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ABSTRACT

The advent of low-carbon construction has made geopolymer concrete (GPC) a sustainable material for
construction. However, the supply uncertainty of the raw materials needed for GPC production makes this a challenge.
This research aims to develop and design an integrated digital twin-reinforcement learning framework for optimizing
geopolymer concrete production processes. The problem statement concerns the uncertainty involved when producing
geopolymer concrete. This paper focuses on building a digital twin structure for optimizing the geopolymer concrete
process. The authors also designed a reinforcement learning framework for optimizing the geopolymer concrete
production process. The objective is achieved since the digital twin is a computer representation of a production
environment. The computer simulation will utilize reinforcement learning. This will ensure that the production is done

at a lower cost. Additionally, the digital twin can predict the supply uncertainty. The computer simulation will determine
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the supply uncertainty level. Performance was evaluated for three supply conditions: stable, with a moderate and severe

level of variability, based on a set of indicators: throughput, downtime, energy consumption, CO, emission, and quality

variability. In all cases, it has been shown that the Digital Twin—Reinforcement Learning (DT—RL) approach results

in a considerable improvement of production resilience and sustainability performance by as much as 22% relative to

downtime performance, as well as saving 13% of energy and a decrease of CO, emission by as much as 15% relative to

static planning. Additionally, a strongly negative correlation between resilience and quality variability of manufactured

products was shown to exist. This research shows that applying digital intelligence to green material production leads to

an improvement in efficiency and green performance.

Keywords: Geopolymer Concrete; Digital Twin; Reinforcement Learning; Operational Resilience; Supply Variability;

Sustainability

1. Introduction

The construction sector is presently facing growing
demands for decarbonization, resource minimization, and
the implementation of the concept of a circular economy in
material systems !, In fact, the production of cement con-
tributes about 8% to the total CO, emissions in the world,
making this industrial sector one of the major CO, emitters
in the world "', Therefore, geopolymer concrete (GPC), as
a low-carbon concrete alternative to Ordinary Portland Ce-
ment (OPC), has been widely researched in recent years,
in which industrial waste materials like fly ash, ground
granulated blast furnace slag (GGBS), and silica fume are
mainly employed as binders . These binders not only help
in the reduction of CO, emissions during the construction
sector, thereby decarbonizing this industry, but also help in
the valorization of waste, according to the principles of a
circular economy.

Although geopolymer concrete has been shown to
have many benefits to the environment, large-scale produc-
tion of this type of concrete faces operational challenges to
a large extent, depending on the variability of raw materi-
als. Supplies of key raw materials, such as fly ash and slag,
are dependent on the operational rates of power and steel
production units **'. By their nature, geopolymer concretes
are not like OPC, which has a vertically integrated supply
chain that is stable. Instead, geopolymer concretes rely on
a type of industrial symbiosis, in which the supply of sec-
ondary raw materials faces challenges of variability and
a certain degree of unpredictability. This has continued to
pose a problem to geopolymer concrete production, which

has had to resort to reactive planning to ensure continuity

of production, much to the effect that scalability has been
limited. For production managers, geopolymer concretes
have continued to pose a problem, especially considering
that this type of concrete lacks a certain degree of scalabil-
ity that, to a large extent, has been limited by operational
challenges.

In the current state of the literature, most work on
geopolymer concrete relates to the use of chemical anal-
ysis, work of strength, and the work of durability . Ad-
ditionally, the work of strength and the use of activation
factors have positive effects on work of strength, heat
resistance, and sustainability in the manufacturing of geo-
polymer concrete . However, little work has benn done
within the field of geopolymer concrete manufacturing,
particularly in relation to operational resilience in manu-
facturing plants in the face of material supply uncertain-

ties. As Ataburo et al. ™ and Essuman et al. ['”

explain,
operational resilience is the ability of a manufacturing sys-
tem to continue functioning in the face of disruption in the
current manufacturing context, the least explored area.

In this regard, the emergence of digital twin technol-
ogy and artificial intelligence in manufacturing provides a
promising solution for overcoming production uncertain-
ties. A digital twin refers to a computer model created from
real-time data that precisely mimics a physical system. By
leveraging such technology and using simulation-based
optimization and predictive control, numerous researchers
and scientists are now capable of optimizing production
processes remotely and with a high degree of control """
By combining such technology with reinforcement learn-
ing, a type of machine learning known as a “reward-based”

approach to developing adaptive and policy-based deci-
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sions based on iterations and feedback, digital twins are
now capable of self-optimizing scheduling and resource al-

(%31 These technologies are also proven effective

location
in this area for production sites such as steel production
and cement manufacturing. Nevertheless, the application
of such technology with a batch-based production system,
such as geopolymer concrete production, is untried.

Moreover, recent studies in sustainability-focused
operations management have emphasized the relationship
between process flexibility, efficiency, and environment .
This is because a resilient system continuously functions in
a steady state environment. As such, there is reduced wast-
age of energy, reduced emissions resulting from idling re-
sources, and sufficient quality production. The connection
between environment and operation resilience has yet to
receive proper quantification using empirical work despite
various conceptual studies """

The approach intertwines real-time data acquisition
for the IoT, discrete-event simulation, and reinforcement
learning optimization to dynamically optimize production
schedules and cope with disturbances. By accomplishing,
this research makes three contributions to current litera-
ture. First, it brings an operations management outlook on
geopolymer studies, surpassing research on material prop-
erties and turning to processes instead. Second, it forges
and tests a reinforcement learning algorithm for adaptive
production scheduling through the enabler of digital twins
to optimize production viability despite supply chain un-
certainties. Lastly, it formulates a correlation between op-
erational resilience indicators like production downtime
and throughput variability and sustainable performance
indicators such as energy consumption, CO, emission, and
quality variability.

With a view to filling this identified research gap,
this work attempted to explore the potential of digital
twin-enabled reinforcement learning to optimize opera-
tional resilience during the production of geopolymer con-
crete under raw material supply uncertainty conditions.
The technical objectives of this work are to: (i) conceptual-
ize a digital twin representation of a geopolymer concrete
production process to reflect real-time changes to uncer-
tainty; (ii) develop an adaptive scheduling strategy using
reinforcement learning to offset raw material supply un-

certainty; (iii) analyze sensitivities of adaptive scheduling

to operational resilience indices of production downtimes
and throughput variability; and (iv) investigate relation-
ships for interdependencies of operational resilience with
sustainability performance measures of energy used, CO,
emissions, and product quality variability.

Though reinforcement learning techniques have al-
ready been successfully applied in steel production and
Portland cement production, the type of processes in the
system described are of completely different natures. Geo-
polymer concrete production is based on random industri-
ally governed waste materials with stochastic variability
in the supply that cannot be handled in the models of re-
inforcement learning developed for continuous processes.
The work is the continuation of the previous research on

the application of reinforcement learning in manufacturing.

2. Literature Review

The development of geopolymer concrete as an
alternative to OPC can be attributed to its lower carbon
emissions and ability to work well with various by-prod-
ucts such as fly ash, GGBS, and silica fumes generated by
industries. Some of the earliest work by Madirisha et al. '
and Wang et al. "’ gave insights into the chemical aspects
of geopolymer concreted detailing enhanced compressive
strength, durability, and thermal resistance. Further work

' and Shakirova et al. ®" focused

conducted by Li et al.
on geopolymerized mixes comprising by-product materi-
als for reducing landfilling impact and reducing embodied
energies for construction materials. Yet, despite all this
development implemented in geopolymerized mixes, the
source of raw industrial by-products for their production
varies based on production cycles for parent industries
such as thermal power plants and steel production plants.

This implies that various researchers such as El-Wafa *

1 hoted that fluctuations in

and Fernandez-Jiménez et al.
the frequency of fly ash availability have had significant
impacts on mixes composition. Indeed, despite various
developments in activating mixes composition and curing
processes for geopolymerized mixes, there have been less
studies focused on rectifying production system behaviour
to adapt to mixes composition production fluctuations.
This development poses one of the largest gaps for further

exploring production system models aligned to a resilience
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framework for geopolymer mixes production.

The variations in the supply of raw materials were
also deemed a major issue with regard to the application
of geopolymer concrete. As stated by Antoni et al. ¥, the
variations measured in terms of either the amount or mesh
size of the fly ash and slag weaken the sustainability of
the material production process because they compromise
the continuity with regard to production. As illustrated by
Danish et al. ), the seasonal variation with regard to in-
dustrial waste supply within the area ensures that the sup-
ply is not streamlined, and therefore, this leads to a disrupt-
ed production flow. In traditional cement production, such
variations would be manageable using buffer inventory
models and variation among suppliers '*!. In this case, since
the production process relies on industrial symbiosis, this
redundancy is not a factor. A study carried out by Assi et
al. ® illustrated that not only is this issue with variations
a factor with respect to cost with regard to the production
process, but also variations with regard to the reliability of
the contractor with regard to mega structural building with
geopolymer concrete.

Operational resilience is the capability of an orga-
nization in detecting, tolerating, and recover from distur-
bances while still maintaining acceptable system perfor-
mance. Essuman et al. """ and Birkie *” explained that
resilience has been defined as a strategic skill and also an
operationally measurable outcome of redundancy, mallea-
bility, and learning. In manufacturing studies, the applica-
tion of resilience has historically been demonstrated using
alternativerouting and buffered staffing **. Recently, the
thrust of research has focused on the role of digital intelli-
gence and data-driven analytical approaches in modifying
the application of traditional buffering, as argued in the
studies of Ajayi et al. "' and Zamani et al. *”. Finally, in
the geopolymer concrete-making process, the application
of operational resilience can be considered the malleability
of the batching, mixing, and curing processes in adjusting
the timings and parameters when there are varying mate-
rial supplies on hand. Forecast models for the application
of process-level-resilient geopolymer concrete production
are, however, a very limited field of research in the exist-
ing studies that focus on geopolymer concrete production.

The digital twin (DT) technology, which involves a

real-time digital model of a physical process or system, has

become prominent in the manufacturing industry as a plat-
form for simulations, monitoring, and control. However,
the application of digital twins by Grieves " first emerged
as a platform that can harmonize digital and physical pro-
cess operations in the pursuit of continuous improvements.
More recent definitions by Kadam et al. ®'" and Atalay
et al. ®* brought the digital twin concept to the context
of Industry 4.0 and identified the technology as one that
supports the integration of the Internet of Things (IoT),
Artificial Intelligence (Al), and Big Data analytics. More
current applications of digital twins in the manufacturing
of construction materials include process simulation, mon-
itoring of machine health, and prediction of machine main-
tenance ””. However, in the area of adaptive scheduling
and resilience improvements, particularly in the context of
waste-dependent systems, the digital twin technology finds
untapped territory. There exist DT applications in process
optimization in the area of metal forming by Marczyk et
al. ¥ and in additive manufacturing by Roussel et al. !,
Nevertheless, similar uses in concrete or geopolymer man-
ufacturing are still uncommon.

Another machine learning sub-field, reinforcement
learning, also has promising capabilities for the solution of
dynamic optimization problems with stochastic uncertain-
ties. According to Zamani et al. | reinforcement learning
algorithms try to steer an optimal decision-making process
via learning with interactions in the environment with the
help of trial and error. In the field of manufacturing sci-
ence, reinforcement learning algorithms are already used
for optimization problems of scheduling, energy optimiza-
tion, and fault detection. The introduction of reinforcement
learning algorithms into digital twin technologies adds a
closed-loop learning process into the simulation. The ob-
tained data further optimizes decision-making policies
related to the simulation results. Although reinforcement
learning algorithms were also proposed for intelligent
manufacturing and logistics systems !, they were neither
used for simulation studies on the stochastic material sup-
ply during geopolymer concrete production.

The factors for achieving sustainability in geopoly-
mer concrete production are CO, emission reduction,
energy efficiency, and waste material reuse. Research un-

[36]

dertaken by Neupane "* and Sorathiya et al. *”, has found

that geopolymer concrete production results in an average
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of CO, emission reduction of up to 80% compared to OPC
concrete. Nonetheless, CO, emission performance may
be compromised by operational instability, as unplanned
shutdowns and poorly executed batch changes raise specif-
ic energy consumption per unit of production, effectively
counteracting any positive effect on a specific environment
B8 Circular economy studies have also shown that materi-
al performance and process efficiency need to be integrat-
ed to make production sustainable *”. This research pro-
posal bridges optimization and environmental performance
metrics, including energy intensity and carbon footprint, to
position geopolymer concrete production in the triple bot-
tom line approach, where operational efficiency positively

impacts the environment and economy.

2.1.Research Gap

However, the current body of literature concerning
geopolymer concrete mostly revolves around chemical and
mechanical issues, to the extent that the use of the technol-
ogy of operational resilience or digital twins, in the area
of manufacturing, has not been fully explored. The three
areas, therefore, in which there seems to be a gap in the
existing body of literature, and that could be addressed in
the proposed study, include, to begin with, the lack of op-
erational methodologies in geopolymer concretes concern-
ing the need to adapt to the variability of the raw materials
used in the process. The second area, in turn, involves the
lack of utilization of the digital twin technology and Al-
based reinforcement learning to optimize schedules in
waste-based manufacturing systems. The third area, finally,
involves the lack of study in the current body of literature
on the role of improvements in operational resilience and
sustainability performance, in terms of the use of energy,

the level of CO,, and the stability of the quality process.

2.2.Conceptual Positioning of the Present
Study & Hypothesis Development

The conceptual framework of the research study
(Figure 1) portrayed the interdependence between raw
material supply variability, digital optimization techniques,
and operational and sustainability performance aspects
within geopolymer concrete production. This framework

was based on systems theory and operational resilience.

The systems theory highlighted the ability of a produc-
tion system to react and recover when supply varies. The
framework also showed that raw material supply variation
due to unpredictable availability of fly ash, GGBS, and
slag was the variable that affected a stable production pro-
cess. The digital twin technology with IoT data acquisition
capabilities served as the adaptive solution that simulated
the actual production line. Additionally, it processed pro-
duction data and simulated disruptions. This framework
consisted of a reinforcement learning algorithm that served
as an intelligent component and made decisions on sched-
uling and resource allocation based on continuous learn-
ing.

On the basis of the theoretical framework developed
for this research using the underlying literature on the geo-
polymer concrete manufacturing process, supply chain re-
silience, and the optimization of manufacturing using the
digital twin approach, the following hypotheses were de-
veloped for carrying out the analysis. The hypotheses were
developed on the basis of the range of gaps identified in
the existing literature on the subject, which mainly relied
on the chemical and mechanical performance aspects of
the geopolymer concrete material. The hypotheses devel-

oped for this analysis address the objective of this research.

H1. Adaptive scheduling driven by reinforcement learning
and digital twin integration significantly reduced produc-
tion downtime under conditions of raw-material supply

variability compared to static scheduling approaches.

H2. Operational resilience improvements achieved through
digital twin—enabled adaptive scheduling were positively
correlated with the stability of product quality, measured
through the coefficient of variation (CV%) in compressive

strength.

H3. The implementation of reinforcement learning—based
optimization models led to a statistically significant reduc-
tion in energy consumption and CO, emissions per unit of

geopolymer concrete produced.

H4. The magnitude of raw-material supply variability had
a significant moderating effect on the performance gains
achieved through digital twin—enabled adaptive schedul-
ing.

In the above paradigm, the mediating variable was
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operational resilience, which was exemplified by enhance-
ments in the areas of downtime, stability of throughput,
and process recovery time. The enhanced resilience was
supposed to directly impact the results, which were the
dependent variables, namely product quality, energy, and
emission of CO,. Therefore, the paradigm assumed the ex-
istence of a cause-and-effect chain in which the digital ad-
aptation of volatile market requirements led to stable pro-
duction performance. It was assumed in the paradigm that
the higher the level of digital integration of the plants, the
more benefits could be derived from the adaptive schedul-

ing paradigm.

e B
Raw-Material Supply
Variability
b 7
o \
Digital Twin + loT
Integration
- g/
, l \
Reinforcement Learning
Optimization

o |

Operational Resilience
(downtime reduc, stability)

4

y

14 I

Sustainability Outcomes
(energy efficiency, low CO,)

J

Figure 1. Conceptual Model of the Study.

Source: Author.

3. Methodology

3.1. Research Design

The research utilized a convergent explanatory de-

greater operational insights. The research methodology
incorporated both exploratory and analytical approaches.
The research design included a framework comprising
three sequential phases. The initial phase involved the de-
velopment of a digital twin (DT) simulation model char-
acterizing the operational processes underlying a medi-
um-scale geopolymer concrete manufacturing facility. The
simulation included the prime operational procedures such
as reception of raw material inputs, batching, mixing, cur-
ing, and quality testing. The simulation enabled operation-
al research on the manufacturing process. The subsequent
simulation phase included a set of discrete-event simula-
tion experiments under different uncertainty scenarios. The
operational disruptions incurred due to supply uncertainty
involved the simulated list of major industrial waste sourc-
es. These included fly ash, ground granulated blast furnace
slag (GGBS), and metallurgical slag. The third sequential
phase included a reinforcement learning strategy involving
a simulation approach based on the Q-learning algorithm.
The reinforcement learning strategy enabled optimization
of operational decisions on scheduling and raw material al-

location.

3.2.Data Collection

The data collection process in this study was con-
ducted using a combination of primary and secondary data.
Primary data were obtained from three ready mix concrete
plants in Jordan that were producing low-carbon geo-
polymer concrete. These plants enabled the collection of
real-time data using the Internet of Things sensor technol-
ogy integrated into batching systems, mixers, and curing
chambers. The programmable logic controller records were
tapped to extract data on the real-time fluctuations in the
usage and batching cycle. The operators’ records were used
to extract data on delays, machine breakdowns, and mate-
rial shortages. The data was complemented by the second-
ary data collected from the procurement and quality files
for the two years’ historical material supplies data, data
on the compressive strengths obtained from the laboratory
tests, and the CO, emissions estimates. A data analysis was
conducted for a total of 90 cycles to ensure a representa-

tive and sound data pool. These were equally spaced in the

sign involving a combination of simulation results for three different plants.
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3.3. Population and Sample

The population of interest targeted was all opera-
tional geopolymer concrete plants within Jordan that were
using industrial by-products in their raw materials. Based
on industry records kept by the Jordan Cement Producers’
Association (JCPA) industry database, Several geopoly-
mer concrete plants are in operation within Jordan (though
an exact number is not published) during the period of
2022-2024. The sampling frame was constructed by in-
cluding plants that met three essential criteria: active use
of geopolymer technology for at least 30 percent of total
output, integration of IoT or PLC-based digital monitoring
systems, and documented experience of at least one signif-
icant raw-material supply disruption. To ensure represen-
tativeness, a stratified random sampling approach was fol-
lowed. Plants were stratified based on production capacity
as small (<100 m*/day), medium (100-300 m’/day), and
large (>300 m’/day). One representative plant from each
stratum was selected. This ensured diversity across opera-
tional scales, technological maturity, and regional sourcing
conditions.

An approach involving three case studies of geo-
polymer concrete production plants in Jordan is selected

for the study because of the theoretical reproduction logic

that allows each study to provide an operational setting for
testing the applicability of the proposed framework involv-
ing the digital twin approach in conjunction with reinforce-
ment learning algorithms for its application in the produc-
tion plants of interest. Due to the complexity involved in
applying the proposed approach, using a number of plants

selected in a study appears methodologically correct.

3.4. Description of Population

The attributes of the selected plants are presented in
Table 1. Since each facility had differences in the scales of
operation, the composition of the waste materials, and the
degree of digitalization, the SVI is determined by the ratio
of the standard deviation to the mean delivery rate of the

raw materials.

3.5. Summary of Main Variables

Operational and sustainability variables were consid-
ered in the research. The model consisted of raw-material
supply delay and composition ratio, and the dependent
variables included energy consumption, CO, emissions,
and the variance in the compressive strength. The study
further incorporated the mediators, downtime duration, and

the reinforcement learning schedule score (Table 2).

Table 1. Description of Population.

Production Capacity

Supply Variability

Plant Code Location (m/Day) Primary Waste Material  Digitalization Level Index*
P1 Amman 80 Fly Ash + GGBS Partial IoT Integration 0.42
P2 Zarqa 250 GGBS + Slag Full Digital Twin 0.36
P3 Aqaba 420 Fly Ash + Slag PLC + Sensor Network 0.51
Note: *Supply Variability Index = standard deviation of weekly raw-material delivery divided by mean delivery.
Table 2. Summary of Main Variables.
Variable Type Measurement Scale Source Purpose
Raw-material supply delay Independent Ratio (hours) Supplier logs ~ Represents supply disruption magnitude
Mix composition ratio (fly ash, GGBS, slag) Independent Ratio 10T batch data Captures material blend variability
Energy consumption Dependent Ratio (kWh/ton) Sensor data Measures operational efficiency
CO, footprint Dependent Ratio (kg CO,/ton)  Emission data Assesses sustainability outcome
Quality variance (compressive strength CV%) Dependent Ratio Lab tests Indicates production stability
Downtime duration Mediating Ratio (hours/cycle)  Operator logs Reflects operational resilience
RL scheduling score Control Index (0-1) Sir:;?fliton Indicates optimization effectiveness

Source: Author.
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3.6. Measures & Analytical Methods

All continuous variables were scaled to remove unit
bias. Energy consumption and emissions were expressed
for each cubic meter of concrete output. Coefficient of
Variation (CV%) of the Compressive Strength was used
as a measure of the quality consistency. A measure for the
level of resilience during operation was the “Resilience
Performance Index” (RPI) calculated on a comparison of
adaptive and base scenarios. RPI encompassed the notion
of maintaining quality and minimizing loss of down-time,
defined as RPI = Qi / Opne) * (1 = Dyu)(1 = Dy ),
where (Q) denotes retained quality and (D) represents
downtime. The higher the RPI value, the better the adap-
tive performance. The effectiveness of the reinforcement
learning model was assessed in terms of the convergence
of cumulative rewards for 5000 iterations of training. The
reliability of the data gathering tools was established using
Cronbach’s alpha test (o = 0.86), which ensured the tools
had internal consistency, and the construct validation of the
tools involved expert assessment from materials and oper-
ation experts.

The analysis process involved both statistical and
simulation techniques, as well as machine learning tech-
niques. Descriptive statistics techniques are used for the
summarization of central tendency and dispersion of im-
portant variables. The discrete-event simulation model de-
veloped three operational scenarios, namely stable supply,
moderate disruption, and severe disruption, for a 12-week
period in a production plan. The reinforcement learning
optimization technique was carried out using MATLAB
R2023b software, where a Q-learning agent adapted the
schedule policy based on the feedback of rewards for
throughput, energy consumption, and production delay.
Inferential analysis employed analysis of variance (ANO-
VA) to test significant differences in performance metrics
between static and adaptive scheduling strategies. Multi-
ple regression models were used to estimate the effect of
supply variability on energy consumption, CO, footprint,
and product quality. Sensitivity analysis for this case used
a scenario-based method with a focus on raw material sup-
ply scenarios, which are identified as being more signifi-
cant than other sources of uncertainty for the production of
geopolymer concrete. Three scenarios of supply variability

have been used for simulation within the digital twin envi-

ronment: stable supply scenario, moderate supply scenario,
and severe supply scenario. This method allows for analys-
ing sensitivity of outcomes to variations in supply without
necessarily carrying out exhaustive parametric analysis.
Whereas compressive strength is a key performance criteri-
on for geopolymer concrete, the scope of the current study
with respect to strength focused more on variability from
batch to batch rather than absolute values of compressive
strength itself. The Coefficient of Variation in Compressive
Strength (CV%) was thus used in this study as a criterion
for quality in terms of compressive strength in the face of

the uncertainties of the supply of raw materials.

4. Results

4.1. Descriptive Statistics of Collected Data

Descriptive statistical analysis was conducted to
establish a quantitative overview of the operational char-
acteristics of the three geopolymer concrete production fa-
cilities (P1, P2, and P3) that formed the study sample. The
objective of this preliminary evaluation was to establish
an empirical basis for any subsequent simulation and opti-
mization runs. The data was derived from a total of ninety
production runs, with thirty runs from each plant, to en-
sure that all possible operating conditions were captured,
regardless of the raw material supply scenario. The sets of
variables included raw material supply delay, raw material
composition ratio, energy use, CO, emissions, downtime,
and variation of compressive strength, measured by the co-
efficient of variation (CV%).

Among the plants, the differences in supply delays
were quite considerable. The average supply delay regis-
tered for the total cycle was 4.8 h with a standard deviation
of 1.9 h. The average energy consumption for the produc-
tion of one cubic meter of geopolymer concrete per cycle
was 42.3 kWh, and the average CO, footprint for the pro-
duction of one cubic meter of geopolymer concrete per cy-
cle was 29.5 kg. These parameters measured the base-case
environmental performance of the production systems.

Operational continuity likewise showed variation
across the facilities considered for sampling. Mean down-
time per production cycle stood at 3.6 h, with increased
downtime being recorded for facilities with regular in-

stances of raw material quality inconsistency. Compres-
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sive strength for the cured samples had an average CoV
of 6.2%, denoting medium variability in the quality of
produced samples from different production batches. This
variation formed the basis for the correlation study for

resilience of operations and stability of production in the

subsequent analysis. Table 3 provides a description of
the statistics for the core operational and environmental
factors considered in the study in their pre-adaptive opti-
mization implementation performance for the three pro-
duction facilities.

Table 3. Descriptive Statistics of Operational Variables (n = 90 production cycles).

Standard Deviation

Variable Mean (SD) Minimum Maximum Unit of Measurement
Raw-material supply delay 4.8 1.9 2.1 9.3 Hours
Energy consumption 423 5.1 36.4 54.2 kWh/m’
CO, footprint 29.5 3.8 25.0 36.9 kg/m’
Downtime duration 3.6 1.7 1.2 7.8 Hours
Compressive strength (CV%) 6.2 1.4 4.1 9.0 Percent

Source: Author.

The summary statistics showed that the data on the
use of energy and the release of CO, were moderately dis-
persed, indicating the differences in the operation of equip-
ment and the level of process integration at the different
plants. The high standard deviation of the supply delay
highlighted the influence of the irregular flow of waste in
the supply of the wastewater’s constituent materials, such
as fly ash and GGBS, which rely on the performance of the
thermal and steel sectors of the industries. Also, the vari-
ance of the down time in the production cycles highlighted
the vulnerability of the production line to scheduling in-

abilities during the shortage of supplies.

4.2.Reinforcement Learning Model Perfor-
mance

The reinforcement learning (RL) module incorporat-
ed within the digital twin framework was designed to opti-
mize production scheduling based on the dynamic changes
in the supply of raw materials. For the implementation of
the RL algorithm, the application of the Q-learning algo-

rithm was considered to enable the process to learn the

optimal production sequencing approach based on the re-
wards achieved. The major task of the RL algorithm was to
optimize the reduced production time of the product while
ensuring continuity of production based on the dynamic
supply of the raw material. During the process of training
the RL algorithm, the algorithm was trained using up to
5000 episodes per scenario.

The reward function was designed in a way that dis-
couraged idleness as well as over-scheduling, at the same
time promoting steady productivity as well as energy-effi-
cient functioning. Through a sequence of episodes, the cu-
mulative reward plot illustrated a converging trend, which
meant that the learning process had achieved optimal defi-
nition in adaptive scheduling policies. Subsequent to the
convergence of the given models, the optimized schedul-
ing policies were employed in the simulation environment
for the production system, based on the same three supply
conditions (stable, moderate, and severe). The comparison
result of the operational performance between the opti-
mized scheduling policies in the RL algorithm and tradi-

tional static scheduling is shown in Table 4 below.

Table 4. Reinforcement Learning Optimization Outcomes across Supply Scenarios.

Performance Metric

Static Scheduling

RL-Optimized Scheduling  Improvement (%)

Mean Downtime (hours per cycle) 3.6 2.8 222 |

Throughput (m*/day) 262 284 841

Average Cycle Completion Time (hours) 7.2 6.4 11.1]

Energy Consumption (kWh/m’) 423 39.8 591
Scheduling Efficiency Index (0-1) 0.74 0.87

Source: Author.
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From the results in Table 4, there is a quantifiable
operational advantage in the use of the reinforcement
learning-based adaptive scheduling method. The average
downtime per production cycle was reduced by 22.2%,
and the throughput was also raised by 8.4% compared to
the static scheduling method. The scheduling efficien-
cy index, a combination of throughput, delay, and idle
time, was also raised from 0.74 to 0.87, indicating that
the adaptability in the production sequencing process has
been improved. A one-way analysis of variance (ANOVA)
was used to confirm the difference in the level of down-
time attributed to the two scheduling systems. The results
of the ANOVA revealed that there was a significant effect
of the scheduling method on the reduction of downtime (F

= 5.91, p = 0.018), indicating that the production down-

time was significantly reduced by the use of the adaptive
scheduling method based on the reinforcement learning
algorithm compared to the static scheduling.

In Figure 2, the performance differences for the
downtime for the three supply variability conditions are
shown. For all three conditions, the scheduling using
optimization performed better than static scheduling.
The performance improvement was greatest for the sce-
nario with moderate variability. The model’s conver-
gence and performance improvement for all conditions
clearly supported hypothesis H1. The experiment clear-
ly showed the improvement in the operational level of
resilience using reinforcement learning and the digital
twin model to address uncertainties of the supply of raw

materials.

20

Downtime (75)

Stable

I Static Scheduling
==

Moderate

RL-Optimized Scheduling

Severe

Supply Scenario

Figure 2. Comparative Downtime across Static and R1-Optimized Scheduling Different Supply Scenarios.

Source: Author.

4.3. Operational Resilience—Quality Relation-
ship

Resilience Performance Index (RPI) was calculated
for each production cycle by combining the percentage en-
hancement in the production speed and the percentage dec-
rement in downtime compared to the baseline static sched-
uling. This index varies between 0.70 and 0.96 for the first
90 production cycles, and a greater value reflects better
adaptive performance for varying raw material conditions.

The per cent CV for the compressive strength varies be-

tween 4.1% and 9.0%, with lower numbers representing
greater homogeneity and quality. The bivariate correlation
analysis was applied to identify the level of correlation
between RPI and the variation associated with the com-
pressive strength. The correlation coefficient (r) between
the two parameters was calculated at —0.78. This marked
a strong negative correlation between the two parameters.
This implies that there was a remarkable decrease in the
variation associated with the compressive strength with the
enhancement in operational resilience. The correlation co-

efficient was statistically significant at a significance level
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of 0.01 (p = 0.002), which ensured that the correlation was
not a result of any chance variation. A further validation
analysis on the strength and nature of correlation was ap-
plied by a linear regression analysis based on the following

formula:
Y=a+pX+e

where Y is the compressive strength CV% (quality stabil-
ity indicator), and X is the Resilience Performance Index
(RPI). The result obtained from the regression analysis
yielded a value for the slope coefficient f as —5.72, which
means that for every 0.1 unit increase in RPI, the compres-
sive strength variation decreased by 0.57 percentage units.
The value of R* is 0.61, which means that 61% variation

in product quality stability could be attributed to variations

in the level of operational resilience in the organization.
These values are shown in Table 5 below, which displays
the results of the correlation and regression analyses.

In Figure 3, the scatter plot is shown, where RPI is
plotted against the compressive strength CV% in order to
emphasize the downward trend. Each point on the scatter
plot corresponds to a cycle, illustrating the cyclic nature in
which the resilience process has been inversely related to
the variation in quality. The slope of the line in the scatter
plot further supports the fact that there is a direct relation-
ship between the scores obtained in the resilience measure
and the variation in the mechanical properties of geopoly-

mer concrete.

Table 5. Relationship between Operational Resilience (RPI) and Product Quality Stability (CV%).

Statistical Parameter Value Interpretation
Correlation coefficient (r) —0.78 Strong negative correlation.
Coefficient of determination (R”) 0.61 61% variance explained.
Regression coefficient () =5.72 Higher resilience reduces quality variation.
Standard Error 1.12 Acceptable model fit.
Significance (p-value) 0.002 Statistically significant (p < 0.01).

Source: Author.

10

Compressive Strength Variation (CV%)

T
0.80
Resilience Performance Index {RPI)

0.

85 0.90 0.95 1.00

Figure 3. Scatter Plot of Resilience Performance Index (RPI) vs. Compressive Strength Variation (CV%).

Source: Author.

95



Journal of Building Material Science | Volume 08 | Issue 01 | March 2026

The uniformity of this observation for all three plants
indicated that the impact of adaptive operational control
did not merely improve the productivity and minimize
downtime but was also a factor in the uniformity of prod-
uct performance. The observation supported Hypothesis
H2 and indicated a positive relationship between opera-
tional resilience and the stability of quality for geopolymer

concrete processes.

4.4. Energy and CO, Performance Qutcomes

Data about energy consumption and emissions was
collected through the real-time loT-based monitoring of the
batching and curing systems, and these were also verified
using the results of the digital twin simulation. The values
of energy consumption were measured in kilowatt-hours
per cubic meter (kWh/m’), and the values of CO, emis-
sions were calculated in kilograms of CO, equivalent per

cubic meter (kg CO,/m’) by using the standard emission

conversion factor as proposed by the Bureau of Energy
Efficiency (BEE). The static and adaptive systems were
tested under three varieties of supply variability, namely
stable, moderate, and severe.

For all supply conditions, the scheduling model de-
veloped using reinforcement learning is proven to have
lower energy and CO, intensity than traditional scheduling.
With stable supplies, there is a reduction of 8.9% in total
energy consumption (from 41.2 kWh/m® to 37.5 kWh/m’)
and 10.2% in CO, emissions (from 28.6 kg/m’ to 25.7 kg/
m®). With moderate conditions of disruptions in supplies,
which are relatively more irregular than stable conditions,
there is a decrease of 13.5% in energy consumption and
15.1% in CO, emissions. With severe disruptions, which
have maximum irregularity in supplies, there is still a re-
duction of 7.8% in energy consumption and 9.6% in CO,
emissions. The results for all three conditions are presented
in Table 6.

Table 6. Sustainability Performance Indicators under Static and RL-Optimized Scheduling.

Supply Scenario Scheduling Type Energg{%}:}ﬁg‘ ption Re(zll/:;ion CO, Footprint (kg/m"®) Re(zzl/:;ion
Stable (SVI<0.3) Static 41.2 28.6
Stable (SVI < 0.3) Adaptive (RL) 375 89 25.7 102 |
Moderate (0.3 < SVI<0.5) Static 44.8 31.2
Moderate (0.3 <SVI<0.5)  Adaptive (RL) 38.7 135 26.5 15.1]
Severe (SVI > 0.5) Static 46.1 32.8
Severe (SVI > 0.5) Adaptive (RL) 42.5 7.8 1 29.7 9.6 |

Source: Author.

The statistical significance of the variations has been
analyzed using a paired-sample #-test for the difference
between the adaptive and static scheduling systems. The
t-test for the reduction in performance parameters showed
a statistically significant difference in the data,with a value
of t = 3.74 and a significance level of 0.006 for energy use
and # = 4.11 and 0.004 for the CO, release at a confidence
level of 0.95. These results proved the use of the adap-
tive scheduling system using the concept of reinforcement
learning for improved results in terms of reduced energy
intensity and CO, release per unit production. Further, the
joint analysis of the reduction in energy use and release in
different scenarios demonstrated that the values had a pos-
itive correlation coefficient of —0.69 and —0.72 for the RPI

value, respectively.

Thus, the results in this section empirically validated
Hypothesis Hs, indicating that the resilience and sustain-
ability improvements derived by the use of reinforcement
learning-based optimization in the digital twin environ-
ment were indeed significant to the energy efficiency and
sustainability of the geopolymer concrete production sys-

tems.

4.5. Moderating Effect of Supply Variability

The Supply Variability Index (SVI) was used as the
moderation variable and calculated using the ratio of the
standard deviation and the average of the raw materials for
each week. The independent variable used in the experi-

ment was the type of schedule (static and RL-optimized),
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and the dependent variable used was the Resilience Perfor-
mance Index (RPI), which took into account both normal-
ized throughput and down time. The data used a total of 90
simulated cycles of production under three supply scenar-
ios: stable, moderate, and severe supply conditions, ensur-
ing that there was sufficient data in each case. An Analysis
of Variance (ANOVA) test was conducted on the collected

data for both variables and the results presented in Table 7
shows a statistically significant interaction effect between
the type of schedule and the intensity of supply variation
on RPI (F = 4.23, p = 0.041), establishing that the RPI of
disturbance in raw materials affected the adaptation effec-
tiveness of the reinforcement learning algorithm in adapted
schedules.

Table 7. Moderating Effect of Supply Variability Intensity on Resilience Outcomes.

Supply Variability Level Mean RPI (Static Mean RPI (RL-Opti- Difference I
(SVI) Scheduling) mized Scheduling)  (ARPI) p-Value Significance
Low (SVI<0.3) 0.89 0.94 +0.05 0.062 Not significant
Moderate (0.3 < SVI<0.5) 0.81 0.92 +0.11 0.012 Significant
High (SVI>0.5) 0.74 0.80 +0.06 0.078 Marginally significant

Source: Author.

The findings showed that when the conditions for
moderate variability are considered, the resilience im-
provement is greatest for the reinforcement learning-based
scheduling approach, with a mean RPI that increased by
0.11 relative to the static scheduling approach (p = 0.012).
This implies that the RL agent worked best under con-
ditions that are neither too rare (low variability) nor too
random (high variability). As a matter of fact, under very
low variability conditions, a degree of resilience is already

maintained through the static scheduling approach, thus

0.96

limiting the relative advantage of control. At the other ex-
treme of very high variability, the limits to predictive con-
trol exerted a slight inhibiting effect on the resilience-en-
hancing potential of the learning approach. Figure 4
represents the interaction plot depicting the overall impact
of supply variability on the relationship between schedul-
ing approaches and resilience. Note that at moderate levels
of variability, the gradient of the line for the reinforcement
learning approach is steeper, reflecting a greater resil-

ience-enhancement potential relative to the static approach.

0.94

0.92

0.90

0.88

0.86

Performance index IPIX

0.84

0.82

0.70

P
et el

—&— Static Scheduling
—A— RL-Optimized Scheduling

Low

Moderate High

Supply Variability Index (SVI)

Figure 4. Interaction Plot Showing the Moderating Effect of Supply Variability on Operational Resilience.

Source: Author.

A regression-based moderation model was also em-
ployed to confirm the ANOVA findings, using the follow-
ing equation:

RPI = o + B, (Scheduling) + B, (Supply Variability) + p;
(Scheduling % Supply Variability)

The result showed that the interaction term was pos-
itive and significant (#; = 0.087, p = 0.038), which sup-
ported the existence of moderation. This result showed
that the gain in resilience resulting from the optimization

of RL was positively associated with moderate levels of
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supply disruption uncertainty; however, it became stable at
extremely high levels of disruption. The coefficient of de-
termination showed that the regression explained approx-
imately 67% of resilience variation. The results partially
supported Hypothesis H4. Although supply variation was
significant and positively associated with the results of
adaptive scheduling under moderate levels of disruption,
the moderation effect became stable at extremely high lev-
els. This result was anticipated since adaptive learning sys-
tems will be most effective when there is adequate yet not

excessive variation.

4.6. Summary of Hypothesis Testing

The findings proved the significance of adaptive
scheduling made possible by reinforcement learning in im-
proving operational performance relative to static schedul-
ing systems in terms of quality stability and sustainability
indicators. Moreover, the moderating effect of supply vari-
ability intensity was partially proved to affect the level of
improvement experienced to differ based on the intensity
of supply variability. The summary of the results of the sta-
tistics of the hypotheses is shown in Table 8.

Table 8. Summary of Hypothesis Testing Results.

Hyg(())t;l:sm Statement Statistical Test Used Key Statistic p-Value Result Conclusion

H1 Adaptive scheduling driven by reinforcement One-way ANOVA F=5091 0.018 Significant ~ Supported
learning and digital twin integration significantly
reduced production downtime under raw-material
supply variability.

H2 Operational resilience improvements achieved Correlation & Re- r=-0.78, 0.002 Significant ~ Supported
through digital twin—enabled adaptive scheduling gression R*=0.61
were positively correlated with product quality
stability (lower CV %,).

H3 Reinforcement learning—based optimization led to Paired r-test t =3.74 (Energy), 0.006, Significant ~ Supported
significant reductions in energy consumption and t=4.11 (CO,) 0.004
CO: emissions per unit of production.

H4 The magnitude of raw-material supply variability ~ Two-way ANOVA & F=4.23, 0.041, Partially Partially
significantly moderated the performance gains Regression Interac- £;=0.087 0.038 Significant  Supported

achieved through adaptive scheduling.

tion

Source: Author.

The overall results indicated the positive impact of
the integration of the digital twin and reinforcement learn-
ing on the operation performance, which fully or partially
justified the testing of three out of four research hypothe-
ses. The greatest degree of optimization could be achieved
in terms of decreased downtime, increased throughput, sta-
bilized quality, and reduced energy and carbon intensities.
On the other hand, the degree of supply variability had a

significant impact on adaptive systems.

5. Discussion

Findings from this research are in line with, and add
to, existing literature on digital transformation and resil-
ience in sustainable manufacturing of construction materi-
als. While existing research on geopolymer concretes has
traditionally been focused on their chemical, thermal, and
mechanical properties, such as mix designs, and optimiza-

tion of activators to attain a specific level of compressive

strength and engineering or application-related durability,
very less has been given to operational dynamics of man-
ufacturing systems, like geopolymer concretes, which are
very dependent on uncertain waste materials supply chains
749 This research bridged this research gap by bringing
together knowledge from operations management, Al, and
sustainable manufacturing, and putting geopolymer man-
ufacturing in the context of existing research on Industry
4.0-enabled CE manufacturing systems. This research
finds that to extend and modify a reinforcement learning
idea from process industries to geopolymer manufactur-
ing dependent on waste materials, operational resilience
Al models have to be adapted based on whether a specific
type of uncertainty, like that of material, dominates pro-
cess-related variability.

The application of digital twin technology in the pro-
duction system of materials aligns well with the views of

31)

Kadam et al. ®" and Atalay et al. **, who considered digi-

tal twins the backbone of achieving adaptive manufactur-
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ing systems. Digital twins are associated with the ability to
create a harmoniously synchronized virtual equivalent of
the production process. In this way, the technology allows
for the foresight of disruptions in the production process,
which can then dynamically alter the system parameters.
Such adaptive intelligence is especially valuable in pro-
duction sectors relating to the use of secondary industrial
waste products, including the use of fly ash and GGBS,
which are inherently dependent on the production systems
of the related industries.

Within the larger framework of operations research,
the application of reinforcement learning (RL) for opti-
mization can be parallelized with the assertion made by

21 on the ability of reinforcement

Recht """ and Carpenter
learning on learning a complex control policy. The pre-
vious applications quite specifically on steel production
and cement grinding processes, indicate the ability of
reinforcement learning on minimizing operational ineffi-
ciencies. This research framework applies the same prin-
ciples to the geopolymer concrete and will show how rein-
forcement learning can optimize production schedules on
adapting production flows autonomous on stochastic input
parameters. The application of Al on optimizing processes
for sustainable geopolymer concrete manufacturing adds a
fresh operational layer on the otherwise scientific research
on geopolymers.

In terms of sustainability theories and literature, the

31 and Sorathi-

current research is supported by Neupane '
ya et al. *”, who found that geopolymers had a significant
advantage over ordinary Portland cement concretes with
respect to less greenhouse gas emissions and less embod-
ied energy. These positive aspects towards sustainability
will only be sustainable if and only if they are not affected
or impacted by fluctuations on the supply side. These as-
pects are reinforced and validated indirectly by a digital
twin and reinforcement learning approach. Its application
supports and confirms a sustainability aspect brought for-
ward by Oladapo et al. *”, whereby digital manufacturing
systems serve as a catalyst for low-carbon systems and re-
duce wastage and idle time.

Theoretically, the study reaffirms the system-based
approach towards operational resilience as defined by Es-
suman et al. "), in which the operationally resilient system

has the ability to withstand disturbances and revert back to

a stable state in the most efficient manner. In the past stud-
ies, there was an emphasis on the flexibility of the system
in terms of inventory and redundancy in the supply system;
however, in the new theoretical development, there is the
consideration of the adaptability of the algorithms, which
forms the new element of the system’s resilience in the
manufacturing field. The digital twin-RL system not only
acts as the data monitoring system but also as the learning
and corrective decision system, in which the system learns
from the past disturbances.

With regard to the management of the supply chain
for circular construction material, the paper verifies the
views of Chen et al. ! as well as Akbari ™, that for a suc-
cessful implementation of a circular economy strategy in
the construction industry, there has to be a stable supply
source for industrial by-products. There is variation in-
volved in a supply chain for waste material, such as fly ash
from power plants or slag from steel enterprises. The inte-
gration of reinforcement learning within a digital twin en-
vironment thus represents an operational strategy that com-
plements circular economy objectives, turning variability
into an opportunity for learning and continuous improve-
ment. From a managerial perspective, there are several
implications of this research work. First, plant managers
in construction material manufacturing can adopt digital
twin-based monitoring and scheduling using reinforce-
ment learning for real-time production flow optimization.
This not only helps in avoiding manual interventions for
production scheduling but also has improved traceability
along various boundaries of supply chains as well as pro-
duction. Second, managers can utilize the Resilience Per-
formance Index (RPI), which has been developed in this
research work.

With ongoing RPI analysis, any inefficiencies can
be easily identified, making it possible for corrective ac-
tions to take place before any issues need to be resolved.
Third, through the combination of analytics with sustain-
ability reporting systems, management is able to provide
evidence of their efforts to mitigate carbon emissions as
well as improve energy efficiency, a call that is increas-
ingly made by environmental reporting schemes. Lastly,
for companies with multiple plants, information from rein-
forcement learning for adaptive scheduling will help guide

interplant coordination strategies, making it possible for

99



Journal of Building Material Science | Volume 08 | Issue 01 | March 2026

the right feedstock, based on available waste materials,
to be delivered to geographically dispersed plants. From
a strategic perspective, the above-mentioned model gives
policymakers a scientific foundation for Data-Driven Re-
silience Investments. The alignment of Digital Operational
Control and Sustainability Performance Results proves that
operational excellence and environmental stewardship are
not trade-offs but rather complements of each other in Dig-
itally Enabled Production Systems. The resilience of man-
ufacturers in sustaining their performance while coping
with uncertain resource supply is a key success factor for
manufacturers in today’s ever-changing landscape of green

construction materials.

Limitations of the Study

However, though the reinforcement learning ap-
proach was properly incorporated into the digital twin
paradigm in order to support adaptability in the sched-
uling process, the experimental work did not pursue an
extensive analysis of parameter sensitivity to algorithms,
convergence patterns, or comparative reinforcement learn-
ing configurations. This particular limitation derived from
the applied character of the research, as well as the inter-
ests of the study, encompassed in an industrial application
setting, combined with the difficulties of data integration
in the outlined environment of the digital twin operation
system. Though the study sheds valuable light on three
geopolymer concrete production factories in Jordan, the
results remain context-specific in nature. Their transferring
validity is more light-based as compared to the statistical
validity of the study. Future studies might expand the study
borders to include more factories. Sensitivity analysis in
this particular study remained exclusively confined to the
simulation-based analysis related to the variability in the
supply of raw material. The detailed parametric sensitivity
analysis associated with the hyperparameters and structur-
al assumption parameters in the context of reinforcement
learning and digital twin simulation is yet to be explored
in future studies because it remained limited in the current
study. Although the framework proved strong in perfor-
mance across various plants and supply conditions, val-
idation in other materials and across various geographic
locations is not feasible in this research. Further research

must validate this framework in other materials used in

construction and other locations across the globe.
Notwithstanding the efficacy of the proposed digital
twin reinforcement learning framework, there exist certain
drawbacks which need to be recognized as well. First and
foremost, the digital twin model has been based on simpli-
fied models of production processes and has assumed con-
stant quality of sensor data, which may not be reflective
of the true effects of unobserved disturbances or equip-
ment degradation under real-world conditions. Secondly,
the reinforcement learning algorithm has been based on a
single-agent Q-learning method, which may not be easily
scaled up when there exist complex production networks
with a multitude of interrelated decision nodes. Thirdly, the
digital twin model has assumed that learning from opera-
tional experience would provide adequate learning signals
for adapting under unforeseen circumstances; consequent-
ly, extreme disruptions may not be addressed effectively
through traditional learning methodologies alone. Fourth-
ly, the digital twin reinforcement learning framework has
been applied under a certain operational and geographi-
cally situated context; whereas the framework has been
proposed as being generally transferable across different
material systems or regulatory regimes, practical efficacy

in these circumstances may not be guaranteed as well.

6. Conclusion

In this research, a framework for an operational re-
silience and sustainability process using the digital twin
and reinforcement learning for the manufacturing of geo-
polymer concrete, in the face of the variability of raw ma-
terial supplies, was developed. Unlike the conventional
design and performance orientation of the mixture and its
mechanical strength, this research stressed the operational
flexibility of manufacturing systems using fluctuating in-
dustrial wastes like fly ash and slag in the manufacturing
process. The researchers were able to show, with the help
of the simulation and optimization using reinforcement
learning and the digital twin and IoT technologies, the syn-
ergistic relationship between operational resilience and en-
vironmental sustainability.

The study makes a theoretical contribution to the
literature by positing resilience as a dynamic, algorithmic

capability that results from predictive and adaptive deci-
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sion-making processes, as opposed to static redundancy.
This study presents a managerial imperative in terms of a
Resilience Performance Index (RPI) for comparative as-
sessments of resilience in geopolymer production process-
es. For managers, this research indicates that investments
in digital twin infrastructure and Al-managed scheduling
solutions are crucial for countering risks in material sup-
plies and for attaining sustainable objectives. For policy-
makers, this research makes a case for a stable material
supply chain for industry by-products and must support
digital transformation endeavors for industries involved in
construction materials production. This research has shown
that the coupling of digital intelligence and sustainable ma-
terial innovation is a viable approach for a green and circu-

lar manufacturing future for geopolymer concrete.
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