. The Fig-
ure 2 reflects the main operations considered in the strate-
gic, planning and operations phases of air transportation.
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Figure 2. Processes in the strategic, planning and opera-
tions phases of the airlines

While the operations planning process may vary across 
airlines, it is complex in a sense that resource scheduling 
decisions are being made on demand forecasting, fleet 
assignment, crew scheduling, etc. A sample representation 
of a timeline is provided in Figure 3.

Figure 3. An Airline Planning Process [7] 

The fundamental planning phase elements and their 
association in airline operations are illustrated in Figure 4. 
With regard to the proposed framework after the detailed 
literature review, the articles were reviewed into two 
major classes, namely aircraft operations in terminal ma-
noeuvring area (TMA) and air traffic operations (ATO). 

Figure 4. Framework of airline operations

In this paper, the operations research techniques and 
operations management applications that are used in the 
air transportation industry including demand forecasting, 

fleet assignment, aircraft routing, crew scheduling, run-
way scheduling and gate assignment are reviewed. 

2.1 Demand Forecasting
The purpose of the demand forecasting models, which 

are the stages of decision making in the long and middle 
term, is to predict the preferences of airline passengers for 
different alternatives of airports [8]. The main entry of this 
model is the demand estimation which is taking into ac-
count such factors as whether to travel or not, whether to 
use direct flights or connected flights if traveling, and which 
flight hub will be used if connected flights are used [9].

Making an accurate forecast is not only important for 
airlines and airports, but also for institutions such as the 
State Airports Authority in charge of that area. While air-
lines can make more profitable planning with a precise 
demand forecast, other agencies can also create better air-
port-related plans on these estimates [10]. For this reason, 
the creation of the correct models has an equal effect on 
stakeholders.

There are two different methods of overcoming the 
high passenger density in airlines [4]. The first is the expan-
sion of the airports and the construction of an airport that 
will balance supply and demand. The second is to increase 
and to use the capacity more efficiently by utilizing meth-
ods such as pricing.

When the literature is examined, although the number 
of studies mostly based on questionnaires (such as [11]) 
seems to be high, the number of studies related to analyz-
ing the preferences of passengers using airway transpor-
tation with discrete choice models has increased in recent 
years, and this complex process is modeled more realisti-
cally [10].

The factors affecting the decision of passengers who 
use air transport can be divided into three: characteristic 
of the route (price, time of departure and arrival, number 
of connections, waiting times, flight time, the type and 
size of the aircraft, the characteristics of the airline com-
pany), social-economic character of the travelers (income, 
age, gender, airline loyalty club membership), character of 
the journey (business or vacation, domestic or internation-
al, departure or arrival airport (location and time zone)) 
[2]. Generally, it seems that passengers prefer airline al-
ternatives that are cheaper, have fewer connections, have 
a proper take-off time and landing time, and offered by 
outstanding airlines.

The passenger’s income and sensitivity to ticket prices 
are inversely proportional. High-income passengers are 
less sensitive to ticket prices. The age and gender of the 
traveler also play an important role in the selection of al-
ternatives. For example, ladies usually do not prefer alter-
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native flights late at night, and an airport far from the city. 
It seems that airline loyalty members have opted for the 
flight of that airline in order to collect miles.

Finally, the character of the journey also influences this 
choice. Passengers traveling on business are generally less 
sensitive to price than passengers traveling on vacation. 
However, it has been observed that business travelers also 
consider the arrival time more often. Generally, it is seen 
that these types of passengers prefer alternatives that ar-
rive at the end of the day and that have no connection.

When the studies in the literature are examined, studies 
which evaluate one or more of the factors in these 3 cate-
gories have been reached; however, no studies have been 
found to evaluate the whole of these factors [8,9]. While a 
model was developed that takes into account factors such 
as ticket prices, frequency, flight times, direct flight, and 
time of departure [9], service level is considered, whether it 
is a connected flight or not, airline company, ticket prices, 
type and capacity of the aircraft [8].

2.2 Fleet Assignment
The Fleet Assignment Problem (FAP) deals with the as-
signment of each aircraft type to the specified flights on a 
chart according to the potential profitability, capacity and 
equipment that it has. FAP decisions have high impact on 
profitability, and are one of the most important parts of the 
scheduling problems of airline companies. Assigning an 
aircraft which has a small capacity may lead to improper 
demand management; on the other hand, assigning a large 
aircraft may cause unsold seats. FAP is considered to be 
a very difficult problem due to the large number of flights 
during the day and the close relationship of airline compa-
nies with other transactions [12]. According to the research, 
the studies in the literature are divided into four, namely 
basic FAP models, FAP models integrated with other pro-
cesses of the airline, FAP with additional coverage and 
dynamic FAP models.

2.2.1 Basic FAP Model
The constraints ensure that each flight is covered by a 
fleet type, the aircraft capacity is not exceeded, and the 
network balance [13]. The basic FAP model was re-modeled 
based on Time Space Network [14]. This model was later 
extended with the addition of constraints to consider the 
flight team [15].  

2.2.2 Integrated FAP Model
Although the FAP-related studies address FAP’s indepen-
dence from other airline planning and scheduling activi-
ties, it is closely related to activities such as departure/ar-
rival times, departure/arrival airport, maintenance periods, 

cycle planning and flight crew planning.
For example, a FAP solution that is not integrated with 

flight crew planning could result in the assignment of a 
cabin crew that does not have that type of aircraft certifi-
cation. For this reason, it is necessary to develop models 
that can work together with these types of processes. Inte-
grated fleet assignment and flight schedule models would 
provide a better solution than to deal with these problems 
separately. The first study on this subject was made by 
adding two constraints [16]. Since one of the constraint is 
nonlinear and causes computational difficulty, the con-
straint can be used by performing the M transformation [17]. 

In addition to integrated fleet assignment and flight 
schedule models, in the literature, fleet assignment has 
also been integrated with flight crew planning, mainte-
nance scheduling and location problems, and most of 
these models have been achieved by adding a few con-
straints on the model proposed by [13].

2.2.3 FAP with Additional Coverage 
In addition to the studies described above, researchers 
have worked on removing assumptions such as the fixed 
costs used in the basic FAP, fixed demand and the plan-
ning on a daily basis. For example, weekly planning was 
worked on instead of daily planning [18]. The integrated 
FAP was solved with crew pairing and routing problems, 
and provided heuristic methods [19]. 

2.2.4 Dynamic FAP Model
Currently, airlines use flight schedules as an input to other 
activities, and they set their flight schedules 2-3 months 
before departure and assign their aircraft to the flight ac-
cording to this schedule. However, due to uncertainty in 
demand, these appointments may need to be updated. For 
this reason, recently, researchers have been working on 
models that have been able to respond these changes dy-
namically, particularly in demand. A dynamic model has 
been developed that can both deal with the reassignment 
of fleet and re-timing in demand changes [20]. This model 
has been solved by using L shape and multivariate adap-
tive regression splines cutting plane method by developing 
a model that can adapt dynamically to changing ambient 
conditions [21]. The majority of the models in the literature 
are network-based models and their solutions range from 
a classical mathematical programming approach (integer 
programming, stochastic linear programming, etc.) to heu-
ristic approaches [22].

2.3 Crew Scheduling 
Crew scheduling can be defined as the problem of assign-
ing employees to jobs. In most sectors, the employees can 
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work instead of each other if needed, but in the aviation 
sector the problem can be considered more difficult than 
others because of the specialization of the workers for cer-
tain aircraft types [23]. Although it differs from other sec-
toral problems, main problem is to reduce the labor cost 
and covering all work while obeying the contracts and 
safety rules. Because of that reason, this problem is very 
similar to other problems in many ways.

Crew scheduling differs in itself in terms of scheduling 
of pilots and cabin crew. Although the pilots and the cabin 
crew are generally evaluated together, it is more likely 
that the cabin crew will be able to fly with another aircraft 
compared to the pilots. Pilots only can fly with specific 
aircraft in the same ‘fleet type’. For example, a pilot who 
can fly with an Airbus A320 most likely cannot fly with a 
Boeing 747. 

Cost of crew for airlines is the highest cost after the 
fuel cost. American Airlines spent a total of $ 1.3 billion 
for the crew in 1991, while Northwest Airlines spent $ 1.05 
billion in 1989 and United Airlines spent $ 0.6 billion. 
So, planning and managing a resource of such high cost is 
very important [24].

In the U.S., in one day, 2500 flights and 150 different 
cities are carried out with approximately 500 aircraft. 
Airlines need to provide both a cabin and a cockpit crew 
for each flight and that they need about 5000 cockpit and 
10000 cabin members per month [25].

When evaluated both in terms of cost and complexity, 
it is inevitable that the number of studies related to flight 
crew will increase in recent years. In early 1960s airlines 
was using schedules, which are formed manually. The first 
application of operations management methods to that 
problem began in 1969 [26]. 

Crew planning process is considered by the researchers 
as an optimization problem, and mathematical modeling 
of that problem is relatively easy compared to other prob-
lems. In this type of problem, the general approach is to 
develop an integer mathematical model with 0-1 varia-
bles. Often the study starts with planning pilots, and then 
the cabin team leader and the cabin crew respectively. Al-
though the modeling phase starts with pilots due to their 
higher costs, the general structure of the problem is almost 
the same for all phases.

A different kind of classification for crew scheduling 
was also suggested [27]. In this study, the crew scheduling 
problem is classified according to the geographical loca-
tion of the airline. This study examines the European and 
American airlines in particular, showing that airlines in 
Europe have a fixed price policy instead of a pricing poli-
cy, which depends on the flight time and distance traveled. 
In Europe, most flights have to rotate (like getting up from 

Istanbul and returning to Istanbul) so rather than solving 
the problem on a daily basis, airlines prefer longer peri-
ods. For example, Turkish Airlines, which is the biggest 
airline company in Turkey, solves the problem in monthly 
bases.

Another classification method for the problem is time-
lapse. crew scheduling problem can be divided into 3 
classes according to time-lapse, including daily, week-
ly and a specific period [25]. Daily: It is assumed that all 
flights are made every day of the week on daily schedule. 
This type of planning is mostly used by US airlines, and 
flights in countries across Europe are more irregular. Most 
of the problems in the literature are concerned with daily 
planning. Weekly: The assumption in this type of planning 
is that the chart repeats weekly. Making the necessary 
changes for the irregular days mostly solves the problem. 
However, this approach cannot lead to optimal solutions 
mainly because there are too many irregular flights in 
European countries. Long Term: In this approach, crew 
is planned on a monthly basis. It is usually obtained by 
making minor changes in weekly planning. However, if 
weekly planning from daily plans is not optimal, these 
monthly plans may not be optimal for the same reason. In 
particular; irregular holidays, changes in flight times etc. 
prevent use of weekly plans in the long-term.

One of the earliest mathematical models for crew 
scheduling was created[28]. The model create work sched-
ule for each employee, taking into account the needs and 
pre-assignments. In order to create a feasible solution, it is 
necessary to select a solution in which a sufficient number 
of crew are assigned to a job and at least a member is as-
signed at each job. 

A model was developed to facilitate the solution espe-
cially for large problems [29]. In his study, he divided the 
crew into high-rank and low-rank members, and tried to 
satisfy the feasible solution by guaranteeing that airlines 
have enough crew for the days, which is called as bottle-
neck at first sight. This study proposes a solution algo-
rithm to that model, and it shows that the developed meth-
od can provide better solutions especially for large scale 
problems when compared to standard algorithms used by 
a medium sized European airline in Europe. 

Another classification can be made in terms of scope. 
Some studies in the literature have only approached the 
issue of crew scheduling, while others have dealt with the 
issue more extensively by including flight crew rostering. 
Some studies in the literature are about the trade-off be-
tween the robustness of the solution and the cost. 

Robustness was emphasized by considering the inte-
gration of routing and crew scheduling [30]. He runs the 
produced delayed scenarios in a deterministic model and 
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compares the results with the results of the statistical mod-
el he has developed. The nonlinear constraints arising in 
the model are solved by separating the problem function 
into the linear problems.

2.4 Runway Scheduling 
Capacity expansion at airports, be it concerning the apron, 
airstrip, cargo, or terminal areas, is rooted in strategic 
decisions that require massive investments and long con-
struction lead times. To achieve a most efficient use of 
such scarce resources, it is imperative to develop judicious 
planning strategies. Despite recent efforts and studies in 
the arena of aircraft operations, flight delays resulting in 
multi-billion-dollar losses are observed annually world-
wide. Hence, there exists a pressing and persistent need to 
identify air traffic policies that can alleviate such frequent 
and costly inefficiencies. Airport terminal areas constitute 
a critical bottleneck resource that attracts a great deal of 
attention from decision-makers at airports worldwide.

Official flight delay statistics published by the U.S. De-
partment of Transportation and Eurocontrol (The Europe-
an Organization for the Safety of Air Navigation) are very 
alarming. Although such assessments may not be readily 
available for major airports in the Middle East, frequent 
and expensive flight delays pose a significant planning 
challenge for decision-makers worldwide.

Three primary types of operations take place in the ter-
minal management areas: airway operations dealing with 
air traffic control inside the terminal area; runway oper-
ations pertaining to aircraft arrivals and departures that 
compete for a set of runways, which constitute a critically 
scarce resource; and finally taxiway operations related to 
aircraft operations from the runway to assigned gates, or 
vice versa. In this process, runways constitute the scarcest 
resource whose management greatly impacts the entire 
TMA performance [31]. The runway assignment depends 
on the airport configuration (single runway, parallel or in-
tersecting runways or combination of these), the direction 
of arriving aircraft, and departure route of the aircraft [32]. 
The runway capacity is the maximum rate of aircraft ar-
rivals or departures that can be accommodated by a single 
or multiple runways. The elements that affect the runway 
capacity are aircraft type, runway operation type (segre-
gated or mixed), runway occupancy time, availability of 
taxiways, and weather conditions [33]. The mixed-integer 
0-1 programming formulation of the problem was provid-
ed in [34] involving multiple runways with both immediate 
and general precedence decision variables. 

2.4.1 Importance of Sequencing Decisions
The tactical problem of carefully assigning aircraft to 

runways is often neglected, as efforts tend to focus on 
the intensive task of properly sequencing and separating 
aircraft that compete for the same runway. This tactical 
planning step constitutes an important feature of the inte-
grated models, and is particularly relevant to airports that 
presently operate multiple runways as well as airports that 
are strategically considering the construction of additional 
runways to better accommodate sharply increasing air 
traffic volumes. 

The so-called aircraft sequencing problem (ASP) aims 
at jointly optimizing the assignment of aircraft to runways 
and the concurrent sequencing of aircraft departures and 
arrivals on each runway at an airport. This scheduling 
effort is governed by two major requirements: minimum 
separation times between consecutive (as well as certain 
non-consecutive) operations and specified time-windows 
during which operations need to take place. Minimum 
separation times between operations are enforced to pre-
clude the dangers of wake-vortex effects and to control 
the airspace congestion. The length of such safety buffers 
intimately depends on the aircraft operations (being de-
partures or arrivals), the weight-class of the aircraft under 
consideration (small, large or heavy), and sequencing deci-
sions. Considering a pair of consecutive operations, if the 
leading aircraft is heavy and the following aircraft is small, 
say, then a relatively large separation time is required for 
wake-vortex hazards to fully dissipate. Hence, the magni-
tudes of the separation times that must be enforced depend 
on the sequence of operations determined by air traffic 
controllers, which ultimately impacts the throughput of a 
runway. Sequencing decisions are, therefore, of critical im-
portance, and latent inefficiencies and delays are imputa-
ble, in part, to high and possibly inequitable workloads, the 
intensive task of enforcing safety separation times, and the 
prevalent use of rudimentary sequencing rules. In addition 
to minimum separation times, arrivals and departures are 
required to take place within specified distinct time-win-
dows that are determined using nominal schedules, which 
indicate the earliest time by when an aircraft could access 
the runway in an uninterrupted situation, and the maximum 
tolerable delay for this aircraft. A recent survey was pro-
vided on ASP where a comprehensive review of operations 
research techniques [35].

The management of assigned airline time-slots is also 
receiving increasing attention in the literature. For in-
stance, the value of runway time-slots for airline carriers 
has been investigated [36] using a network flow model for 
flight rescheduling, whereas integration of a slot exchange 
mechanism was elaborated within a collaborative deci-
sion-making framework for airspace planning [37, 38]. De-
spite the rich literature at hand, aircraft sequencing prob-
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lems are often investigated under restrictive assumptions 
and idealized conditions. 

Early works on aircraft arrival/departure sequencing 
date back to the late 70s [39, 40]. Most studies reported in the 
literature focus on either departure or arrival operations 
[41-47], often under the assumption of a single runway (or 
closely-spaced runways that are nonetheless interpreted 
as a single runway). A single machine scheduling problem 
was investigated where, for computational convenience, 
it is assumed that groups of identical jobs are sequenced 
with the objective of minimizing the total processing cost 
[48]. A dynamic programming approach was developed fort 
his single machine scheduling problem, and was applied 
in the context of sequencing arrival aircraft operations. 
An integer programming was used to sequence arriving 
aircraft inside the TMA [49, 50]. The authors presented a for-
mulation that takes into account the dynamic nature of the 
problem whereby every aircraft entering the TMA has a 
Nominal Landing Time (NLT) that depends on the present 
characteristics of the TMA, and the aircraft speed, among 
other features. The resulting combinatorial optimization 
problem was noted to be NP-hard, and in the case of 
zero ready-times, was shown to reduce to an Asymmetric 
Travelling Salesman Problem (ATSP). The Constrained 
Position Shifting (CPS) was proposed method to retain 
fairness among aircraft operators and increase the predict-
ability of landing times [51]. They present dynamic pro-
gramming algorithms for runway scheduling under CPS.

2.4.2 Single Runway Problems and Asymmetric 
Traveling Salesman Problem Structure 
The development of computationally tractable models for 
single runway problems is a founding stone for gaining 
modeling and computational insights into the mode elab-
orate optimization problems. To this end, The aircraft se-
quencing problem (ASP) was modeled over a single run-
way as an asymmetric traveling salesman problem with 
the time-windows (ATSP-TW), where the objective is to 
minimize the greatest (last) aircraft’s completion time [52]. 
This basic ASP model includes ready-time and due-time 
restrictions for each aircraft operation, minimum safety 
separation times, and subtour elimination constraints. 

It is important to recognize and exploit the ATSP-TW 
structure that characterizes operations over a single run-
way in order to perform a polyhedral analysis for multi-
ple-runway aircraft sequencing problems. By taking ad-
vantage of the special structures of the problem, classes of 
valid inequalities can be derived in order to strengthen the 
continuous relaxation of the proposed models. The deriva-
tion of tighter relaxations can drastically improve problem 
solvability by enhancing the pruning effect of branch-and-

bound/cut algorithms that are commonly implemented 
in standard optimization solvers such as CPLEX. The 
usefulness of this concept has been demonstrated for sev-
eral ATSP-related problems. For instance, enhanced for-
mulations for the ATSP employing Miller-Tucker-Zemlin 
subtour elimination constraints, with and without prece-
dence structures [53-55]. Also, an alternative new polynomial 
length formulation of this problem is proposed [56]. Further 
tightened polynomial length formulations using RLT-
based lifting, and path-based and flow-based constraints 
have been developed [12], and extensions to multiple trav-
eling salesman with application to the steel industry are 
addressed.

2.4.3 Slot-exchange Mechanism in Airspace Plan-
ning
The aircraft sequencing models under stochastic time-win-
dows and weather-based disruptions capitalize on ele-
ments of the Airspace Planning and Collaborative Deci-
sion-Making Model (APCDM) developed [57, 58]. This is a 
large-scale mixed-integer programming model for improv-
ing the management of the US national airspace where 
under the scenario of a severe convective weather system, 
an optimal set of flight trajectories is selected amongst a 
set of alternative flight plans for the affected flights, while 
complying with sector workload, aviation safety rules, 
and airline carrier equity constraints. This framework 
has been recently extended [37] in order to incorporate a 
slot-exchange mechanism amongst airline carriers that is 
regulated by the collaborative decision-making process 
between the Federal Aviation Administration (FAA) and 
airline companies. Specifically, individual airline carriers 
are assigned sets of operating time-slots by the FAA, but 
can barter these slots subject to specified trade offer re-
strictions with the FAA acting as the mediator. 

2.4.4 Solution Methodologies 
The aircraft sequencing problem over a single runway 
(modeled as ATSP-TW) is an NP-hard combinatorial op-
timization problem. As a consequence, the generalized 
and extended aircraft sequencing problems belong to a 
class of particularly challenging optimization problems. 
Exact solution methods (typically based on branch-and-
bound algorithms) are practical only for small to moder-
ately-sized problem instances. Solving larger instances 
to near optimality in reasonable computational times re-
quires the design of specialized heuristics that are rooted 
in mathematical programming approaches, constructive 
search strategies, and metaheuristic paradigms, or hybrid 
approaches where both frameworks ae synergistically em-
ployed. The proposed solution methodologies involve the 
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following components:

2.4.4.1 Fast Preprocessing/Probing Procedures
Such procedures aim at a priori fixing the value of cer-
tain binary sequencing variables, thereby determining the 
relative order of certain aircrafts without loss of optimal-
ity. This requires a judicious analysis of input parameter 
values and the ability to infer partial sequenced that must 
belong to an optimal schedule by means of logical impli-
cations. Such pre-processing routines and inference rules 
significantly reduce the problem size and complexity, con-
tribute to strengthening the underlying relaxation of the 
model, and speed up its solution. 

2.4.4.2 Polyhedral Analyses
Thorough polyhedral analyses are conducted to enhance 
the solvability of the different proposed mixed-integer 0-1 
programs by strengthening their underlying continuous 
relaxations. To this end, computationally effective classes 
of valid inequalities  are developed based on the special 
multiple asymmetric traveling salesman problem structure 
within the proposed formulations[59]. Modern lifting pro-
cedures based on the Reformulation-Linearization Tech-
nique is also explored to strengthen the models, and to 
derive tight partial convex hull representations, especially 
in the vicinity of optimal solutions [53-55].

2.4.4.3 Decomposition Approaches
The class of multiple-runway aircraft sequencing problem 
without pre-assignment of aircraft to runways exhibits 
a special structure that lends itself to decomposition ap-
proached [59,60]. The associated mixed-integer programs 
involve coupling constraints that reflect dependencies 
across runways along with multiple independent sets of 
constraints pertaining to sequencing operations related to 
individual runways. 

2.4.4.4 Column Generation Approaches
Column generation approaches [61,62] offer a practical 
solution framework to obtain optimal solutions to the set 
partitioning formulations [52] such as those arising in the 
context of the joint aircraft assignment-sequencing prob-
lem over multiple runways. Such approaches orchestrate 
a so-called restricted master program and a subproblem 
in order to dynamically generate and adjoin attractive 
patterns to the restricted master program. A key ingredient 
to the column generation approach that will be developed 
for these set partitioning formulations in to suitably coor-
dinate the patterns generated so that minimum separation 
time constraints for departures across runways are satis-
fied when patterns are generated. To this end, innovative 

extensions to the column generation algorithmic features 
described ensure a proper coordination of patterns [52, 63].

2.4.4.5 Metaheuristics
Metaheuristics such as Genetic Algorithm (GA), Simu-
lated Annealing (SA), Tabu Search (TS), and Ant Colony 
Optimization (ACO), among others, have shown to be 
robust methods for solving optimization problems. The 
literature abounds with studies where metaheuristics are 
implemented to solve difficult combinatorial optimization 
problems in deterministic and stochastic setting (see [64] for 
an extensive survey of metaheuristic search paradigms; [65] 
for a survey of metaheuristic approaches for deterministic 
combinatorial optimization with applications to schedul-
ing and routing; [66] for a recent survey of metaheuristic 
approaches for stochastic combinatorial optimization).

As far as aircraft sequencing problems are concerned, 
practical applications are to be found in [46] where a GA is 
presented to schedule aircraft arrivals at London Heathrow 
airport, whereas [43] proposed a TS algorithm for aircraft 
departures at that same airport. The multiple runway static 
Aircraft Landing Problem was studied where the set of 
aircraft that are waiting to land is known [67]. They present-
ed two population-based metaheuristics (Scatter Search 
and Binomic Algorithm), and the computational results to 
problem instances with up to 500 aircrafts and five run-
ways indicate that good quality solutions are attainable 
in manageable times. Others work employed Gas for this 
problem and reported good quality solutions [68, 69]. In an-
other related work, the single runway arrival problem was 
solved in which an arrival schedule must be determined 
taking airlines cost into account [70]. Their prescribed local 
search heuristic solved problem instances with over 100 
flights within a few minutes, and large cost savings for 
the airlines were achieved using the proposed approach 
over a realistic schedule. Recently, the ASP over multiple 
runways was studied,  under mixed mode operations with 
the objective of minimizing the total weighted tardiness 
of aircraft landings and departures simultaneously. The 
greedy algorithms, namely the Adapted Apparent Tardi-
ness Cost with Separation and Ready Times (AATCSR), 
the Earliest Ready Time (ERT) and the Fast Priority Index 
(FPI) are proposed. To improve the results obtained from 
the greedy algorithms, they integrated with Metaheuristics 
for Randomized Priority Search (Meta-RaPS) applied and 
Simulated Annealing algorithms [71].

2.5 Aircraft Routing
In the fleet assignment problem mentioned in the previ-
ous section, aircraft types were assigned to flights. For 
example; the flight from Ankara to Istanbul on November 
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30, 2017 at 14:05 will be carried out with a Boeing 737 
aircraft. However, as it can be seen from that example, it 
is not yet known exactly which specific aircraft was as-
signed to this flight. Normally, the desired situation is to 
determine which aircraft is assigned to this flight based on 
the tail number. For this reason, additional operations are 
needed.

This process is known as aircraft routing in the liter-
ature, and the aim is to determine which aircraft will fly 
on a particular route. It takes 4-7 days to return from the 
origin to the same place again, and the aircraft is also sub-
jected to some activities such as maintenance at this time 
[2]. When the studies in the literature are examined, it can 
be seen that studies are generally divided into different 
classes with respect to the assumptions of such activities.

The Federal Aviation Authority (FAA) mandates air-
lines to care in many different types and periods. These 
maintenances are called A, B, C and D and the mainte-
nance intervals are different from each other. Class A 
maintenance, is often considered in the problem of aircraft 
routing, where only the main systems (engine, landing 
gear, etc.) are visually inspected and simple operations are 
performed. This maintenance is usually done after a total 
of 65 hours of flight, and airline companies often solve 
this problem by treating it as a routing problem. 

A problem of routing for American Airlines was 
worked on taking maintenance activities into considera-
tion [72]. Just as in the previous studies, appropriate roots 
for aircraft were mathematically modelled to take into 
account maintenance constraints [73]. Dynamic effects of 
unexpected weather conditions on the route was studied 
and suggested a dynamic re-routing with a stochastic inte-
ger-programming model [74].

In literature, there are some other methods, which can 
be classified in terms of their scope. For example, while 
some studies only deal with the problem of routing, some 
have addressed both the routing and the crew pairing 
problem to be explained in the next section. In this kind of 
models, which have increased in numbers in recent years, 
the aim is only sub optimal because the result obtained by 
solving the routing problem actually examined the prob-
lem from the airway perspective. 

For example, it tried to find the lowest cost by consid-
ering both the problem of routing and crew scheduling [75]. 
The same problem was studied by integrating the ‘flight 
retiming’ problem to that model [76]. In [77], models and 
solution methods that deal with both fleet assignment and 
the routing problem were studied. The purpose of that 
study is to assign the aircraft to a minimum cost flight on 
the basis of both the aircraft type and the tail number, to 
satisfy the constraints of maintenance and other activities 

on the flight schedule. The most comprehensive work on 
this subject was made [78]. In this work, the problem is 
addressed in a wide variety of ways, including the flight 
schedules, fleet assignment and flexible retiming.

2.6 Gate Assignment
The problem of gate assignment can be defined as the 
problem of matching the gates is connecting the aircraft 
and the terminal area [2]. Each aircraft should be assigned 
to only one gate. If there are not enough gates, the air-
planes are parked at the apron and the passengers are 
transported to the terminal by service vehicles. In particu-
lar, being close to next flight of reserved gate for passen-
gers who have connecting flights will affect the walking 
distances and baggage transfers. 

The Gate Assignment Problem (GAP) can have many 
goals. The common goals used in the GAP are as follows: 
the number of unassigned aircraft should be minimized, 
proper gate assignment for some aircraft types should be 
maximized, walking distance for passengers should be 
minimized, the differences between the current schedule 
and the reference schedule are minimized (robust), reduce 
the number of expensive aircraft towing procedures [79]. 
A good schedule must provide the following constraints: 
a gate can serve only one aircraft at the same time, ser-
vice and space requirements of airplanes (in some cases, 
depending on the size of the aircraft in the neighbouring 
gates, the airplane cannot be assigned to the gate due to 
lack of space), minimum time of stay and minimum time 
between two consecutive aircraft should be guaranteed.

The GAP was accepted as a non-deterministic problem 
due to delays and cancellations in the flights [2]. A delay on 
the departing flight means that the aircraft has been occu-
pied by that aircraft for a longer period of time, so that the 
incoming flight is reserved for another gate or waiting at 
the apron, and the delay on the incoming flight means that 
additional time is available for the aircraft at that gate.

Basic inputs of GAP; departure and landing times, 
aircraft type, number of passengers in the air, cargo vol-
ume, domestic/international flight, gate preferences and 
ground services needed [79]. In addition, as mentioned in 
the problem of routing, aircraft have to carry out class A 
maintenance that corresponds to their arrival points. For 
this reason, the assigned gate may need to be suitable for 
this maintenance.

When the GAP is taken into consideration, models can 
be assessed according to the time period and objective 
function. Models with single or multiple time periods: In 
a single time period mode, a single plane can be assigned 
to each gate, while multiple time periods can be assigned 
to more than one aircraft because the time is available in 
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models with multiple time periods. Here the time span 
should be well chosen because it affects the size of the 
problem and the rates of gate usage highly.

The GAP with single time period; a facility can be 
modeled by drawing an analogy from the quadratic as-
signment problem, which is a location selection problem. 
The cost of assigning an gate depends on the placement of 
the other gates and the passenger volume between these 
gates [79].

Type of objective function: Reduction of walking 
distance is one of the most used objective. Besides this 
purpose, there may be different purposes with passenger 
base and airport base. In addition to walking distance, the 
distance of the baggage carriage was also considered [79]. 
In addition to these, the objectives related to aircraft with-
drawal procedures and gate preferences are also confront-
ed as airport specific objectives. One of first works on 
this subject was made in 1977 [80]. The cost function due 
to number of passengers, the distance between gate-gate, 
gate-check, gate-aircraft are tried to be minimized.

Intuitive and precise solutions were developed to show 
that the problem is the second-order assignment problem 
and NP-Hard [81]. The problem was modelled as a 0-1 in-
teger programming model and found the optimal solution 
by branch and nerve algorithm [82]. However, the ongoing 
passengers in this study were not considered. This prob-
lem was solved using LP relaxation and an intuitive model 
by eliminating this missing model [83]. Time compliance 
and robustness are also considered in the literature. In [84], 
he determined to comply with time as a goal function. A 
procedure was developed for a robust GAP in his work [85].

Since GAP is an NP-hard problem, researchers have re-
cently used particularly simulated and intuitive approach-
es. While a simulation-based model was modelled [86], a 
heuristic method was developed in which flights were as-
signed to the same gate without collision [87]. The number 
of special gates for airlines is increasing. However, these 
studies are insufficient. One of the most recent works on 
the use of special gates was made [88]. 

3. Discussion

When the models in the literature are examined from the 
viewpoint of technical complexity, it is seen that the mod-
els have not a complicated structure but when evaluated 
in terms of solution methods, especially intuitive and me-
ta-analytical methods are more preferred than exact solu-
tions in recent times.

When the uncertainty level is considered to be estab-
lished in order to make a decision in a wide range from 
the strategic level to the tactical level in terms of uncer-

tainty level and when it is evaluated from the standpoint 
of stakeholders, it is considered that the results have a plu-
ralistic structure because they will be used by institutions 
such as airlines, airport officials and State Airports Au-
thorities. It said. The fact that uncertainty is particularly 
important in terms of the cost and hence the future of the 
company, compared to tactical level decisions, especially 
on strategic level decisions, makes strategic level deci-
sions more quantitative. However, this type of work has 
not been achieved in the literature.

It can be said that the industry has a very gray structure 
in terms of values and disagreements. In Figure 1, it is 
necessary for airline companies to consider the aviation 
principles of the countries in which the airplane first trav-
els and then travels or plans for long-term planning so that 
the system can follow the system regularly in terms of 
stakeholders. According to the characteristics of the air-
ports that these companies will land / depart at the same 
time, traffic, runway number and number of lanes, gates 
and baggage operations [2]. It is also necessary to consider 
the points. Another issue to be taken into consideration 
is the customer’s flight schedules, pricing policies, etc. 
preferences. In most cases, airlines can partner with other 
airlines to increase the number of flight points and fly to 
longer distances. In this case, which airline will be part-
nered with, which resources will be shared, and so on. 
special issues are emerging.

One of the most striking among stakeholders is suppli-
ers. Airlines, aircraft, fuel, aircraft parts, personnel, food, 
etc. Inputs are supplied by suppliers. The availability of 
these at the desired time and place is highly critical in 
terms of planning and therefore coordination with sup-
pliers is required. In order to avoid strikes, the salaries, 
working conditions, etc. of the unions to which the em-
ployees are affiliated, entries in the fields should also be 
taken into account by the airlines. In the event of any disa-
greement, trade unions that can implement business sanc-
tions and slowing down the business can very seriously 
affect the plans of the airlines. Finally, it is important that 
the competitors are continuously monitored in terms of 
capacity, price information, landing and departure times. 
One of the competing companies in the airline industry is 
a pioneer and plays an active role in the decisions of other 
companies.

4. Conclusions

Airlines and airports have been utilizing operations man-
agement techniques for  almost 70 years. Operations man-
agement models and operations research techniques have 
had a remarkable effect on planning and managing oper-
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ations within the airlines and airports. The developments 
in computer technology and optimization models have 
supported them to handle more complicated problems and 
provide solutions in a much shorter amount of time. This 
paper explores a variety of optimization models adopted 
by the airlines for scheduling and planning. Specifically, 
in this study, the techniques and operations management 
applications that are used in the air transportation industry 
including demand forecasting, fleet assignment, aircraft 
routing, crew scheduling, runway scheduling and gate as-
signment are reviewed. 
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