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ABSTRACT

Evaluating the performance of existing concrete structures is essential in civil engineering, with compressive strength
serving as an indicator of performance. Non-destructive testing (NDT) techniques are commonly employed due to their
cost-effectiveness and the ability to assess structural integrity without causing damage. However, NDT methods often
yield less accurate results than destructive testing (DT), which, although highly reliable, is costly and invasive. To address
this limitation, recent research has focused on developing predictive models that correlate DT and NDT outcomes using
machine learning techniques. This study explores the application of Support Vector Machine (SVM) models, enhanced
with optimization techniques, to improve prediction accuracy. Experimental concrete practical samples, ranging from
M10 to M40 grade, were prepared and tested at 14 and 28 days of curing, totaling 126 laboratory specimens. Additionally,
231 field samples were collected from a 20-year-old structure to reflect in situ conditions. The performance of SVM
was improved using optimization algorithms such as Bayesian Optimization and Genetic Algorithms (GA). Among vari-
ous kernel functions tested, the Gaussian non-linear kernel proved most effective in modeling the complex relationship
between NDT and DT results. The SVM model optimized using Bayesian methods and a Gaussian kernel achieved
superior performance, with a high coefficient of determination (R = 0.9771) and significantly lower error metrics, including
Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE). Bayesian-optimized SVM
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with a Gaussian kernel offers a highly accurate and practical tool for predicting compressive strength from NDT data,

enhancing decision-making in structural assessment.

Keywords: Destructive Test; Non-Destructive Testing; Support Vector Machine (SVM); Bayesian-Optimized SVM; Genetic

Algorithm-Optimized SVM; ANN

1. Introduction

The repair and refurbishment of existing building struc-
tures have become essential research fields in current engi-
neering construction due to the growing expansion of high-
rise buildings and infrastructure construction on a national
and international scale!. Concrete, one of the many building
materials used in construction, uses its compressive strength
as the main indicator of structural integrity >3], Destructive
testing (DT) is typically the primary approach used to mea-
sure the compressive strength of concrete*7]. DT, however,
is less practical for decaying concrete structures since they
not only come with a significant cost but also jeopardize
the functionality of the current structure[”!l. To evaluate
the quality of concrete structures, particularly in terms of
compressive strength, non-destructive testing (NDT) tech-
niques have become increasingly widespread*!!l. When
compared to DT, NDT yields less accurate and dependable
results while lowering testing expenses, workload, and harm
to the original structure!'?). Numerous studies recommend
using combinations of NDT techniques with DT to estimate
concrete compressive strength, thereby improving the accu-
racy of anticipated results[!314],

Many scholars suggested and multiple regression-
analyzed a significant variety of empirical equations for
calculating the compressive strength of concrete based on
Ultrasonic Pulse Velocity (UPV) and Rebound Number (RN)
values in the 1960s1>1 Regression analysis was performed
on a number of experimental datasets, including power func-
tions, bilinear functions, and biexponential functions, to de-
rive these equations!!’”~'?1, Furthermore, Lawson et al. 2]
looked at the connection between concrete’s compressive
strength and UPV. With age, there is an increasing association
between UPV and concrete’s compressive strength; however,
the amount of rise depends on the mix proportion designs and
curing technique. Sbartai et al.[?!l suggested a technique that
utilizes an extensive database of NDT trials to obtain com-
pressive strength and UPV data for concrete. They also car-

ried out an assessment of the NDT methods currently used to
determine the compressive strength of concrete. For a more
precise evaluation of concrete strength, Ali-Benyahia et al. %!
suggested several models that bridge the gap between de-
structive testing and individual or combined NDTs. In com-
parison to current methods, the study’s findings highlighted
the great usefulness of the combined method in estimating
concrete strength. Numerous concrete specimens were sub-
jected to NDT for RN and UPV by Poorarbabi et al.!!]. For
calculating the compressive strength of concrete, an efficient
Response Surface Method (RSM) was presented, which is
more precise than other existing methods. Correlation and
comparison between NDT and DT methods form a pivotal
aspect of materials evaluation and quality assessment (22241,
The correlation between these testing methods lies in their
shared goal of understanding material behaviours, yet their
approaches are fundamentally different. NDT excels in sce-
narios where preserving the integrity of the tested material
is crucial, offering a non-invasive means to assess proper-
ties[>]. DT, meanwhile, provides detailed and conclusive
data but comes at the cost of sacrificing the specimen. This
description aims to highlight the nuanced interplay between
NDT and DT methods, emphasizing their complementary
roles in ensuring material reliability across various indus-
tries?%]. The complex nonlinear connection between the
composition of concrete and its compressive strength makes
it challenging to develop precise predictive models, necessi-
tating significant expertise and knowledge.

The development of prediction models for compressive
strength provides a solution to these problems for NDT-based
results. Such models not only reduce experimental effort but
also minimize the expenses and time involved with standard
testing procedures. The first issue with a successful predic-
tion model is the practical dataset, as concrete is exposed to
various weather and climatic conditions, which influence its
strength. As a result, it is critical to create a practical dataset
before making a forecast. Many studies employed various

models to predict relationships obtained from DT and NDT,
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which were both linear and nonlinear(?”-?81. This is because
concrete continues to acquire strength with age and time, and
no one knows what the porosity, cement-aggregates ratio,
grade of aggregate, type of cement, curing, and mixing con-
ditions were at the time of construction. Regression analysis,
a popular statistical tool, has been utilized to predict the link
between different input factors and compressive strength.
While linear regression is simple, the inherent nonlinearity
in concrete behavior frequently makes nonlinear regression

(271, Nonetheless, these models have limita-

more accurate
tions, particularly when dealing with the complex interac-
tions of several variables, such as porosity, cement-aggregate
ratio, curing conditions, and concrete age!'%.

Because different raw materials are used for concrete
preparation and there are different components contribute
to its strength, the linear regression model is replaced with
a nonlinear regression model, which is more accurate 2],
MRA uses the least-squares fit strategy to determine the re-
lationship between one or more independent variables and
a dependent variable. However, the accuracy of regression
analysis is inversely related to the number of independent
variables?°). Numerous factors contribute to the strength of
concrete, and it is difficult or nearly impossible to obtain this
characteristic from an existing structure*”). In order to solve
the complex relationship, one can use Machine learning algo-
rithms such as Artificial Neural Network (ANN) and support
vector machines (SVMs), which are found to be impressive
and accurate in terms of results[3134],

ANNSs have developed into powerful modelling and
prediction tools in a variety of engineering applications, in-
cluding hydrology, meteorology, and concrete compressive
strength prediction3'). ANN’s capacity to deal with non-
linearity, adapt to complicated patterns, and remain inde-
pendent of raw material quality makes it an appealing op-
tion*¥. Unlike traditional regression approaches, ANN is
modeled after the topology of a human brain network, allow-
ing it to analyse related variables effectively3*]. Researchers
have extensively used ANN for both quantitative and quali-
tative variable predictions in these various disciplines. Sev-
eral researchers are actively employing artificial neural net-
works (ANN) to assess the compressive strength of concrete.
Priyesh et al.[>*) employed the cascade forward-back propa-
gation technique to forecast concrete compressive strength;

the same model and dataset were used in this research work.

Prediction analysis is routinely used on concrete that has
been made by substituting ingredients, but there has been
little study on prediction analysis for Reinforced Cement
Concrete (RCC) 341,

SVMs are gaining popularity among researchers in
order to solve the complex problems of the real world 3¢,
SVMs are powerful supervised learning models widely used
for regression and classification tasks due to their ability to
handle high-dimensional data and deliver accurate results.
However, the performance of an SVM model largely depends
on selecting the optimal hyperparameters, including the Box

37401 The novelty of

Constraint, Epsilon, and Kernel Scalel
this research work lies in that many authors have applied
ANN and SVM prediction techniques for determining com-
pressive strength, but none have focused on optimizing these
techniques to increase the predictability of the model. This
work builds upon the authors’ previous work by Priyesh et
al.[33], In terms of using advanced optimization techniques
for prediction using SVM and ANN. Only a practical dataset
was used, which was generated by Priyesh et al.[*>]. These pa-
rameters dictate the complexity and flexibility of the model,
influencing its generalization capabilities, which helps in
model generation.

The combination of SVM with optimization techniques
such as Bayesian Optimization and GA represents a signifi-
cant advancement in machine learning*!). By automating
the hyperparameter tuning process, these methods improve
model efficiency and accuracy, reducing the need for manual
intervention. Recent research has shown that models tuned
using these optimization algorithms outperform standard
SVM models, especially in complex real-world datasets 21,
These approaches are now widely applied in fields rang-
ing from financial forecasting to bioinformatics, where the
accurate prediction of continuous variables is critical. In
machine learning, selecting these hyperparameters manu-
ally can be a daunting task, as improper tuning may lead to
suboptimal performance, overfitting, or underfitting. There-
fore, optimization algorithms such as Bayesian Optimization
and GA are employed to automate this process and improve
model accuracy 341, This study explores the application of
Bayesian Optimization and GA Optimization for enhancing
the performance of SVM regression models.

Bayesian Optimization for SVM: Bayesian Optimiza-
tion is a probabilistic model-based optimization technique
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that has proven effective for hyperparameter tuning in ma-
chine learning models. It constructs a surrogate model (typi-
cally a Gaussian Process) to approximate the objective func-
tion and iteratively refines this model by selecting the most
promising hyperparameters based on an acquisition func-
tion[#. The goal is to minimize the objective function (e.g.,
Mean Squared Error for regression) while reducing the num-
ber of evaluations of the true objective function, making it
especially suitable for computationally expensive tasks like
hyperparameter tuning. Recent studies have demonstrated
the efficiency of Bayesian Optimization in automating the se-
lection of SVM hyperparameters, leading to improved model
performance with fewer computational resources [4344],

GA for SVM: GAs are inspired by the process of natu-
ral evolution and are widely used in optimization problems
across various domains. GAs operate by evolving a popula-
tion of candidate solutions through operators like mutation,
crossover, and selection. In the context of SVM hyperparam-
eter tuning, GA is employed to evolve potential solutions
(i.e., sets of hyperparameters) over multiple generations, op-
timizing the model’s performance iteratively. This approach
is advantageous for exploring a vast search space and avoid-
ing local minima, which traditional gradient-based methods
might fall into. Several recent studies have highlighted the
effectiveness of GAs in tuning SVMs, leading to better pre-
dictive accuracy and robustness in regression tasks[4”). Both
optimization techniques can be used in SVM prediction. The

objective of research work:

1. To find the optimal set of hyperparameters that lead to
the best model performance in the prediction of the re-
lationship between compressive strength of NDT and
DT

2. To evaluate the effectiveness of these optimization strate-
gies, the study compares the performance of a standard
SVM model, an SVM optimized using Bayesian Opti-
mization, and an SVM optimized using a genetic algo-
rithm. The performance is assessed using metrics such
as MSE, RMSE, R%, and MAE. These metrics provide
insight into the model’s accuracy and its ability to gener-
alize to unseen data.

3. Comparative analysis of various models.

2. Dataset

It is very important to create a practical dataset that rep-
resents the real-life complexities of the Concrete strength [,
The concrete is exposed to different conditions such as high
or low temperature, very or little humidity, extreme rainfall,
or Drought. The strength of concrete is affected by internal
and external environmental conditions. There is a need to
prepare a practical dataset in order to perform a prediction
model. The prediction should include the test performed on
the various conditions, as well as with different grades of
concrete. In the laboratory, one can get control parameters
used to design a concrete mix, but in practice it is difficult to
obtain such parameters accurately. That is why finally com-
pressive strength is taken as a parameter determined by both
methods, NDT and DT, which are considered. Experimental
samples of various grades of concrete (M10 to M40) were
prepared in the laboratory, considering 14-day and 28-day
periods. Field samples were collected from a 20-years-old
structure. In the laboratory, a total of 126 standard cubes (18
of each grade) prepared as a sample. Other 231 samples were
not collected from the field; instead, it was collected from a
20-years-old structure, where the first NDT was performed,
and then DT was carried out over it. The field data was col-
lected from reinforced concrete columns, beams, and slabs in
residential buildings. The structures were located in Bhopal,
Madhya Pradesh, India, and primarily subjected to dry ex-
posure with moderate temperature fluctuations (20—40 °C),
therefore no aggressive chemical or marine environments
were involved using the rebound numbers ranged from 22 to
38. In this research work, the same dataset was used, which

was generated by Priyesh et al.[*%].

3. Methodology

In this research work, optimization techniques used
in the SVM are needed to optimize the parameters. The
model generation, validation, and testing were performed us-
ing MATLAB 2024(a). The following steps are involved in
model generation and its performance evaluation, as shown
in Figure 1.

Data Preprocessing and Loading: The first step in
data preprocessing is the normalization of data to organize
and structure information within a database. Normalization
of data is done by scaling the data in such a way that all
data points fall within a range of 0 to 1. Thus, this technique
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enables all data points to be brought to a common scale. The

mathematical formula for normalization is given in Equation

(1).

(y - ymin)
(ymax - ymin)

(.Z’ - xmin)

(mmax - xmin)

X = Y =

; 1)
Where, X= Normalized value of NDT Compressive
strength data set between 0 and 1; Y= Normalized value of
DT Compressive strength data set between 0 and 1; x= NDT
Compressive strength; y= DT Compressive strength
Then the data is loaded from an Excel file and it is

Start

further divided into training (60%), validation (30%), and
test (10%) sets to train, optimize, and evaluate the model.
Feature Matrix X and Target Vector Y, where, X € R4
represent the feature matrix with n samples and d features
(NDT methods used to determine the compressive strength
of concrete which depends up to various factors such as age
and grade), and y € R" represents the target vector (DT
obtain by compressive testing machine). Let the dataset D =
{(X1,¥1),(X2,¥2),---,(Xn,¥n) }» Where x; are the features and y;
is the target. Missing data handling is expressed as: D¢jean =
{(xi,yi) €D | isnan(x;) = false Aisnan(y;) = false}

Data Processing
*  Normalization of data

*  Feature Matrix X and Target Vector y
*  Handling Missing Data

Data Splitting

*  Training Data set(60%)
e Validation Data set(10%)
*  Testing Data Set(30%)

y

Support Vector Regression (SVR) Model

|

v

v

Hyperparameter Optimization by Bayesian.

Hyperparameter Optimization by Genetic Algorithm

Bayesian optimizes three key hyperparameters for

SVR:
¢ Box constraint C,

Epsilon €, and

Kernel scale y (over different kernel functions

such as Linear. Gaussian and Polvnomial).

GA optimizes three key hyperparameters for SVR:
« Box constramt C,
« Epsilon e, and
¢ Kernel scale y (over different kernel
functions such as Linear, Gaussian and
Polvnomialy

v

v

Find best Kernel Function by minimal the mean
squared error(MSE) for validation set

GA minimizes is the Mean Squared Error (MSE) on the

v

Model Training with best Kernel Function

Model Accuracy

validation set

Model Training with best Kernel Function

Model Accuracy

Comparative Analysis

Figure 1. Methodology adopted in model generation.
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Support Vector Regression (SVR) Model: The SVM
objective is to build a linear regression function
f(x) = wT X + b that minimizes the error in predict-

ing y;, Subject to constraints defined by the loss function
(e.g., epsilon-insensitive loss). The problem is solved by
minimizing the following objective, given in Equation (2).

1 n
{Min2|W|2 +CZH) (€i+§f)};yi— (whz;+ b) < e +&5 (whai+ b) —yi < e +8&:e,& >0 (2)

Where, W is the weight vector; b is the bias; € defines
the margin; €;, £ are slack variables; C' is the box constraint

(regularization parameter)

3.1. Hyperparameter
Bayesian

Optimization by

When solving computationally demanding functions
to locate extrema, Bayesian Optimization is a useful tech-
nique*®!. Bayesian Optimization is a probabilistic model-
based optimization technique that has proven effective for
hyperparameter tuning in machine learning models. It con-
structs a surrogate model (typically a Gaussian Process) to
approximate the objective function and iteratively refines
this model by selecting the most promising hyperparameters
based on an acquisition function[*?l. The goal is to mini-
mize the objective function (e.g., MSE for regression) while
reducing the number of evaluations of the true objective
function, making it especially suitable for computationally
expensive tasks like hyperparameter tuning. Recent studies
have demonstrated the efficiency of Bayesian Optimization
in automating the selection of SVM hyperparameters, leading
to improved model performance with fewer computational
resources [4>44],

Steps in Bayesian Optimization:

1. Initialization: Start with a small number of evaluations
of the objective function (e.g., validation error). f(x) with

randomly chosen hyperparameters [Equation (3)].

3

x* = arg

f(@)

T EeX

Where: x= Hyperparameters (e.g., Box Constraint, Ep-

silon, Kernel Scale); xy = Search space of hyperparameters.

2. Surrogate Model: Fit a probabilistic model f(x), often
a Gaussian Process, to approximate the true objective
function.

3. Acquisition Function: Use an acquisition function a(x)

to decide where to sample next. Examples include:

o Expected Improvement (EI)
o Probability of Improvement (PI)
o Upper Confidence Bound (UCB)
4. Iterative Improvement: Evaluate the objective func-
tion at the point suggested by a(x), update the surrogate
model, and repeat.

Bayesian optimization is used to optimize three SVR
hyperparameters: Bayesian Optimization was employed to
tune the hyperparameters, including Box Constraint, Epsilon,
and Kernel Scale (Box Constraint), and (Kernel Scale) over
different kernel functions[#®). The optimization aimed to
minimize the error through 5-fold cross-validation.

For each kernel function k for linear [Equation (4)],
Gaussian [Equation (5)] and Polynomial [Equation (6)]:

k]inear(xi7 XJ) = X;rxj (4)
kgaussian(xiaxj) = eXp(—V ” Xi — Xj ||2) (5)
kpolynomial (Xi7 Xj) = (XiTXj =+ l)p (6)

The goal is to minimize the mean squared error (MSE)
using Bayesian Optimization for the objective function.

3.2. Hyperparameter Optimization with Ge-
netic Algorithm (GA)

GA is a search heuristic that solves optimization issues
by simulating the workings of natural selection. It evolves a
population of solutions toward ideal outcomes through repet-
itive cycles of crossing, mutation, and selection. A genetic
algorithm is generally expressed mathematically in terms of
the following several crucial steps:

1. Representation (Chromosome): Each of the following
solutions « to the problem is usually expressed as a chro-
mosome: a chromosome is a vector (or string) of values
x; = (x1, 20,23 ...... %, ) where x; represents an indi-
vidual in the population, and each element x,, represents

a gene of the chromosome.
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2. Fitness Function: The fitness function f(x) evaluates
how good a solution is. The objective is to maximize
(or minimize) this fitness function. f(X)=For maximiza-
tion problems, any purpose, including optimizing perfor-
mance or decreasing costs, could be represented by the
fitness function.

3. Selection: Based on fitness, the selection process selects
individuals (chromosomes) from the population for re-
production. People in good physical shape have a higher
chance of being chosen. Roulette Wheel Selection is a
popular method of selection in which the likelihood of
choosing a particular candidate F(xi) is proportional to
its fitness [Equation (7)].

F(Xrp)
E;'V:1 f(xy)

Where N is the total population Size.

p(Xi) = (7

4. Crossover(Recombination): Combining two parent
chromosomes to create one or more offspring is known as
crossover. Single-Point Crossover is a popular crossover
technique.

5. Mutation: In order to preserve population diversity, mu-
tations change an individual’s genes, introducing random-
ness. For binary strings, bit-flip mutation—in which a
bit (gene) is flipped with a modest probability py, is a
popular mutation technique.

If a mutation takes place for a gene x;j, it is altered to

a new value:

z; ; — «'; ; = random value (based on mutation) ~ (8)

6. New Population: After selection, crossover, and muta-
tion, a new population P’ is formed. The next generation
is evaluated, and the process repeats.

7. Stopping Criteria: The algorithm terminates when a
stopping condition is met, such as a maximum number
of generations or when the fitness does not improve sig-
nificantly. The genetic algorithm (GA) optimizes three
key.

The objective function that GA minimizes is the Mean
Squared Error (MSE) on the validation set: The GA opti-
mization selects the parameters C, €, y that minimize the
validation MSE for each kernel.

8. Best Kernel Selection: The kernel with the best per-
formance was selected based on the minimum objective

value obtained during optimization:

Model Training: The model was trained using the op-
timal kernel function and corresponding hyperparameters,
and then predictions were made on the test set.

Model Accuracy: After model generation, 30% of the
data was used for validation of this model. The validation is
performed using statistical parameters such as MSE [Equa-
tion (8)], RMSE [Equation (9)], R? [Equation (10)], and
MAE [Equation (11)].

n . \2
MSE — 21 (yi — 9i)

©)
n
RMSE = VMSE (10)
Nnest 2
Rzzl_(Zzn:I t(yi yi);) (11)
221 (% = W)
1 n .
MAPE =~ >, vl (12)

Where, y; = Observed value; ;= Predicted value; n =

Number of observations.

4. Results and Discussion

In this research, the compressive strength tests were
conducted to assess the test results. The study of this experi-
ment aims to determine the compressive strength of concrete
using different test methods, such as DT and NDT, on various
grades of concrete (M 10 to M40) at different ages (14 and 28
days). For these total 357 samples for various the standard
concrete cubes were prepared with various mix proportions
that yielded standard cubes crushing strengths within a range
of 10 to 40 M Pa. Combine regression of dataset 14 days, 28
days, and 2 years there were total 357 samples (70 % model
generation + 30% Testing) generated with random data of

238 samples used for model creation.
4.1. Regression Model

The overall Equation (12)3%) using all grade of con-

crete.

DT = 0.442 + 0.982N DT (1)
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Where,

DT=Compressive strength obtain Destructive Test

NDT=Compressive strength obtain Non-destructive
test

Statistical data such as Multiple R, R Square, Adjusted
R Square, and Standard Error, were 0.985, 0.970, 0.97, and
1.61, respectively. Therefore, there is a need to find an accu-
rate tool and technique to find the best solution for non-linear

problem.

4.2. ANN Modeling

For the ANN model formation, 238 samples are further
divided into Training, Testing, and Validation. Our data set
is randomly assigned from the training, testing, and valida-
tion sets containing 70% of training, 15% of Validation, and
15% for testing. The ANN result of the parameter that were

used for analysis is given in Table 1. Coding of ANN was
performed in the MATLAB 2024(Ra) such as net=newcf(in-
put2,target2,hiddenLayerSize);

The best validation performance, as calculated by the
mean square error (MSE), is obtained at 78 epochs, with an
error of 0.002 as shown in Figure 2. The correlation coeffi-
cients for training, validation, testing, and overall are 0.987,

0.982, 0.985, and 0.986, respectively, as shown in Figure 3.

Table 1. Parameters used in neural network.

Parameters Types
Number of hidden layers 1

Number of hidden neuron 5

Number of epochs 100
Transfer function of layer in hidden layer ~ Tan-sigmoid

Transfer function of layer in output layer  pure linear
Levenberg-Marquarbt(LM)
algorithm

Random

Weight/bias learning function.

Best linking weights and biases

Best Validation Performance is 0.0027492 at epoch 78

10" F
k Train
Validation
Test
E‘ 100 .......... Best
E
.
-
w
-1
g 10
© 1
=3
o
(/)]
ﬁ
q, 10—2 H
= i
ZF f
10'3 e 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80
84 Epochs

Figure 2. Best validation performance in terms mean square error
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Figure 3. Correlation coefficient of training, validation, testing and overall of ANN Model ).

4.3. SVM Models

Based on the above-mentioned parameters, predic-
tion models such as SVM without optimization, SVM with
Bayesian Optimization, and SVM with GA optimization.
The results obtained are given below.

4.3.1. Result Obtain by SVM Optimization by
Bayesian

Program code is written in Matlab 24R(a) code
were written in library script( .m file) using function
results = bayesopt(objFun, optVars, AcquisitionFunction-

Name’, ‘expected-improvement-plus’, MaxObjectiveEval-

uations’, 30, ...“Verbose’, 0,‘PlotFcn’, {@plotMinObjec-
tive});

While running the Bayesian Optimization for tuning the
hyperparameters of an SVR model with three different kernel
functions—linear, Gaussian, and polynomial—the results ob-
tained in Table 2 show the difference between the minimum
objective and the estimated objective for each kernel func-
tion of the models, respectively. In Table 2, the performance
of three different kernel functions—linear, Gaussian, and
polynomial—is shown, along with the corresponding opti-
mized hyperparameters: Box Constraint, Epsilon, Kernel
Scale, and MSE.
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Table 2. Best estimated feasible point according to models by Bayesian Optimization.

Estimated Objective Estimated Function

S.No Kernel Function  Box Constraint Epsilon Kernel Scale Function Value (MSE) Evaluation Time
1. linear 14.11 0.000394  0.0559 0.00214 25.4094
2. Gaussian 15.65 0.000710  0.3014 0.00132 0.26996
3. Polynomial 31.48 0.000340 1.8874 0.00218 0.22605

For the Linear kernel, a moderate Box Constraint value
of 14.111 suggests a balance between accurately fitting the
training data and ensuring generalization. The minimal Ep-
silon value of 0.00039457 indicates a focus on precise predic-
tions by penalizing even minor deviations from target values.
Although Kernel Scale (0.055939) has limited significance in
a linear kernel, its small value may suggest that feature stan-
dardization is necessary for better performance. The Linear
kernel achieves a relatively low Mean Squared Error (MSE)
of 0.0021461, indicating a good fit to the data; however, the
evaluation time of 25.4094 seconds is significantly higher,
suggesting it is computationally intensive.

The Gaussian (RBF) kernel outperforms the others,
achieving the lowest MSE of 0.0013271, which reflects its
superior performance in capturing data patterns. Its Box
Constraint value of 15.652 highlights an emphasis on data
fitting while maintaining generalization, and the small Ep-
silon value of 0.00071073 ensures precise predictions. The
Kernel Scale of 0.30143 is relatively small, enabling the
model to focus on local patterns effectively. Additionally,
the evaluation time of 0.26996 seconds is significantly lower,
making the Gaussian kernel both efficient and accurate.

The Polynomial kernel, with the highest Box Constraint
value of 31.485, indicates a strong focus on minimizing er-
rors but with an increased risk of overfitting. Its minimal
Epsilon value of 0.0003407 emphasizes minimizing minor
prediction errors, while the larger Kernel Scale of 1.8874
allows a broader influence of each data point, capturing more
complex patterns. The Polynomial kernel achieves an MSE
of 0.0021841, comparable to the Linear kernel, but its eval-
uation time of 0.22605 seconds is the shortest among the
three, making it computationally efficient.

In conclusion, the Gaussian kernel provides the best
overall performance due to its low MSE and efficient eval-
uation time, making it the ideal choice for the dataset. The
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Polynomial kernel is competitive, particularly in compu-
tational efficiency and pattern complexity, but it may risk
overfitting. The Linear kernel also delivers good results but
is less practical due to its significantly higher computational
cost.

The following results which are key points, are pointed

out below:

* The Gaussian kernel has the best MSE (0.0013271), mak-
ing it the optimal choice based on these results. Addition-
ally, it has a quick evaluation time.

* Linear kernel provides a slightly higher MSE than Gaus-
sian, but took significantly longer to evaluate. The lin-
ear kernel could be preferred in cases where model inter-
pretability is more important than absolute performance.

* Polynomial kernel has a performance close to the linear
kernel with much faster evaluation, but it is not as good

as the Gaussian kernel in terms of MSE.

4.3.2. Result Obtain by SVM Optimization by
GA

Program code is written in Matlab 24R(a) code were
written in library script( .m file) using function objFunGA
= (@(params)kfoldLoss(fitrsvm(X train, y_train, Kernel-
Function’, ‘linear’,BoxConstraint’, params(1),‘Epsilon’,
params(2),‘KernelScale’, ‘auto’,‘Standardize’, true, ‘KFold’,
5)); % 5-fold cross-validation

% Run Genetic Algorithm optimization options = opti-
moptions(‘ga’, ‘Display’, ‘iter’, ‘PopulationSize’, 30, ‘Max-
Generations’, 20);

The results of GA optimization for tuning the hyper-
parameters of an SVR model with three different kernel
functions—Linear, Gaussian (RBF), and Polynomial—are
presented in Table 3. Each kernel’s performance is evaluated
based on the optimized hyperparameters: Box Constraint,
Epsilon, Kernel Scale, and Mean Squared Error (MSE).
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Table 3. Best estimated feasible point according to models by GA.

S.No Kernel Function Box Constraint Epsilon Kernel Scale MSE

1. linear 95.6071 0.1213 3.5947 0.0020
2. Gaussian 26.1893 0.0475 2.4884 0.0015
3. polynomial 98.4047 0.0379 2.2380 0.0016

For the Linear kernel, the optimized Box Constraint
value 0f 95.6071 is very high, indicating that the model heav-
ily penalizes misclassifications or deviations, aiming for a
tight fit to the training data with minimal tolerance for er-
rors. The Epsilon value of 0.1213 reflects a moderate margin
of tolerance for errors, allowing the model some flexibility
within this range. While Kernel Scale (3.5947) is typically
less critical for the linear kernel, its value suggests that in-
put features are scaled, which in turn influences the model’s
interpretation of distances between data points. The MSE
0f 0.0020 is relatively small, showcasing good performance,
although the high Box Constraint might limit flexibility for
complex data.

For the Gaussian (RBF) kernel, the optimized Box Con-
straint value of 26.1893 is much lower compared to the linear
kernel, reflecting more flexibility and tolerance for outliers
during training. The smaller Epsilon value of 0.0475 indi-
cates the model is finely tuned to reduce prediction errors. A
Kernel Scale of 2.4884 allows the Gaussian kernel to capture
local data patterns effectively, striking a balance between
generalization and precision. This kernel achieves the lowest
MSE of 0.0015 among the three, highlighting its ability to
minimize prediction errors and effectively model non-linear
patterns.

The Polynomial kernel features the highest Box Con-
straint value (98.4047), signifying a strong focus on mini-
mizing training errors, which could lead to overfitting. The
minimal Epsilon value of 0.0379 further supports this, as the
model prioritizes minimizing even minor prediction errors.
The Kernel Scale of 2.2380 is similar to the Gaussian kernel,
enabling it to capture non-linear patterns effectively. With
an MSE of 0.0016, the polynomial kernel demonstrates good
performance but does not surpass the Gaussian kernel in
terms of accuracy. The high Box Constraint suggests that
the polynomial kernel might prioritize error minimization at
the expense of flexibility.

Overall, the Gaussian kernel strikes the best balance
between model complexity and prediction accuracy, making

it the most suitable choice for the given dataset.

4.3.3. SVM models

The MSE results show that the Gaussian kernel yielded
the lowest error in both optimization algorithms, demon-
strating its effectiveness at capturing the underlying patterns
in the data. This is why it performed better than the linear
and polynomial kernels in your optimization results(®). The
Gaussian kernel’s ability to transform the input data into a
higher-dimensional feature space, while being computation-
ally efficient, makes it often the best-performing choice in
scenarios where the relationship between features is complex
and non-linear for NDT and DT *1. The Gaussian kernel,
also known as the Radial Basis Function (RBF) kernel, is
often preferred over other kernels like linear or polynomial in
Support Vector Machine (SVM) models for several reasons:

* Non-linearity Handling: The Gaussian kernel is partic-
ularly effective in dealing with non-linear relationships
between the features. Unlike the linear kernel, which as-
sumes a linear relationship, the Gaussian kernel can model
complex data distributions and capture non-linear patterns
by projecting the data into a higher-dimensional space 1.

* Smoothness and Flexibility: The Gaussian kernel is very
smooth, meaning it can adapt well to small changes in the
data. The kernel scale (o) controls how much influence
a single data point has, giving flexibility to the model to
adapt to complex decision boundaries >

* Generalization Capability: Gaussian kernels usually pro-
vide better generalization in many real-world problems
compared to polynomial or linear kernels. It balances
complexity and generalization, avoiding overfitting while
capturing essential patterns in the data®%).

» Lower Sensitivity to Overfitting: The polynomial ker-
nel, when set to higher degrees, may lead to overfitting,
particularly with small datasets or noisy data. The Gaus-
sian kernel, however, tends to be more robust, controlling
overfitting by appropriately selecting the kernel width (o)
through optimization techniques like Bayesian or genetic
algorithms 'l

+ Wider Applicability: In practice, the Gaussian kernel has
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been empirically shown to work well for a variety of
problems, making it a more versatile choice for a wide
range of datasets!].

4.3.4. Validation and Comparisons of Models

The predictions of model regression analysis, ANN
model, and SVM models—basic SVM (without optimiza-
tion), SVM with Bayesian Optimization, and SVM with Ge-

netic Algorithm (GA) Optimization—are made using testing
data that was not used in model generation. Thirty percent
(119 samples) of the total dataset were used for model valida-
tion. Statistical parameters, such as MSE, RMSE, and MAPE
(%), were used as validation parameters, as shown in Table
4. The comparison highlights the improvement in accuracy
and reduction in error achieved through the application of

optimization techniques.

Table 4. Comparative analysis of various models.

S.No Type of Model MSE RMSE MAE R?

1. SVM without optimization 0.0035 0.0587 0.0452 0.952
2. SVM with Bayesian Optimization 0.0017 0.0412 0.0310 0.987
3. SVM with Genetic Algorithm optimization 0.0032 0.0567 0.0402 0.959
4. ANN Model 0.0220 0.469 0.206 0.970
5. Regression 2.9000 1.70 4.70 0.850

GA Optimization also improves the model’s perfor-
mance, but not as substantially as Bayesian Optimization. The
MSE is reduced to 0.0032, slightly better than the basic SVM
model. The RMSE decreases to 0.0567, and the MAE drops
to 0.0402, showing some improvement in prediction accuracy.
However, the R? value falls slightly to 0.9514, indicating a
marginally weaker ability to explain the variance in the data.

While GA optimization provides benefits, its performance is

less remarkable than that of Bayesian Optimization. The com-
parison also includes the relationship between predicted and
actual compressive strength values, as illustrated in Figure
4 (a, b, and c¢) for linear, Gaussian, and polynomial kernels.
These figures highlight that the Gaussian kernel with Bayesian
Optimization achieves the best results. The Gaussian kernel’s
ability to model non-linear relationships between NDT and

DT parameters, such as age, makes it particularly effective.
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Figure 4. Graphical Representation of Predicated V/S Actual Value of Compressive strength. (a) SVM without optimization; (b) SVM
with Bayesian Optimization; (¢) SVM with Genetic Algorithm optimization.

Overall, Bayesian Optimization emerges as the most
effective method for improving SVM model performance,
particularly with the Gaussian kernel for non-linear data rela-
tionships. Bayesian Optimization is generally preferred over
Genetic Algorithms (GA) for hyperparameters tuning in com-
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putationally expensive models like SVMs. It is faster, more
sample-efficient, and better at handling noisy and expensive-
to-evaluate functions due to its probabilistic modeling ap-
proach. Bayesian Optimization also excels at global opti-

mization and targeted exploration of hyperparameters, while
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GA often requires more evaluations and can get stuck in local
optima.

Checking the statistical significance was done using
a t-test, and the parameters of the test are given in Table
5. To evaluate the statistical reliability of predictions from
different regression algorithms, a paired t-test was conducted
comparing the predicted values against the actual test set
values for each model. The results are summarized in the
table, focusing on p-values, t-statistics, and 95% confidence
intervals for the mean difference.

Bayesian Optimized SVR: The Bayesian Optimization-
based SVR achieved a p-value of 0.8331 and a t-statistic
of -0.2110, with a confidence interval of [0.0011 to 0.0231].
Since the p-value is greater than 0.05, we fail to reject the
null hypothesis, indicating that there is no statistically signifi-
cant difference between the predicted and actual values. This
suggests that the Bayesian-optimized SVR model generalizes
well and produces highly reliable predictions that align closely
with ground truth values.

GA Optimized SVR: The GA (Genetic Algorithm)
optimized SVR model shows a p-value of 0.03159 and a
t-statistic of 2.2092, with a confidence interval that crosses
zero (-0.0088 to 0.0071). Here, the p-value is less than 0.05,
indicating that we reject the null hypothesis and conclude

that there is a statistically significant difference between
the predicted and actual values. Although GA improves
performance over unoptimized models in many cases, this
result implies that its optimization may not have been ro-
bust enough to yield reliable generalization on unseen data,
possibly due to overfitting or local minima.

Standard (Unoptimized) SVM: The standard SVM
(without any hyperparameter tuning) yielded a p-value of
0.5487, indicating no significant difference between pre-
dicted and actual outputs. While this is a positive sign of gen-
eralizability, the relatively high confidence interval spread
suggests moderate prediction accuracy, but less consistency
compared to Bayesian-optimized SVR. It indicates that even
without tuning, SVM performs reasonably well, though not
at its optimal capability.

Artificial Neural Network (ANN): The ANN model
produced a p-value of 0.0185 and a ¢-statistic of 2.3885, with
a confidence interval of [0.0017 to 0.0181]. These results
clearly show a statistically significant difference between pre-
dicted and actual values, suggesting the model, despite being
powerful and flexible, likely overfitted to the training data or
was not tuned optimally for the regression task. This high-
lights the importance of regularization and careful validation

when using neural networks for small or structured datasets.

Table S. Statistical significance of various models.

S.No Algorithm p-Value t-Statistic 95% Confidence Interval
1 SVM with GA optimization 0.03159 2.2092 [-0.0088 to 0.0071]

2 SVM with Bayesian Optimization 0.8331 -0.2110 [0.0011 to 0.0231]

3 SVM without optimization 0.5487 0.6016 [-0.0080 to 0.0149]

4 ANN 0.01850 2.3885 [0.0017 to 0.0181]

4.4. Discussion for Comparisons of Models

In developed countries like those in Europe, America,
and Japan, the focus of construction has shifted from build-
ing new high-rise structures to maintaining and repairing
existing ones. The rising costs from the deterioration of con-
crete structures have highlighted the importance of durability
as a key quality indicator. As a result, NDT techniques are
increasingly used to assess the condition and compressive
strength of concrete.

Existing studies have revealed a significant need to pre-
pare a practical and representative dataset of existing struc-
tures 331, It involved the mixing of laboratory data with the

field data set for accurate prediction. It should be prepared by

a proper concrete mix design of various grades of concrete in
the laboratory with different curing ages and other field data
exposed under environmental conditions that the structure had
undergone in due course of time. Experimental samples of
various grades of concrete (M10 to M40) were prepared in
the laboratory, considering 14-day and 28-day periods. Field
samples were collected from a 20 years old structure. In the
laboratory, a total of 126 standard cubes (18 of each grade)
were prepared as a sample. Other 231 samples were collected
from the field. The sample was collected from a 20-year-old
structure, where the first NDT was performed, and then DT
was carried out over it. The prediction of concrete compres-
sive strength using NDT will be enhanced under a practical

data set with the help of machine learning algorithms (MLAs)
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such as ANN and SVM. Therefore, the integrated approach
of MLA and a practical approach have given a cost-effective
solution to the complex problem.

SVM is gaining more popularity among the researched
due to less dataset and high accuracy is required. This study
explores the SVR with different optimized models such as
GA and Bayesian models. When we compare the available
data and model generation, it has been found that for less
number of dataset, SVM is more effective compared to the
ANN model. This result might change when more datasets
with complex situations are taken into account.

The SVM with Bayesian Optimization model has
proved to be efficient compared to other models. The ANN
model can be effective if the dataset is large, but at present,
the SVM has proved to be better among them. The statistical
tests are performed on SVM with Bayesian Optimization
model in order to check the significance of the model. The
statistical analysis conducted to evaluate the performance of
the prediction model reveals that there is no significant differ-
ence between the predicted and actual values of compressive
strength. A paired ¢-test yielded a p-value of 0.83331, which
is substantially higher than the conventional significance
level of 0.05. This high p-value leads to a failure to reject
the null hypothesis, indicating that the observed differences

dom variation rather than any systematic error in the model.

The t-statistic value of -0.2110 is very close to zero,
which suggests that the mean difference between the two sets
of values is minimal. Moreover, the 95% confidence inter-
val for the mean difference ranges from -0.0088 to 0.0071,
which includes zero. This further supports the conclusion
that there is no statistically significant bias in the model’s
predictions.

These results demonstrate that the prediction model is
performing well and is capable of generating values that
are statistically consistent with the actual measurements.
The lack of a significant difference indicates that the model
has good predictive reliability for the considered data sam-
ple. However, it is important to note that statistical non-
significance does not imply that the model is perfect; instead,
it suggests that within the current sample, the errors are not
systematically large or directional.

To gain a more nuanced understanding of model per-
formance, graphical tools such as residual plots (Figure 5)
or error histograms (Figure 6) can be utilized. These visual
diagnostics may reveal patterns such as heteroscedasticity or
skewness in the error terms that are not captured by statistical
tests alone. Additionally, further validation with independent

datasets would enhance confidence in the model’s generaliz-

between the predicted and actual values are likely due to ran- ability.
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The t-test effectively highlights not only numerical per-
formance but also the statistical reliability of model predic-
tions, adding depth to the model selection process. Bayesian
SVR outperformed all other approaches in terms of statis-
tical closeness to actual values, then ANN and GA-based
SVR exhibited statistically significant differences, indicating
prediction deviations and potential overfitting. Unoptimized
SVM maintained moderate performance and acceptable gen-
eralization, making it a stable baseline.

While promising, the study is limited by the relatively
small dataset of 357 samples. Expanding the dataset and
incorporating advanced techniques in future research will
further enhance the predictive accuracy and practical applica-
bility of these models for evaluating concrete structures. The
following are limitations and suggestions for future work:

Data Availability: The limited dataset used for model
training and validation may have introduced biases, which
could potentially impact the reliability of the results. Future
studies should aim to collect more diverse datasets, encom-
passing a wide range of concrete grades, ages, and environ-
mental conditions.

Field Variability: Variations in site conditions, such as
surface orientation (vertical or horizontal), moisture content,
and testing instrument accuracy, may affect NDT measure-
ments and, consequently, the prediction accuracy. These
factors should be standardized or explicitly accounted for in

future models.

Model Complexity: ANN models, while accurate, can
be computationally intensive and may require parameter tun-
ing for optimal performance. This increases the complexity
of their application in real-world scenarios compared to re-
gression models. The incorporation of future Optimization
algorithms, such as the Whale Optimization Algorithm and
the Gray Wolf Optimization Algorithm, could be employed
to fine-tune model parameters.

Integration of Hybrid Models: Hybrid approaches
combining regression, ANN, and heuristic optimization
techniques can provide a balanced solution, leveraging the
strengths of each method.

Sensitivity Analysis: Future studies should perform
sensitivity analyses to identify the most influential factors
affecting compressive strength prediction and refine the mod-
els accordingly.

Real-Time Applications: Incorporating real-time
NDT data collection and model predictions into construction
monitoring systems could provide on-site assessments of
structural integrity.

While this study underscores the potential of ML in ac-
curately predicting concrete compressive strength, its success
hinges on the availability of extensive and diverse datasets.
Expanding the dataset, addressing field variability, and lever-
aging advanced computational methods will pave the way
for more reliable and practical predictive models. Future

work should focus on these aspects to establish a standard-
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ized methodology for compressive strength prediction in

structural engineering.

5. Conclusion

These results are based on the available data and the
best of our knowledge by exploring the relationship between
NDT and DT. There were 357 samples of concrete specimens
with various mix proportion designs and curing age,s along
with onsite data collection and preparation in the Lab. These
were used to explore the complex behaviour. The following

Conclusion can be drawn:

1. SVM is more suitable when the dataset is small. These re-
sults can be changed when more complexities and higher
datasets are compared to ANN and other models.

2. The prediction accuracy will depend upon the type of
model used and the optimization techniques used to de-
termine it.

3. The Gaussian non-linear kernel function is suitable for
optimization techniques such as Bayesian and Genetic Al-
gorithms, compared Linear and polynomial kernel func-
tions. In both algorithms, the MSE is minimum, making
it both efficient and effective (0.0013271). Other param-
eters, such as Box Constraint values, Epsilon, and Kernel
Scale values, also support the result.

4. Bayesian Optimization with Gaussian non-linear kernel
function provides the most significant improvement in

model performance compared to other models.
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