
85

Journal of Building Material Science | Volume 08 | Issue 01 | March 2026

 Journal of Building Material Science
https://journals.bilpubgroup.com/index.php/jbms

ARTICLE

Operational Resilience Strategies for Geopolymer Concrete Produc-
tion under Raw Material Supply Variability
Anber Abraheem Shlash Mohammad 1 , Suleiman Ibrahim Mohammad 2,3* , Asokan Vasudevan 3,4,5 , Shaman 

Raj Sagai Rajan 3 , Shiney John 3 , Naomi Yang 6, Mahirah Saidah Marzuki 7

1 Digital Marketing Department, Faculty of Administrative and Financial Sciences, University of Petra, Amman 11196, 
Jordan 
2 Business Administration Department, Business School, Al al-Bayt University, Mafraq 25113, Jordan
3 Faculty of Business and Communications, INTI International University, Nilai 71800, Malaysia
4 Faculty of Management, Shinawatra University, 99 Moo 10, Bangtoey, Samkhok 12160, Thailand
5 Business Administration and Management Department, Wekerle Business School, 1083 Budapest, Hungary
6 Career Services, INTI International College Subang, Subang Jaya 47500, Malaysia
7 Academic Support Unit (ASU), INTI International University, Nilai 71800, Malaysia

ABSTRACT

The advent of low-carbon construction has made geopolymer concrete (GPC) a sustainable material for 
construction. However, the supply uncertainty of the raw materials needed for GPC production makes this a challenge. 
This research aims to develop and design an integrated digital twin-reinforcement learning framework for optimizing 
geopolymer concrete production processes. The problem statement concerns the uncertainty involved when producing 
geopolymer concrete. This paper focuses on building a digital twin structure for optimizing the geopolymer concrete 
process. The authors also designed a reinforcement learning framework for optimizing the geopolymer concrete 
production process. The objective is achieved since the digital twin is a computer representation of a production 
environment. The computer simulation will utilize reinforcement learning. This will ensure that the production is done 
at a lower cost. Additionally, the digital twin can predict the supply uncertainty. The computer simulation will determine 
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the supply uncertainty level. Performance was evaluated for three supply conditions: stable, with a moderate and severe 
level of variability, based on a set of indicators: throughput, downtime, energy consumption, CO2 emission, and quality 
variability. In all cases, it has been shown that the Digital Twin–Reinforcement Learning (DT–RL) approach results 
in a considerable improvement of production resilience and sustainability performance by as much as 22% relative to 
downtime performance, as well as saving 13% of energy and a decrease of CO2 emission by as much as 15% relative to 
static planning. Additionally, a strongly negative correlation between resilience and quality variability of manufactured 
products was shown to exist. This research shows that applying digital intelligence to green material production leads to 
an improvement in efficiency and green performance.
Keywords: Geopolymer Concrete; Digital Twin; Reinforcement Learning; Operational Resilience; Supply Variability; 
Sustainability

1.	 Introduction
The construction sector is presently facing growing 

demands for decarbonization, resource minimization, and 
the implementation of the concept of a circular economy in 
material systems [1]. In fact, the production of cement con-
tributes about 8% to the total CO2 emissions in the world, 
making this industrial sector one of the major CO2 emitters 
in the world [2]. Therefore, geopolymer concrete (GPC), as 
a low-carbon concrete alternative to Ordinary Portland Ce-
ment (OPC), has been widely researched in recent years, 
in which industrial waste materials like fly ash, ground 
granulated blast furnace slag (GGBS), and silica fume are 
mainly employed as binders [3]. These binders not only help 
in the reduction of CO2 emissions during the construction 
sector, thereby decarbonizing this industry, but also help in 
the valorization of waste, according to the principles of a 
circular economy.

Although geopolymer concrete has been shown to 
have many benefits to the environment, large-scale produc-
tion of this type of concrete faces operational challenges to 
a large extent, depending on the variability of raw materi-
als. Supplies of key raw materials, such as fly ash and slag, 
are dependent on the operational rates of power and steel 
production units [4,5]. By their nature, geopolymer concretes 
are not like OPC, which has a vertically integrated supply 
chain that is stable. Instead, geopolymer concretes rely on 
a type of industrial symbiosis, in which the supply of sec-
ondary raw materials faces challenges of variability and 
a certain degree of unpredictability. This has continued to 
pose a problem to geopolymer concrete production, which 
has had to resort to reactive planning to ensure continuity 

of production, much to the effect that scalability has been 
limited. For production managers, geopolymer concretes 
have continued to pose a problem, especially considering 
that this type of concrete lacks a certain degree of scalabil-
ity that, to a large extent, has been limited by operational 
challenges.

In the current state of the literature, most work on 
geopolymer concrete relates to the use of chemical anal-
ysis, work of strength, and the work of durability [6,7]. Ad-
ditionally, the work of strength and the use of activation 
factors have positive effects on work of strength, heat 
resistance, and sustainability in the manufacturing of geo-
polymer concrete [8]. However, little work has benn done 
within the field of geopolymer concrete manufacturing, 
particularly in relation to operational resilience in manu-
facturing plants in the face of material supply uncertain-
ties. As Ataburo et al. [9] and Essuman et al. [10] explain, 
operational resilience is the ability of a manufacturing sys-
tem to continue functioning in the face of disruption in the 
current manufacturing context, the least explored area.

In this regard, the emergence of digital twin technol-
ogy and artificial intelligence in manufacturing provides a 
promising solution for overcoming production uncertain-
ties. A digital twin refers to a computer model created from 
real-time data that precisely mimics a physical system. By 
leveraging such technology and using simulation-based 
optimization and predictive control, numerous researchers 
and scientists are now capable of optimizing production 
processes remotely and with a high degree of control [11,12]. 
By combining such technology with reinforcement learn-
ing, a type of machine learning known as a “reward-based” 
approach to developing adaptive and policy-based deci-
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sions based on iterations and feedback, digital twins are 
now capable of self-optimizing scheduling and resource al-
location [13–15]. These technologies are also proven effective 
in this area for production sites such as steel production 
and cement manufacturing. Nevertheless, the application 
of such technology with a batch-based production system, 
such as geopolymer concrete production, is untried.

Moreover, recent studies in sustainability-focused 
operations management have emphasized the relationship 
between process flexibility, efficiency, and environment [16]. 
This is because a resilient system continuously functions in 
a steady state environment. As such, there is reduced wast-
age of energy, reduced emissions resulting from idling re-
sources, and sufficient quality production. The connection 
between environment and operation resilience has yet to 
receive proper quantification using empirical work despite 
various conceptual studies [17].

The approach intertwines real-time data acquisition 
for the IoT, discrete-event simulation, and reinforcement 
learning optimization to dynamically optimize production 
schedules and cope with disturbances. By accomplishing, 
this research makes three contributions to current litera-
ture. First, it brings an operations management outlook on 
geopolymer studies, surpassing research on material prop-
erties and turning to processes instead. Second, it forges 
and tests a reinforcement learning algorithm for adaptive 
production scheduling through the enabler of digital twins 
to optimize production viability despite supply chain un-
certainties. Lastly, it formulates a correlation between op-
erational resilience indicators like production downtime 
and throughput variability and sustainable performance 
indicators such as energy consumption, CO2 emission, and 
quality variability.

With a view to filling this identified research gap, 
this work attempted to explore the potential of digital 
twin-enabled reinforcement learning to optimize opera-
tional resilience during the production of geopolymer con-
crete under raw material supply uncertainty conditions. 
The technical objectives of this work are to: (i) conceptual-
ize a digital twin representation of a geopolymer concrete 
production process to reflect real-time changes to uncer-
tainty; (ii) develop an adaptive scheduling strategy using 
reinforcement learning to offset raw material supply un-
certainty; (iii) analyze sensitivities of adaptive scheduling 

to operational resilience indices of production downtimes 
and throughput variability; and (iv) investigate relation-
ships for interdependencies of operational resilience with 
sustainability performance measures of energy used, CO2 
emissions, and product quality variability.

Though reinforcement learning techniques have al-
ready been successfully applied in steel production and 
Portland cement production, the type of processes in the 
system described are of completely different natures. Geo-
polymer concrete production is based on random industri-
ally governed waste materials with stochastic variability 
in the supply that cannot be handled in the models of re-
inforcement learning developed for continuous processes. 
The work is the continuation of the previous research on 
the application of reinforcement learning in manufacturing.

2.	 Literature Review
The development of geopolymer concrete as an 

alternative to OPC can be attributed to its lower carbon 
emissions and ability to work well with various by-prod-
ucts such as fly ash, GGBS, and silica fumes generated by 
industries. Some of the earliest work by Madirisha et al. [18] 
and Wang et al. [19] gave insights into the chemical aspects 
of geopolymer concreted detailing enhanced compressive 
strength, durability, and thermal resistance. Further work 
conducted by Li et al. [20] and Shakirova et al. [21] focused 
on geopolymerized mixes comprising by-product materi-
als for reducing landfilling impact and reducing embodied 
energies for construction materials. Yet, despite all this 
development implemented in geopolymerized mixes, the 
source of raw industrial by-products for their production 
varies based on production cycles for parent industries 
such as thermal power plants and steel production plants. 
This implies that various researchers such as El-Wafa [22] 
and Fernández‐Jiménez et al. [23] noted that fluctuations in 
the frequency of fly ash availability have had significant 
impacts on mixes composition. Indeed, despite various 
developments in activating mixes composition and curing 
processes for geopolymerized mixes, there have been less 
studies focused on rectifying production system behaviour 
to adapt to mixes composition production fluctuations. 
This development poses one of the largest gaps for further 
exploring production system models aligned to a resilience 
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framework for geopolymer mixes production.
The variations in the supply of raw materials were 

also deemed a major issue with regard to the application 
of geopolymer concrete. As stated by Antoni et al. [24], the 
variations measured in terms of either the amount or mesh 
size of the fly ash and slag weaken the sustainability of 
the material production process because they compromise 
the continuity with regard to production. As illustrated by 
Danish et al. [25], the seasonal variation with regard to in-
dustrial waste supply within the area ensures that the sup-
ply is not streamlined, and therefore, this leads to a disrupt-
ed production flow. In traditional cement production, such 
variations would be manageable using buffer inventory 
models and variation among suppliers [4]. In this case, since 
the production process relies on industrial symbiosis, this 
redundancy is not a factor. A study carried out by Assi et 
al. [26] illustrated that not only is this issue with variations 
a factor with respect to cost with regard to the production 
process, but also variations with regard to the reliability of 
the contractor with regard to mega structural building with 
geopolymer concrete.

Operational resilience is the capability of an orga-
nization in detecting, tolerating, and recover from distur-
bances while still maintaining acceptable system perfor-
mance. Essuman et al. [10] and Birkie [27] explained that 
resilience has been defined as a strategic skill and also an 
operationally measurable outcome of redundancy, mallea-
bility, and learning. In manufacturing studies, the applica-
tion of resilience has historically been demonstrated using 
alternativerouting and buffered staffing [28]. Recently, the 
thrust of research has focused on the role of digital intelli-
gence and data-driven analytical approaches in modifying 
the application of traditional buffering, as argued in the 
studies of Ajayi et al. [1] and Zamani et al. [29]. Finally, in 
the geopolymer concrete-making process, the application 
of operational resilience can be considered the malleability 
of the batching, mixing, and curing processes in adjusting 
the timings and parameters when there are varying mate-
rial supplies on hand. Forecast models for the application 
of process-level-resilient geopolymer concrete production 
are, however, a very limited field of research in the exist-
ing studies that focus on geopolymer concrete production.

The digital twin (DT) technology, which involves a 
real-time digital model of a physical process or system, has 

become prominent in the manufacturing industry as a plat-
form for simulations, monitoring, and control. However, 
the application of digital twins by Grieves [30] first emerged 
as a platform that can harmonize digital and physical pro-
cess operations in the pursuit of continuous improvements. 
More recent definitions by Kadam et al. [31] and Atalay 
et al. [32] brought the digital twin concept to the context 
of Industry 4.0 and identified the technology as one that 
supports the integration of the Internet of Things (IoT), 
Artificial Intelligence (AI), and Big Data analytics. More 
current applications of digital twins in the manufacturing 
of construction materials include process simulation, mon-
itoring of machine health, and prediction of machine main-
tenance [33]. However, in the area of adaptive scheduling 
and resilience improvements, particularly in the context of 
waste-dependent systems, the digital twin technology finds 
untapped territory. There exist DT applications in process 
optimization in the area of metal forming by Marczyk et 
al. [34] and in additive manufacturing by Roussel et al. [35]. 
Nevertheless, similar uses in concrete or geopolymer man-
ufacturing are still uncommon.

Another machine learning sub-field, reinforcement 
learning, also has promising capabilities for the solution of 
dynamic optimization problems with stochastic uncertain-
ties. According to Zamani et al. [29], reinforcement learning 
algorithms try to steer an optimal decision-making process 
via learning with interactions in the environment with the 
help of trial and error. In the field of manufacturing sci-
ence, reinforcement learning algorithms are already used 
for optimization problems of scheduling, energy optimiza-
tion, and fault detection. The introduction of reinforcement 
learning algorithms into digital twin technologies adds a 
closed-loop learning process into the simulation. The ob-
tained data further optimizes decision-making policies 
related to the simulation results. Although reinforcement 
learning algorithms were also proposed for intelligent 
manufacturing and logistics systems [13], they were neither 
used for simulation studies on the stochastic material sup-
ply during geopolymer concrete production.

The factors for achieving sustainability in geopoly-
mer concrete production are CO2 emission reduction, 
energy efficiency, and waste material reuse. Research un-
dertaken by Neupane [36] and Sorathiya et al. [37], has found 
that geopolymer concrete production results in an average 
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of CO2 emission reduction of up to 80% compared to OPC 
concrete. Nonetheless, CO2 emission performance may 
be compromised by operational instability, as unplanned 
shutdowns and poorly executed batch changes raise specif-
ic energy consumption per unit of production, effectively 
counteracting any positive effect on a specific environment 
[38]. Circular economy studies have also shown that materi-
al performance and process efficiency need to be integrat-
ed to make production sustainable [39]. This research pro-
posal bridges optimization and environmental performance 
metrics, including energy intensity and carbon footprint, to 
position geopolymer concrete production in the triple bot-
tom line approach, where operational efficiency positively 
impacts the environment and economy.

2.1.	Research Gap

However, the current body of literature concerning 
geopolymer concrete mostly revolves around chemical and 
mechanical issues, to the extent that the use of the technol-
ogy of operational resilience or digital twins, in the area 
of manufacturing, has not been fully explored. The three 
areas, therefore, in which there seems to be a gap in the 
existing body of literature, and that could be addressed in 
the proposed study, include, to begin with, the lack of op-
erational methodologies in geopolymer concretes concern-
ing the need to adapt to the variability of the raw materials 
used in the process. The second area, in turn, involves the 
lack of utilization of the digital twin technology and AI-
based reinforcement learning to optimize schedules in 
waste-based manufacturing systems. The third area, finally, 
involves the lack of study in the current body of literature 
on the role of improvements in operational resilience and 
sustainability performance, in terms of the use of energy, 
the level of CO2, and the stability of the quality process.

2.2.	Conceptual Positioning of the Present 
Study & Hypothesis Development

The conceptual framework of the research study 
(Figure 1) portrayed the interdependence between raw 
material supply variability, digital optimization techniques, 
and operational and sustainability performance aspects 
within geopolymer concrete production. This framework 
was based on systems theory and operational resilience. 

The systems theory highlighted the ability of a produc-
tion system to react and recover when supply varies. The 
framework also showed that raw material supply variation 
due to unpredictable availability of fly ash, GGBS, and 
slag was the variable that affected a stable production pro-
cess. The digital twin technology with IoT data acquisition 
capabilities served as the adaptive solution that simulated 
the actual production line. Additionally, it processed pro-
duction data and simulated disruptions. This framework 
consisted of a reinforcement learning algorithm that served 
as an intelligent component and made decisions on sched-
uling and resource allocation based on continuous learn-
ing.

On the basis of the theoretical framework developed 
for this research using the underlying literature on the geo-
polymer concrete manufacturing process, supply chain re-
silience, and the optimization of manufacturing using the 
digital twin approach, the following hypotheses were de-
veloped for carrying out the analysis. The hypotheses were 
developed on the basis of the range of gaps identified in 
the existing literature on the subject, which mainly relied 
on the chemical and mechanical performance aspects of 
the geopolymer concrete material. The hypotheses devel-
oped for this analysis address the objective of this research.

H1. Adaptive scheduling driven by reinforcement learning 
and digital twin integration significantly reduced produc-
tion downtime under conditions of raw-material supply 
variability compared to static scheduling approaches.

H2. Operational resilience improvements achieved through 
digital twin–enabled adaptive scheduling were positively 
correlated with the stability of product quality, measured 
through the coefficient of variation (CV%) in compressive 
strength.

H3. The implementation of reinforcement learning–based 
optimization models led to a statistically significant reduc-
tion in energy consumption and CO2 emissions per unit of 
geopolymer concrete produced.

H4. The magnitude of raw-material supply variability had 
a significant moderating effect on the performance gains 
achieved through digital twin–enabled adaptive schedul-
ing.

In the above paradigm, the mediating variable was 
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operational resilience, which was exemplified by enhance-
ments in the areas of downtime, stability of throughput, 
and process recovery time. The enhanced resilience was 
supposed to directly impact the results, which were the 
dependent variables, namely product quality, energy, and 
emission of CO2. Therefore, the paradigm assumed the ex-
istence of a cause-and-effect chain in which the digital ad-
aptation of volatile market requirements led to stable pro-
duction performance. It was assumed in the paradigm that 
the higher the level of digital integration of the plants, the 
more benefits could be derived from the adaptive schedul-
ing paradigm.

Figure 1. Conceptual Model of the Study.
Source: Author.

3.	 Methodology

3.1.	Research Design

The research utilized a convergent explanatory de-
sign involving a combination of simulation results for 

greater operational insights. The research methodology 
incorporated both exploratory and analytical approaches. 
The research design included a framework comprising 
three sequential phases. The initial phase involved the de-
velopment of a digital twin (DT) simulation model char-
acterizing the operational processes underlying a medi-
um-scale geopolymer concrete manufacturing facility. The 
simulation included the prime operational procedures such 
as reception of raw material inputs, batching, mixing, cur-
ing, and quality testing. The simulation enabled operation-
al research on the manufacturing process. The subsequent 
simulation phase included a set of discrete-event simula-
tion experiments under different uncertainty scenarios. The 
operational disruptions incurred due to supply uncertainty 
involved the simulated list of major industrial waste sourc-
es. These included fly ash, ground granulated blast furnace 
slag (GGBS), and metallurgical slag. The third sequential 
phase included a reinforcement learning strategy involving 
a simulation approach based on the Q-learning algorithm. 
The reinforcement learning strategy enabled optimization 
of operational decisions on scheduling and raw material al-
location.

3.2.	Data Collection

The data collection process in this study was con-
ducted using a combination of primary and secondary data. 
Primary data were obtained from three ready mix concrete 
plants in Jordan that were producing low-carbon geo-
polymer concrete. These plants enabled the collection of 
real-time data using the Internet of Things sensor technol-
ogy integrated into batching systems, mixers, and curing 
chambers. The programmable logic controller records were 
tapped to extract data on the real-time fluctuations in the 
usage and batching cycle. The operators’ records were used 
to extract data on delays, machine breakdowns, and mate-
rial shortages. The data was complemented by the second-
ary data collected from the procurement and quality files 
for the two years’ historical material supplies data, data 
on the compressive strengths obtained from the laboratory 
tests, and the CO2 emissions estimates. A data analysis was 
conducted for a total of 90 cycles to ensure a representa-
tive and sound data pool. These were equally spaced in the 
three different plants.
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3.3.	Population and Sample

The population of interest targeted was all opera-
tional geopolymer concrete plants within Jordan that were 
using industrial by-products in their raw materials. Based 
on industry records kept by the Jordan Cement Producers’ 
Association (JCPA) industry database, Several geopoly-
mer concrete plants are in operation within Jordan (though 
an exact number is not published) during the period of 
2022–2024. The sampling frame was constructed by in-
cluding plants that met three essential criteria: active use 
of geopolymer technology for at least 30 percent of total 
output, integration of IoT or PLC-based digital monitoring 
systems, and documented experience of at least one signif-
icant raw-material supply disruption. To ensure represen-
tativeness, a stratified random sampling approach was fol-
lowed. Plants were stratified based on production capacity 
as small (<100 m3/day), medium (100–300 m3/day), and 
large (>300 m3/day). One representative plant from each 
stratum was selected. This ensured diversity across opera-
tional scales, technological maturity, and regional sourcing 
conditions.

An approach involving three case studies of geo-
polymer concrete production plants in Jordan is selected 
for the study because of the theoretical reproduction logic 

that allows each study to provide an operational setting for 
testing the applicability of the proposed framework involv-
ing the digital twin approach in conjunction with reinforce-
ment learning algorithms for its application in the produc-
tion plants of interest. Due to the complexity involved in 
applying the proposed approach, using a number of plants 
selected in a study appears methodologically correct.

3.4.	Description of Population

The attributes of the selected plants are presented in 
Table 1. Since each facility had differences in the scales of 
operation, the composition of the waste materials, and the 
degree of digitalization, the SVI is determined by the ratio 
of the standard deviation to the mean delivery rate of the 
raw materials.

3.5.	Summary of Main Variables

Operational and sustainability variables were consid-
ered in the research. The model consisted of raw-material 
supply delay and composition ratio, and the dependent 
variables included energy consumption, CO2 emissions, 
and the variance in the compressive strength. The study 
further incorporated the mediators, downtime duration, and 
the reinforcement learning schedule score (Table 2).

Table 1. Description of Population.

Plant Code Location Production Capacity 
(m3/Day) Primary Waste Material Digitalization Level Supply Variability 

Index*
P1 Amman 80 Fly Ash + GGBS Partial IoT Integration 0.42
P2 Zarqa 250 GGBS + Slag Full Digital Twin 0.36
P3 Aqaba 420 Fly Ash + Slag PLC + Sensor Network 0.51

Note: *Supply Variability Index = standard deviation of weekly raw-material delivery divided by mean delivery.

Table 2. Summary of Main Variables.
Variable Type Measurement Scale Source Purpose

Raw-material supply delay Independent Ratio (hours) Supplier logs Represents supply disruption magnitude

Mix composition ratio (fly ash, GGBS, slag) Independent Ratio IoT batch data Captures material blend variability

Energy consumption Dependent Ratio (kWh/ton) Sensor data Measures operational efficiency

CO2 footprint Dependent Ratio (kg CO2/ton) Emission data Assesses sustainability outcome

Quality variance (compressive strength CV%) Dependent Ratio Lab tests Indicates production stability

Downtime duration Mediating Ratio (hours/cycle) Operator logs Reflects operational resilience

RL scheduling score Control Index (0–1) Simulation 
output Indicates optimization effectiveness

Source: Author.
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3.6.	Measures & Analytical Methods

All continuous variables were scaled to remove unit 
bias. Energy consumption and emissions were expressed 
for each cubic meter of concrete output. Coefficient of 
Variation (CV%) of the Compressive Strength was used 
as a measure of the quality consistency. A measure for the 
level of resilience during operation was the “Resilience 
Performance Index” (RPI) calculated on a comparison of 
adaptive and base scenarios. RPI encompassed the notion 
of maintaining quality and minimizing loss of down-time, 
defined as RPI = (Qadapt / Qbase) × ((1 − Dadapt)/(1 − Dbase)), 
where (Q) denotes retained quality and (D) represents 
downtime. The higher the RPI value, the better the adap-
tive performance. The effectiveness of the reinforcement 
learning model was assessed in terms of the convergence 
of cumulative rewards for 5000 iterations of training. The 
reliability of the data gathering tools was established using 
Cronbach’s alpha test (α = 0.86), which ensured the tools 
had internal consistency, and the construct validation of the 
tools involved expert assessment from materials and oper-
ation experts.

The analysis process involved both statistical and 
simulation techniques, as well as machine learning tech-
niques. Descriptive statistics techniques are used for the 
summarization of central tendency and dispersion of im-
portant variables. The discrete-event simulation model de-
veloped three operational scenarios, namely stable supply, 
moderate disruption, and severe disruption, for a 12-week 
period in a production plan. The reinforcement learning 
optimization technique was carried out using MATLAB 
R2023b software, where a Q-learning agent adapted the 
schedule policy based on the feedback of rewards for 
throughput, energy consumption, and production delay. 
Inferential analysis employed analysis of variance (ANO-
VA) to test significant differences in performance metrics 
between static and adaptive scheduling strategies. Multi-
ple regression models were used to estimate the effect of 
supply variability on energy consumption, CO2 footprint, 
and product quality. Sensitivity analysis for this case used 
a scenario-based method with a focus on raw material sup-
ply scenarios, which are identified as being more signifi-
cant than other sources of uncertainty for the production of 
geopolymer concrete. Three scenarios of supply variability 
have been used for simulation within the digital twin envi-

ronment: stable supply scenario, moderate supply scenario, 
and severe supply scenario. This method allows for analys-
ing sensitivity of outcomes to variations in supply without 
necessarily carrying out exhaustive parametric analysis. 
Whereas compressive strength is a key performance criteri-
on for geopolymer concrete, the scope of the current study 
with respect to strength focused more on variability from 
batch to batch rather than absolute values of compressive 
strength itself. The Coefficient of Variation in Compressive 
Strength (CV%) was thus used in this study as a criterion 
for quality in terms of compressive strength in the face of 
the uncertainties of the supply of raw materials.

4.	 Results

4.1.	Descriptive Statistics of Collected Data

Descriptive statistical analysis was conducted to 
establish a quantitative overview of the operational char-
acteristics of the three geopolymer concrete production fa-
cilities (P1, P2, and P3) that formed the study sample. The 
objective of this preliminary evaluation was to establish 
an empirical basis for any subsequent simulation and opti-
mization runs. The data was derived from a total of ninety 
production runs, with thirty runs from each plant, to en-
sure that all possible operating conditions were captured, 
regardless of the raw material supply scenario. The sets of 
variables included raw material supply delay, raw material 
composition ratio, energy use, CO2 emissions, downtime, 
and variation of compressive strength, measured by the co-
efficient of variation (CV%).

Among the plants, the differences in supply delays 
were quite considerable. The average supply delay regis-
tered for the total cycle was 4.8 h with a standard deviation 
of 1.9 h. The average energy consumption for the produc-
tion of one cubic meter of geopolymer concrete per cycle 
was 42.3 kWh, and the average CO2 footprint for the pro-
duction of one cubic meter of geopolymer concrete per cy-
cle was 29.5 kg. These parameters measured the base-case 
environmental performance of the production systems.

Operational continuity likewise showed variation 
across the facilities considered for sampling. Mean down-
time per production cycle stood at 3.6 h, with increased 
downtime being recorded for facilities with regular in-
stances of raw material quality inconsistency. Compres-



93

Journal of Building Material Science | Volume 08 | Issue 01 | March 2026

sive strength for the cured samples had an average CoV 
of 6.2%, denoting medium variability in the quality of 
produced samples from different production batches. This 
variation formed the basis for the correlation study for 
resilience of operations and stability of production in the 

subsequent analysis. Table 3 provides a description of 
the statistics for the core operational and environmental 
factors considered in the study in their pre-adaptive opti-
mization implementation performance for the three pro-
duction facilities.

Table 3. Descriptive Statistics of Operational Variables (n = 90 production cycles).

Variable Mean Standard Deviation 
(SD) Minimum Maximum Unit of Measurement

Raw-material supply delay 4.8 1.9 2.1 9.3 Hours
Energy consumption 42.3 5.1 36.4 54.2 kWh/m3

CO2 footprint 29.5 3.8 25.0 36.9 kg/m3

Downtime duration 3.6 1.7 1.2 7.8 Hours
Compressive strength (CV%) 6.2 1.4 4.1 9.0 Percent

Source: Author.

The summary statistics showed that the data on the 
use of energy and the release of CO2 were moderately dis-
persed, indicating the differences in the operation of equip-
ment and the level of process integration at the different 
plants. The high standard deviation of the supply delay 
highlighted the influence of the irregular flow of waste in 
the supply of the wastewater’s constituent materials, such 
as fly ash and GGBS, which rely on the performance of the 
thermal and steel sectors of the industries. Also, the vari-
ance of the down time in the production cycles highlighted 
the vulnerability of the production line to scheduling in-
abilities during the shortage of supplies.

4.2.	Reinforcement Learning Model Perfor-
mance 

The reinforcement learning (RL) module incorporat-
ed within the digital twin framework was designed to opti-
mize production scheduling based on the dynamic changes 
in the supply of raw materials. For the implementation of 
the RL algorithm, the application of the Q-learning algo-
rithm was considered to enable the process to learn the 

optimal production sequencing approach based on the re-
wards achieved. The major task of the RL algorithm was to 
optimize the reduced production time of the product while 
ensuring continuity of production based on the dynamic 
supply of the raw material. During the process of training 
the RL algorithm, the algorithm was trained using up to 
5000 episodes per scenario.

The reward function was designed in a way that dis-
couraged idleness as well as over-scheduling, at the same 
time promoting steady productivity as well as energy-effi-
cient functioning. Through a sequence of episodes, the cu-
mulative reward plot illustrated a converging trend, which 
meant that the learning process had achieved optimal defi-
nition in adaptive scheduling policies. Subsequent to the 
convergence of the given models, the optimized schedul-
ing policies were employed in the simulation environment 
for the production system, based on the same three supply 
conditions (stable, moderate, and severe). The comparison 
result of the operational performance between the opti-
mized scheduling policies in the RL algorithm and tradi-
tional static scheduling is shown in Table 4 below.

Table 4. Reinforcement Learning Optimization Outcomes across Supply Scenarios.
Performance Metric Static Scheduling RL-Optimized Scheduling Improvement (%)

Mean Downtime (hours per cycle) 3.6 2.8 22.2 ↓
Throughput (m3/day) 262 284 8.4 ↑

Average Cycle Completion Time (hours) 7.2 6.4 11.1 ↓
Energy Consumption (kWh/m3) 42.3 39.8 5.9 ↓

Scheduling Efficiency Index (0–1) 0.74 0.87
Source: Author.
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From the results in Table 4, there is a quantifiable 
operational advantage in the use of the reinforcement 
learning-based adaptive scheduling method. The average 
downtime per production cycle was reduced by 22.2%, 
and the throughput was also raised by 8.4% compared to 
the static scheduling method. The scheduling efficien-
cy index, a combination of throughput, delay, and idle 
time, was also raised from 0.74 to 0.87, indicating that 
the adaptability in the production sequencing process has 
been improved. A one-way analysis of variance (ANOVA) 
was used to confirm the difference in the level of down-
time attributed to the two scheduling systems. The results 
of the ANOVA revealed that there was a significant effect 
of the scheduling method on the reduction of downtime (F 
= 5.91, p = 0.018), indicating that the production down-

time was significantly reduced by the use of the adaptive 
scheduling method based on the reinforcement learning 
algorithm compared to the static scheduling.

In Figure 2, the performance differences for the 
downtime for the three supply variability conditions are 
shown. For all three conditions, the scheduling using 
optimization performed better than static scheduling. 
The performance improvement was greatest for the sce-
nario with moderate variability. The model’s conver-
gence and performance improvement for all conditions 
clearly supported hypothesis H1. The experiment clear-
ly showed the improvement in the operational level of 
resilience using reinforcement learning and the digital 
twin model to address uncertainties of the supply of raw 
materials.

Figure 2. Comparative Downtime across Static and Rl-Optimized Scheduling Different Supply Scenarios.
Source: Author.

4.3.	Operational Resilience–Quality Relation-
ship 

Resilience Performance Index (RPI) was calculated 
for each production cycle by combining the percentage en-
hancement in the production speed and the percentage dec-
rement in downtime compared to the baseline static sched-
uling. This index varies between 0.70 and 0.96 for the first 
90 production cycles, and a greater value reflects better 
adaptive performance for varying raw material conditions. 
The per cent CV for the compressive strength varies be-

tween 4.1% and 9.0%, with lower numbers representing 
greater homogeneity and quality. The bivariate correlation 
analysis was applied to identify the level of correlation 
between RPI and the variation associated with the com-
pressive strength. The correlation coefficient (r) between 
the two parameters was calculated at −0.78. This marked 
a strong negative correlation between the two parameters. 
This implies that there was a remarkable decrease in the 
variation associated with the compressive strength with the 
enhancement in operational resilience. The correlation co-
efficient was statistically significant at a significance level 
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of 0.01 (p = 0.002), which ensured that the correlation was 
not a result of any chance variation. A further validation 
analysis on the strength and nature of correlation was ap-
plied by a linear regression analysis based on the following 
formula:

Y = α + βX + ε

where Y is the compressive strength CV% (quality stabil-
ity indicator), and X is the Resilience Performance Index 
(RPI). The result obtained from the regression analysis 
yielded a value for the slope coefficient β as −5.72, which 
means that for every 0.1 unit increase in RPI, the compres-
sive strength variation decreased by 0.57 percentage units. 
The value of R2 is 0.61, which means that 61% variation 
in product quality stability could be attributed to variations 

in the level of operational resilience in the organization. 

These values are shown in Table 5 below, which displays 

the results of the correlation and regression analyses.

In Figure 3, the scatter plot is shown, where RPI is 

plotted against the compressive strength CV% in order to 

emphasize the downward trend. Each point on the scatter 

plot corresponds to a cycle, illustrating the cyclic nature in 

which the resilience process has been inversely related to 

the variation in quality. The slope of the line in the scatter 

plot further supports the fact that there is a direct relation-

ship between the scores obtained in the resilience measure 

and the variation in the mechanical properties of geopoly-

mer concrete.

Table 5. Relationship between Operational Resilience (RPI) and Product Quality Stability (CV%).
Statistical Parameter Value Interpretation

Correlation coefficient (r) −0.78 Strong negative correlation.
Coefficient of determination (R2) 0.61 61% variance explained.

Regression coefficient (β) −5.72 Higher resilience reduces quality variation.
Standard Error 1.12 Acceptable model fit.

Significance (p-value) 0.002 Statistically significant (p < 0.01).
Source: Author.

Figure 3. Scatter Plot of Resilience Performance Index (RPI) vs. Compressive Strength Variation (CV%).
Source: Author.
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The uniformity of this observation for all three plants 
indicated that the impact of adaptive operational control 
did not merely improve the productivity and minimize 
downtime but was also a factor in the uniformity of prod-
uct performance. The observation supported Hypothesis 
H2 and indicated a positive relationship between opera-
tional resilience and the stability of quality for geopolymer 
concrete processes.

4.4.	Energy and CO2 Performance Outcomes 

Data about energy consumption and emissions was 
collected through the real-time IoT-based monitoring of the 
batching and curing systems, and these were also verified 
using the results of the digital twin simulation. The values 
of energy consumption were measured in kilowatt-hours 
per cubic meter (kWh/m3), and the values of CO2 emis-
sions were calculated in kilograms of CO2 equivalent per 
cubic meter (kg CO2/m

3) by using the standard emission 

conversion factor as proposed by the Bureau of Energy 
Efficiency (BEE). The static and adaptive systems were 
tested under three varieties of supply variability, namely 
stable, moderate, and severe.

For all supply conditions, the scheduling model de-
veloped using reinforcement learning is proven to have 
lower energy and CO2 intensity than traditional scheduling. 
With stable supplies, there is a reduction of 8.9% in total 
energy consumption (from 41.2 kWh/m3 to 37.5 kWh/m3) 
and 10.2% in CO2 emissions (from 28.6 kg/m3 to 25.7 kg/
m3). With moderate conditions of disruptions in supplies, 
which are relatively more irregular than stable conditions, 
there is a decrease of 13.5% in energy consumption and 
15.1% in CO2 emissions. With severe disruptions, which 
have maximum irregularity in supplies, there is still a re-
duction of 7.8% in energy consumption and 9.6% in CO2 
emissions. The results for all three conditions are presented 
in Table 6.

Table 6. Sustainability Performance Indicators under Static and RL-Optimized Scheduling.

Supply Scenario Scheduling Type Energy Consumption 
(kWh/m3)

Reduction 
(%) CO2 Footprint (kg/m3) Reduction 

(%)
Stable (SVI < 0.3) Static 41.2 28.6
Stable (SVI < 0.3) Adaptive (RL) 37.5 8.9 ↓ 25.7 10.2 ↓

Moderate (0.3 ≤ SVI ≤ 0.5) Static 44.8 31.2
Moderate (0.3 ≤ SVI ≤ 0.5) Adaptive (RL) 38.7 13.5 ↓ 26.5 15.1 ↓

Severe (SVI > 0.5) Static 46.1 32.8
Severe (SVI > 0.5) Adaptive (RL) 42.5 7.8 ↓ 29.7 9.6 ↓

Source: Author.

The statistical significance of the variations has been 
analyzed using a paired-sample t-test for the difference 
between the adaptive and static scheduling systems. The 
t-test for the reduction in performance parameters showed 
a statistically significant difference in the data,with a value 
of t = 3.74 and a significance level of 0.006 for energy use 
and t = 4.11 and 0.004 for the CO2 release at a confidence 
level of 0.95. These results proved the use of the adap-
tive scheduling system using the concept of reinforcement 
learning for improved results in terms of reduced energy 
intensity and CO2 release per unit production. Further, the 
joint analysis of the reduction in energy use and release in 
different scenarios demonstrated that the values had a pos-
itive correlation coefficient of −0.69 and −0.72 for the RPI 
value, respectively.

Thus, the results in this section empirically validated 
Hypothesis H₃, indicating that the resilience and sustain-
ability improvements derived by the use of reinforcement 
learning-based optimization in the digital twin environ-
ment were indeed significant to the energy efficiency and 
sustainability of the geopolymer concrete production sys-
tems.

4.5.	Moderating Effect of Supply Variability 

The Supply Variability Index (SVI) was used as the 
moderation variable and calculated using the ratio of the 
standard deviation and the average of the raw materials for 
each week. The independent variable used in the experi-
ment was the type of schedule (static and RL-optimized), 
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and the dependent variable used was the Resilience Perfor-
mance Index (RPI), which took into account both normal-
ized throughput and down time. The data used a total of 90 
simulated cycles of production under three supply scenar-
ios: stable, moderate, and severe supply conditions, ensur-
ing that there was sufficient data in each case. An Analysis 
of Variance (ANOVA) test was conducted on the collected 

data for both variables and the results presented in Table 7 
shows a statistically significant interaction effect between 
the type of schedule and the intensity of supply variation 
on RPI (F = 4.23, p = 0.041), establishing that the RPI of 
disturbance in raw materials affected the adaptation effec-
tiveness of the reinforcement learning algorithm in adapted 
schedules.

Table 7. Moderating Effect of Supply Variability Intensity on Resilience Outcomes.

Supply Variability Level 
(SVI)

Mean RPI (Static 
Scheduling)

Mean RPI (RL-Opti-
mized Scheduling)

Difference 
(ΔRPI) p-Value Significance

Low (SVI < 0.3) 0.89 0.94 +0.05 0.062 Not significant
Moderate (0.3 ≤ SVI ≤ 0.5) 0.81 0.92 +0.11 0.012 Significant

High (SVI > 0.5) 0.74 0.80 +0.06 0.078 Marginally significant
Source: Author.

The findings showed that when the conditions for 
moderate variability are considered, the resilience im-
provement is greatest for the reinforcement learning-based 
scheduling approach, with a mean RPI that increased by 
0.11 relative to the static scheduling approach (p = 0.012). 
This implies that the RL agent worked best under con-
ditions that are neither too rare (low variability) nor too 
random (high variability). As a matter of fact, under very 
low variability conditions, a degree of resilience is already 
maintained through the static scheduling approach, thus 

limiting the relative advantage of control. At the other ex-
treme of very high variability, the limits to predictive con-
trol exerted a slight inhibiting effect on the resilience-en-
hancing potential of the learning approach. Figure 4 
represents the interaction plot depicting the overall impact 
of supply variability on the relationship between schedul-
ing approaches and resilience. Note that at moderate levels 
of variability, the gradient of the line for the reinforcement 
learning approach is steeper, reflecting a greater resil-
ience-enhancement potential relative to the static approach.

Figure 4. Interaction Plot Showing the Moderating Effect of Supply Variability on Operational Resilience.
Source: Author.

A regression-based moderation model was also em-
ployed to confirm the ANOVA findings, using the follow-
ing equation:

RPI = α + β1 (Scheduling) + β2 (Supply Variability) + β3 
(Scheduling × Supply Variability)

The result showed that the interaction term was pos-

itive and significant (β3 = 0.087, p = 0.038), which sup-

ported the existence of moderation. This result showed 

that the gain in resilience resulting from the optimization 

of RL was positively associated with moderate levels of 
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supply disruption uncertainty; however, it became stable at 
extremely high levels of disruption. The coefficient of de-
termination showed that the regression explained approx-
imately 67% of resilience variation. The results partially 
supported Hypothesis H4. Although supply variation was 
significant and positively associated with the results of 
adaptive scheduling under moderate levels of disruption, 
the moderation effect became stable at extremely high lev-
els. This result was anticipated since adaptive learning sys-
tems will be most effective when there is adequate yet not 
excessive variation.

4.6.	Summary of Hypothesis Testing

The findings proved the significance of adaptive 
scheduling made possible by reinforcement learning in im-
proving operational performance relative to static schedul-
ing systems in terms of quality stability and sustainability 
indicators. Moreover, the moderating effect of supply vari-
ability intensity was partially proved to affect the level of 
improvement experienced to differ based on the intensity 
of supply variability. The summary of the results of the sta-
tistics of the hypotheses is shown in Table 8.

Table 8. Summary of Hypothesis Testing Results.
Hypothesis 

Code Statement Statistical Test Used Key Statistic p-Value Result Conclusion

H1 Adaptive scheduling driven by reinforcement 
learning and digital twin integration significantly 
reduced production downtime under raw-material 
supply variability.

One-way ANOVA F = 5.91 0.018 Significant Supported

H2 Operational resilience improvements achieved 
through digital twin–enabled adaptive scheduling 
were positively correlated with product quality 
stability (lower CV %).

Correlation & Re-
gression

r = −0.78, 
R2 = 0.61

0.002 Significant Supported

H3 Reinforcement learning–based optimization led to 
significant reductions in energy consumption and 
CO₂ emissions per unit of production.

Paired t-test t = 3.74 (Energy), 
t = 4.11 (CO2)

0.006, 
0.004

Significant Supported

H4 The magnitude of raw-material supply variability 
significantly moderated the performance gains 
achieved through adaptive scheduling.

Two-way ANOVA & 
Regression Interac-

tion

F = 4.23, 
β3 = 0.087

0.041, 
0.038

Partially 
Significant

Partially 
Supported

Source: Author.

The overall results indicated the positive impact of 
the integration of the digital twin and reinforcement learn-
ing on the operation performance, which fully or partially 
justified the testing of three out of four research hypothe-
ses. The greatest degree of optimization could be achieved 
in terms of decreased downtime, increased throughput, sta-
bilized quality, and reduced energy and carbon intensities. 
On the other hand, the degree of supply variability had a 
significant impact on adaptive systems.

5.	 Discussion

Findings from this research are in line with, and add 
to, existing literature on digital transformation and resil-
ience in sustainable manufacturing of construction materi-
als. While existing research on geopolymer concretes has 
traditionally been focused on their chemical, thermal, and 
mechanical properties, such as mix designs, and optimiza-
tion of activators to attain a specific level of compressive 

strength and engineering or application-related durability, 
very less has been given to operational dynamics of man-
ufacturing systems, like geopolymer concretes, which are 
very dependent on uncertain waste materials supply chains 
[7,40]. This research bridged this research gap by bringing 
together knowledge from operations management, AI, and 
sustainable manufacturing, and putting geopolymer man-
ufacturing in the context of existing research on Industry 
4.0-enabled CE manufacturing systems. This research 
finds that to extend and modify a reinforcement learning 
idea from process industries to geopolymer manufactur-
ing dependent on waste materials, operational resilience 
AI models have to be adapted based on whether a specific 
type of uncertainty, like that of material, dominates pro-
cess-related variability.

The application of digital twin technology in the pro-
duction system of materials aligns well with the views of 
Kadam et al. [31] and Atalay et al. [32], who considered digi-
tal twins the backbone of achieving adaptive manufactur-
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ing systems. Digital twins are associated with the ability to 
create a harmoniously synchronized virtual equivalent of 
the production process. In this way, the technology allows 
for the foresight of disruptions in the production process, 
which can then dynamically alter the system parameters. 
Such adaptive intelligence is especially valuable in pro-
duction sectors relating to the use of secondary industrial 
waste products, including the use of fly ash and GGBS, 
which are inherently dependent on the production systems 
of the related industries.

Within the larger framework of operations research, 
the application of reinforcement learning (RL) for opti-
mization can be parallelized with the assertion made by 
Recht [41] and Carpenter [42] on the ability of reinforcement 
learning on learning a complex control policy. The pre-
vious applications quite specifically on steel production 
and cement grinding processes, indicate the ability of 
reinforcement learning on minimizing operational ineffi-
ciencies. This research framework applies the same prin-
ciples to the geopolymer concrete and will show how rein-
forcement learning can optimize production schedules on 
adapting production flows autonomous on stochastic input 
parameters. The application of AI on optimizing processes 
for sustainable geopolymer concrete manufacturing adds a 
fresh operational layer on the otherwise scientific research 
on geopolymers.

In terms of sustainability theories and literature, the 
current research is supported by Neupane [36], and Sorathi-
ya et al. [37], who found that geopolymers had a significant 
advantage over ordinary Portland cement concretes with 
respect to less greenhouse gas emissions and less embod-
ied energy. These positive aspects towards sustainability 
will only be sustainable if and only if they are not affected 
or impacted by fluctuations on the supply side. These as-
pects are reinforced and validated indirectly by a digital 
twin and reinforcement learning approach. Its application 
supports and confirms a sustainability aspect brought for-
ward by Oladapo et al. [39], whereby digital manufacturing 
systems serve as a catalyst for low-carbon systems and re-
duce wastage and idle time.

Theoretically, the study reaffirms the system-based 
approach towards operational resilience as defined by Es-
suman et al. [10], in which the operationally resilient system 
has the ability to withstand disturbances and revert back to 

a stable state in the most efficient manner. In the past stud-
ies, there was an emphasis on the flexibility of the system 
in terms of inventory and redundancy in the supply system; 
however, in the new theoretical development, there is the 
consideration of the adaptability of the algorithms, which 
forms the new element of the system’s resilience in the 
manufacturing field. The digital twin-RL system not only 
acts as the data monitoring system but also as the learning 
and corrective decision system, in which the system learns 
from the past disturbances.

With regard to the management of the supply chain 
for circular construction material, the paper verifies the 
views of Chen et al. [43] as well as Akbari [2], that for a suc-
cessful implementation of a circular economy strategy in 
the construction industry, there has to be a stable supply 
source for industrial by-products. There is variation in-
volved in a supply chain for waste material, such as fly ash 
from power plants or slag from steel enterprises. The inte-
gration of reinforcement learning within a digital twin en-
vironment thus represents an operational strategy that com-
plements circular economy objectives, turning variability 
into an opportunity for learning and continuous improve-
ment. From a managerial perspective, there are several 
implications of this research work. First, plant managers 
in construction material manufacturing can adopt digital 
twin-based monitoring and scheduling using reinforce-
ment learning for real-time production flow optimization. 
This not only helps in avoiding manual interventions for 
production scheduling but also has improved traceability 
along various boundaries of supply chains as well as pro-
duction. Second, managers can utilize the Resilience Per-
formance Index (RPI), which has been developed in this 
research work.

With ongoing RPI analysis, any inefficiencies can 
be easily identified, making it possible for corrective ac-
tions to take place before any issues need to be resolved. 
Third, through the combination of analytics with sustain-
ability reporting systems, management is able to provide 
evidence of their efforts to mitigate carbon emissions as 
well as improve energy efficiency, a call that is increas-
ingly made by environmental reporting schemes. Lastly, 
for companies with multiple plants, information from rein-
forcement learning for adaptive scheduling will help guide 
interplant coordination strategies, making it possible for 
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the right feedstock, based on available waste materials, 
to be delivered to geographically dispersed plants. From 
a strategic perspective, the above-mentioned model gives 
policymakers a scientific foundation for Data-Driven Re-
silience Investments. The alignment of Digital Operational 
Control and Sustainability Performance Results proves that 
operational excellence and environmental stewardship are 
not trade-offs but rather complements of each other in Dig-
itally Enabled Production Systems. The resilience of man-
ufacturers in sustaining their performance while coping 
with uncertain resource supply is a key success factor for 
manufacturers in today’s ever-changing landscape of green 
construction materials.

Limitations of the Study
However, though the reinforcement learning ap-

proach was properly incorporated into the digital twin 
paradigm in order to support adaptability in the sched-
uling process, the experimental work did not pursue an 
extensive analysis of parameter sensitivity to algorithms, 
convergence patterns, or comparative reinforcement learn-
ing configurations. This particular limitation derived from 
the applied character of the research, as well as the inter-
ests of the study, encompassed in an industrial application 
setting, combined with the difficulties of data integration 
in the outlined environment of the digital twin operation 
system. Though the study sheds valuable light on three 
geopolymer concrete production factories in Jordan, the 
results remain context-specific in nature. Their transferring 
validity is more light-based as compared to the statistical 
validity of the study. Future studies might expand the study 
borders to include more factories. Sensitivity analysis in 
this particular study remained exclusively confined to the 
simulation-based analysis related to the variability in the 
supply of raw material. The detailed parametric sensitivity 
analysis associated with the hyperparameters and structur-
al assumption parameters in the context of reinforcement 
learning and digital twin simulation is yet to be explored 
in future studies because it remained limited in the current 
study. Although the framework proved strong in perfor-
mance across various plants and supply conditions, val-
idation in other materials and across various geographic 
locations is not feasible in this research. Further research 
must validate this framework in other materials used in 

construction and other locations across the globe.
Notwithstanding the efficacy of the proposed digital 

twin reinforcement learning framework, there exist certain 
drawbacks which need to be recognized as well. First and 
foremost, the digital twin model has been based on simpli-
fied models of production processes and has assumed con-
stant quality of sensor data, which may not be reflective 
of the true effects of unobserved disturbances or equip-
ment degradation under real-world conditions. Secondly, 
the reinforcement learning algorithm has been based on a 
single-agent Q-learning method, which may not be easily 
scaled up when there exist complex production networks 
with a multitude of interrelated decision nodes. Thirdly, the 
digital twin model has assumed that learning from opera-
tional experience would provide adequate learning signals 
for adapting under unforeseen circumstances; consequent-
ly, extreme disruptions may not be addressed effectively 
through traditional learning methodologies alone. Fourth-
ly, the digital twin reinforcement learning framework has 
been applied under a certain operational and geographi-
cally situated context; whereas the framework has been 
proposed as being generally transferable across different 
material systems or regulatory regimes, practical efficacy 
in these circumstances may not be guaranteed as well.

6.	 Conclusion
In this research, a framework for an operational re-

silience and sustainability process using the digital twin 
and reinforcement learning for the manufacturing of geo-
polymer concrete, in the face of the variability of raw ma-
terial supplies, was developed. Unlike the conventional 
design and performance orientation of the mixture and its 
mechanical strength, this research stressed the operational 
flexibility of manufacturing systems using fluctuating in-
dustrial wastes like fly ash and slag in the manufacturing 
process. The researchers were able to show, with the help 
of the simulation and optimization using reinforcement 
learning and the digital twin and IoT technologies, the syn-
ergistic relationship between operational resilience and en-
vironmental sustainability.

The study makes a theoretical contribution to the 
literature by positing resilience as a dynamic, algorithmic 
capability that results from predictive and adaptive deci-
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sion-making processes, as opposed to static redundancy. 
This study presents a managerial imperative in terms of a 
Resilience Performance Index (RPI) for comparative as-
sessments of resilience in geopolymer production process-
es. For managers, this research indicates that investments 
in digital twin infrastructure and AI-managed scheduling 
solutions are crucial for countering risks in material sup-
plies and for attaining sustainable objectives. For policy-
makers, this research makes a case for a stable material 
supply chain for industry by-products and must support 
digital transformation endeavors for industries involved in 
construction materials production. This research has shown 
that the coupling of digital intelligence and sustainable ma-
terial innovation is a viable approach for a green and circu-
lar manufacturing future for geopolymer concrete.
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